首页 分享 天然多糖的来源、化学结构及免疫增强活性研究

天然多糖的来源、化学结构及免疫增强活性研究

来源:花匠小妙招 时间:2025-01-27 02:05
[1] Huang, F., Zhang, R., Liu, Y., Xiao, J., Liu, L., Wei, Z., et al. (2016) Dietary Litchi Pulp Polysaccharides Could Enhance Immunomodulatory and Antioxidant Effects in Mice. International Journal of Biological Macromolecules, 92, 1067-1073.
https://doi.org/10.1016/j.ijbiomac.2016.08.021 [2] Raje, N. and Dinakar, C. (2015) Overview of Immunodeficiency Disorders. Immunology and Allergy Clinics of North America, 35, 599-623.
https://doi.org/10.1016/j.iac.2015.07.001 [3] Feng, L., Han, N., Han, Y., Shang, M., Liang, T., Liu, Z., et al. (2024) Structural Analysis of a Soluble Polysaccharide GSPA-0.3 from the Root of Panax ginseng C. A. Meyer and Its Adjuvant Activity with Mechanism Investigation. Carbohydrate Polymers, 326, Article ID: 121591.
https://doi.org/10.1016/j.carbpol.2023.121591 [4] Zhang, X., Liu, Z., Zhong, C., Pu, Y., Yang, Z. and Bao, Y. (2021) Structure Characteristics and Immunomodulatory Activities of a Polysaccharide RGRP-1b from Radix Ginseng Rubra. International Journal of Biological Macromolecules, 189, 980-992.
https://doi.org/10.1016/j.ijbiomac.2021.08.176 [5] Li, Y., Zheng, J., Wang, Y., Yang, H., Cao, L., Gan, S., et al. (2023) Immuno-Stimulatory Activity of Astragalus Polysaccharides in Cyclophosphamide-Induced Immunosuppressed Mice by Regulating Gut Microbiota. International Journal of Biological Macromolecules, 242, Article ID: 124789.
https://doi.org/10.1016/j.ijbiomac.2023.124789 [6] Aipire, A., Mahabati, M., Cai, S., Wei, X., Yuan, P., Aimaier, A., et al. (2020) The Immunostimulatory Activity of Polysaccharides from Glycyrrhiza uralensis. PeerJ, 8, e8294.
https://doi.org/10.7717/peerj.8294 [7] Wang, Y., Sun, M., Jin, H., Yang, J., Kang, S., Liu, Y., et al. (2021) Effects of Lycium barbarum Polysaccharides on Immunity and the Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice. Frontiers in Microbiology, 12, Article 701566.
https://doi.org/10.3389/fmicb.2021.701566 [8] Ding, Y., Yan, Y., Chen, D., Ran, L., Mi, J., Lu, L., et al. (2019) Modulating Effects of Polysaccharides from the Fruits of Lycium barbarumon the Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Food & Function, 10, 3671-3683.
https://doi.org/10.1039/c9fo00638a [9] Zhang, Y., Tang, Y., Cai, L., He, J., Chen, L., Ouyang, K., et al. (2023) Chimonanthus Nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. Oxidative Medicine and Cellular Longevity, 2023, Article ID: 6208680.
https://doi.org/10.1155/2023/6208680 [10] Liu, W., Yan, R. and Zhang, L. (2019) Dendrobium Sonia Polysaccharide Regulates Immunity and Restores the Dysbiosis of the Gut Microbiota of the Cyclophosphamide-Induced Immunosuppressed Mice. Chinese Journal of Natural Medicines, 17, 600-607.
https://doi.org/10.1016/s1875-5364(19)30062-7 [11] Li, M., Yue, H., Wang, Y., Guo, C., Du, Z., Jin, C., et al. (2020) Intestinal Microbes Derived Butyrate Is Related to the Immunomodulatory Activities of Dendrobium Officinale Polysaccharide. International Journal of Biological Macromolecules, 149, 717-723.
https://doi.org/10.1016/j.ijbiomac.2020.01.305 [12] Qu, D., Lian, S., Hu, H., Sun, W. and Si, H. (2022) Characterization and Macrophages Immunomodulatory Activity of Two Water-Soluble Polysaccharides from Abrus cantoniensis. Frontiers in Nutrition, 9, Article 969512.
