首页 分享 茉莉花渣中果胶型多糖的结构特征与免疫调节作用

茉莉花渣中果胶型多糖的结构特征与免疫调节作用

来源:花匠小妙招 时间:2025-01-27 02:05

摘要: 为探究茉莉花渣中果胶型多糖的结构特征与免疫调节作用,本研究通过水提醇沉、蛋白脱除、阴离子交换柱层析和凝胶柱层析分离得到两种多糖JSP-3和JSP-4。通过相对重均分子量测定、单糖组成测定、部分酸水解液-质联用测定以及核磁共振波谱分析了两种多糖结构特征,最后以小鼠巨噬细胞RAW 264.7为模型,通过探究其对小鼠巨噬细胞的增殖率、吞噬率、ROS产生量以及NO、TNF-α、IL-6分泌量的影响来研究免疫调节作用。结果表明,JSP-3和JSP-4为两种均一多糖,相对重均分子量分别为15.48 kDa和 44.75 kDa,主要由半乳糖醛酸、鼠李糖、半乳糖和阿拉伯糖构成,存在不同比例的半乳糖醛酸聚糖结构域(JSP-3:32.87%±3.53%;JSP-4:68.64%±0.67%)与鼠李糖半乳糖醛酸聚糖结构域(JSP-3:61.12%±3.37%;JSP-4:28.28%±0.46%),说明两者均为果胶型多糖。与对照组相比,JSP-3和JSP-4在12.5~100 μg/mL的浓度范围内无细胞毒性,在一定浓度下能够通过促进小鼠巨