https://doi.org/10.3389/fnut.2022.969512 [13] Qu, D., Hu, H., Lian, S., Sun, W. and Si, H. (2022) The Protective Effects of Three Polysaccharides from Abrus cantoniensis against Cyclophosphamide-Induced Immunosuppression and Oxidative Damage. Frontiers in Veterinary Science, 9, Article 870042.
https://doi.org/10.3389/fvets.2022.870042 [14] Lv, Y., Yang, Y., Chen, Y., Wang, D., Lei, Y., Pan, M., et al. (2024) Structural Characterization and Immunomodulatory Activity of a Water-Soluble Polysaccharide from Poria cocos. International Journal of Biological Macromolecules, 261, Article ID: 129878.
https://doi.org/10.1016/j.ijbiomac.2024.129878 [15] Liu, F., Zhang, L., Feng, X., Ibrahim, S.A., Huang, W. and Liu, Y. (2021) Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide. Molecules, 26, Article 5733.
https://doi.org/10.3390/molecules26195733 [16] Lin, C., Zhang, H., Chen, L., Fang, Y. and Chen, J. (2021) Immunoregulatory Function of Dictyophora echinovolvata Spore Polysaccharides in Immunocompromised Mice Induced by Cyclophosphamide. Open Life Sciences, 16, 620-629.
https://doi.org/10.1515/biol-2021-0055 [17] Tian, B., Liu, R., Xu, T., Cai, M., Mao, R., Huang, L., et al. (2023) Modulating Effects of Hericium erinaceus Polysaccharides on the Immune Response by Regulating Gut Microbiota in Cyclophosphamide‐Treated Mice. Journal of the Science of Food and Agriculture, 103, 3050-3064.
https://doi.org/10.1002/jsfa.12404 [18] Wan, P., Liu, H., Ding, M., Zhang, K., Shang, Z., Wang, Y., et al. (2023) Physicochemical Characterization, Digestion Profile and Gut Microbiota Regulation Activity of Intracellular Polysaccharides from Chlorella zofingiensis. International Journal of Biological Macromolecules, 253, Article ID: 126881.
https://doi.org/10.1016/j.ijbiomac.2023.126881 [19] Wang, C., Huang, L., Huang, Y., Tian, X. and Liu, J. (2023) Study on Immunoregulatory Effects of Fucoidan from Sargassum graminifolium in Vivo and Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model. Molecules, 28, Article 7794.
https://doi.org/10.3390/molecules28237794 [20] Liu, Y., Ge, K., Yu, Z., Li, X., Wu, X., Wang, Y., et al. (2020) Activation of NLRP3 Inflammasome in RAW 264.7 Cells by Polysaccharides Extracted from Grateloupia livida (Harv.) Yamada. International Immunopharmacology, 85, Article ID: 106630.
https://doi.org/10.1016/j.intimp.2020.106630 [21] 曲航, 吴奕, 刘常武, 等. 鲍鱼多糖的大孔树脂纯化工艺及其免疫调节活性分析[J]. 食品工业科技, 2024, 45(13): 186-194. [22] Zhao, Y., Yan, Y., Zhou, W., Chen, D., Huang, K., Yu, S., et al. (2020) Effects of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry on Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice. Journal of Functional Foods, 72, Article ID: 104057.
https://doi.org/10.1016/j.jff.2020.104057 [23] Zhu, X., Guo, R., Su, X., Shang, K., Tan, C., Ma, J., et al. (2023) Immune-Enhancing Activity of Polysaccharides and Flavonoids Derived from Phellinus Igniarius Yash. Frontiers in Pharmacology, 14, Article 1124607.
https://doi.org/10.3389/fphar.2023.1124607 [24] Jing, Y., Zhang, Y., Yan, M., Zhang, R., Hu, B., Sun, S., et al. (2023) Structural Characterization of a Heteropolysaccharide from the Fruit of Crataegus Pinnatifida and Its Bioactivity on the Gut Microbiota of Immunocompromised Mice. Food Chemistry, 413, Article ID: 135658.
https://doi.org/10.1016/j.foodchem.2023.135658 [25] Deng, C., Fu, H., Teng, L., Hu, Z., Xu, X., Chen, J., et al. (2013) Anti-Tumor Activity of the Regenerated Triple-Helical Polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules, 61, 453-458.
https://doi.org/10.1016/j.ijbiomac.2013.08.007 [26] Lee, J.S. (2009) Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body of Hericium erinaceus. Journal of Microbiology and Biotechnology, 19, 951-959.
https://doi.org/10.4014/jmb.0901.013 [27] 王莹, 金红宇, 李耀磊, 等. 不同分子量枸杞多糖对RAW264.7巨噬细胞的免疫调节作用[J]. 中国新药杂志, 2021, 30(12): 1079-1086. [28] Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. and Coimbra, M.A. (2015) Structure-Function Relationships of Immunostimulatory Polysaccharides: A Review. Carbohydrate Polymers, 132, 378-396.
https://doi.org/10.1016/j.carbpol.2015.05.079 [29] 陈赛红, 衣伟萌, 闵思明, 等. 太子参参须提取物对免疫抑制小鼠的免疫调节作用[J]. 中国兽医杂志, 2023, 59(6): 138-143. [30] 孙萌, 王文地, 丽妍, 等. 基于斑马鱼模型的防风多糖调节免疫作用机制研究[J]. 中国中药杂志, 2023, 48(7): 1916-1926. [31] 张雪, 赵苑伶, 陈林珍, 等. 基于斑马鱼模型探究多花黄精多糖的免疫调节作用[J]. 世界中医药, 2023, 18(6): 761-765, 772. [32] 崔雪娇, 佟潇禹, 张彦龙, 等. 刺五加果多糖对RAW264.7细胞免疫调节作用[J]. 生物技术, 2022, 32(2): 182-187, 194. [33] Zhao, M., Shi, W., Chen, X., Liu, Y., Yang, Y. and Kong, X. (2022) Regulatory Effects of Auricularia Cornea Var. Li. Polysaccharides on Immune System and Gut Microbiota in Cyclophosphamide-Induced Mice. Frontiers in Microbiology, 13, Article 1056410.
https://doi.org/10.3389/fmicb.2022.1056410 [34] 翟旭楠, 刘永武, 张娜, 等. 刺五加多糖对小鼠免疫功能的影响[J]. 中医药信息, 2020, 37(6): 42-45. [35] 王小兰, 段鹏飞, 杨梦, 等. 生地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究[J]. 上海中医药大学学报, 2021, 35(1): 55-60, 92. [36] Deng, X., Fu, Y., Luo, S., Luo, X., Wang, Q., Hu, M., et al. (2019) Polysaccharide from Radix Codonopsis Has Beneficial Effects on the Maintenance of T-Cell Balance in Mice. Biomedicine & Pharmacotherapy, 112, Article ID: 108682.
https://doi.org/10.1016/j.biopha.2019.108682 [37] 董一鑫, 陈洁, 于萍, 等. 竹节参多糖的结构表征及体外免疫活性研究[J]. 中药材, 2023, 46(11): 2754-2759. [38] Wei, J., Wang, B., Chen, Y., Wang, Q., Ahmed, A.F., Zhang, Y., et al. (2022) The Immunomodulatory Effects of Active Ingredients from Nigella sativa in RAW264.7 Cells through NF-κB/mapk Signaling Pathways. Frontiers in Nutrition, 9, Article 899797.
https://doi.org/10.3389/fnut.2022.899797 [39] Zou, Y., Zhang, Y., Fu, Y., Inngjerdingen, K., Paulsen, B., Feng, B., et al. (2019) A Polysaccharide Isolated from Codonopsis pilosula with Immunomodulation Effects Both in Vitro and in Vivo. Molecules, 24, Article 3632.
https://doi.org/10.3390/molecules24203632 [40] 代道蝶, 刘梦鸽, 孙庆文, 等. 蜘蛛果多糖对RAW264.7免疫调节作用[J]. 生物技术, 2024, 34(3): 376-381. [41] Wang, X., Qu, Y., Wang, Y., Wang, X., Xu, J., Zhao, H., et al. (2022) β-1, 6-glucan from Pleurotus eryngii Modulates the Immunity and Gut Microbiota. Frontiers in Immunology, 13, Article 859923.
https://doi.org/10.3389/fimmu.2022.859923 [42] Zhang, W., Park, H., Yadav, D., Hwang, J., An, E., Eom, H., et al. (2021) Comparison of Human Peripheral Blood Dendritic Cell Activation by Four Fucoidans. International Journal of Biological Macromolecules, 174, 477-484.
https://doi.org/10.1016/j.ijbiomac.2021.01.155 [43] Feng, S., Yang, X., Weng, X., Wang, B. and Zhang, A. (2021) Aqueous Extracts from Cultivated Cistanche deserticola Y.C. Ma as Polysaccharide Adjuvant Promote Immune Responses via Facilitating Dendritic Cell Activation. Journal of Ethnopharmacology, 277, Article ID: 114256.
https://doi.org/10.1016/j.jep.2021.114256 [44] Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352.
https://doi.org/10.1038/nri.2016.42 [45] Gareau, M.G., Sherman, P.M. and Walker, W.A. (2010) Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 7, 503-514.
https://doi.org/10.1038/nrgastro.2010.117 [46] Fink, L.N., Zeuthen, L.H., Christensen, H.R., Morandi, B., Frokiaer, H. and Ferlazzo, G. (2007) Distinct Gut-Derived Lactic Acid Bacteria Elicit Divergent Dendritic Cell-Mediated NK Cell Responses. International Immunology, 19, 1319-1327.
https://doi.org/10.1093/intimm/dxm103 [47] Delcenserie, V., Martel, D., Lamoureux, M., et al. (2008) Immunomodulatory Effects of Probiotics in the Intestinal Tract. Current Issues in Molecular Biology, 10, 37-53. [48] Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. and Apostolopoulos, V. (2019) Immunomodulatory Effects of Probiotics: Can They Be Used to Treat Allergies and Autoimmune Diseases? Maturitas, 119, 25-38.
https://doi.org/10.1016/j.maturitas.2018.11.002 [49] Ying, M., Yu, Q., Zheng, B., Wang, H., Wang, J., Chen, S., et al. (2020) Cultured Cordyceps Sinensis Polysaccharides Modulate Intestinal Mucosal Immunity and Gut Microbiota in Cyclophosphamide-Treated Mice. Carbohydrate Polymers, 235, Article ID: 115957.
https://doi.org/10.1016/j.carbpol.2020.115957 [50] Zhou, F., Jiang, X., Wang, T., Zhang, B. and Zhao, H. (2018) Lycium barbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Frontiers in Microbiology, 9, Article 1034.
https://doi.org/10.3389/fmicb.2018.01034 [51] Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041 [52] Peng, L., Li, Z., Green, R.S., Holzmanr, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619-1625.
https://doi.org/10.3945/jn.109.104638 [53] Li, P., Ge, J. and Li, H. (2019) Lysine Acetyltransferases and Lysine Deacetylases as Targets for Cardiovascular Disease. Nature Reviews Cardiology, 17, 96-115.
https://doi.org/10.1038/s41569-019-0235-9 [54] Ren, D., Li, S., Lin, H., Xia, Y., Li, Z., Bo, P., et al. (2022) Panax quinquefolius Polysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways. Journal of Immunology Research, 2022, Article ID: 4126273.
https://doi.org/10.1155/2022/4126273 [55] Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W., et al. (2021) Scutellaria baicalensis Georgi Polysaccharide Ameliorates DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota. International Journal of Biological Macromolecules, 166, 1035-1045.
https://doi.org/10.1016/j.ijbiomac.2020.10.259 [56] 查苏娜, 苏日娜, 齐和日玛, 等. 刺玫根多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用[J]. 天然产物研究与开发, 2024, 36(2): 196-205, 292. [57] Leung, M.Y.K., Liu, C., Koon, J.C.M. and Fung, K.P. (2006) Polysaccharide Biological Response Modifiers. Immunology Letters, 105, 101-114.
https://doi.org/10.1016/j.imlet.2006.01.009 [58] Yang, H., Song, X., Wei, Z., Xia, C., Wang, J., Shen, L., et al. (2020) TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats. ACS Chemical Neuroscience, 11, 2978-2988.
https://doi.org/10.1021/acschemneuro.0c00029 [59] Zhang, Q., Liu, M., Li, L., Chen, M., Puno, P.T., Bao, W., et al. (2021) Cordyceps Polysaccharide Marker CCP Modulates Immune Responses via Highly Selective TLR4/MyD88/p38 Axis. Carbohydrate Polymers, 271, Article ID: 118443.
https://doi.org/10.1016/j.carbpol.2021.118443 [60] Zeng, F., Li, Y., Zhang, X., Shen, L., Zhao, X., Beta, T., et al. (2024) Immune Regulation and Inflammation Inhibition of Arctium Lappa L. Polysaccharides by TLR4/NF-κB Signaling Pathway in Cells. International Journal of Biological Macromolecules, 254, Article ID: 127700.
https://doi.org/10.1016/j.ijbiomac.2023.127700 [61] Chen, D., Chen, G., Ding, Y., Wan, P., Peng, Y., Chen, C., et al. (2019) Polysaccharides from the Flowers of Tea (Camellia sinensis L.) Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Immunosuppression. Journal of Functional Foods, 61, Article ID: 103470.
https://doi.org/10.1016/j.jff.2019.103470 [62] Tan, S. (2012) The Leucocyte β2(CD18) Integrins: The Structure, Functional Regulation and Signalling Properties. Bioscience Reports, 32, 241-269.
https://doi.org/10.1042/bsr20110101 [63] Lan, H., Cheng, Y., Mu, J., Huang, Y., Chen, H., Zhao, L., et al. (2021) Glucose-rich Polysaccharide from Dried ‘Shixia’ Longan Activates Macrophages through Ca2+ and CR3-Mediated MAPKs and PI3K-AKT Pathways. International Journal of Biological Macromolecules, 167, 845-853.
https://doi.org/10.1016/j.ijbiomac.2020.11.040 [64] Talapphet, N., Palanisamy, S., Li, C., Ma, N., Prabhu, N.M. and You, S. (2021) Polysaccharide Extracted from Taraxacum Platycarpum Root Exerts Immunomodulatory Activity via MAPK and NF-κB Pathways in RAW264.7 Cells. Journal of Ethnopharmacology, 281, Article ID: 114519.
https://doi.org/10.1016/j.jep.2021.114519 [65] Deng, C., Fu, H., Shang, J., Chen, J. and Xu, X. (2018) Dectin-1 Mediates the Immunoenhancement Effect of the Polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules, 109, 369-374.
https://doi.org/10.1016/j.ijbiomac.2017.12.113 [66] Qiao, D., He, X., Wei, C., Xia, L. and Bao, L. (2016) Effects of Hyriopsis cumingii Polysaccharides on Mice Immunologic Receptor, Transcription Factor, and Cytokine. Journal of Food Science, 81, H1288-H1294.
https://doi.org/10.1111/1750-3841.13288 [67] Kang, H., Lee, M., Lee, J., Choi, Y. and Choi, Y. (2016) Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice. Nutrients, 8, Article 188.
https://doi.org/10.3390/nu8040188

相关知识

槟榔花序多糖组分的结构表征及其体内外免疫增强活性研究,Food Research International
免疫增强药物及免疫增强疗法
泰山梧桐花多糖对雏鸡的免疫增强作用的研究
四种植物多糖抑菌抗病毒作用及其对波氏杆菌免疫增强作用的比较研究
《食品科学》专家约稿:花中多糖化学组成与生物活性研究进展
黄秋葵花多糖的结构、免疫调节活性及机制研究
垂丝海棠花多糖在制备免疫增强药物方面的应用的制作方法
松果菊:天然的免疫增强能手
山药多糖结构、生物活性及其机制研究进展
天然产物化学第一章绪论幻灯片.ppt

网址: 天然多糖的来源、化学结构及免疫增强活性研究 https://www.huajiangbk.com/newsview1635776.html

所属分类:花卉
上一篇: 茉莉花渣中果胶型多糖的结构特征与
下一篇: 富硒灰树花硒多糖的结构、免疫调节

推荐分享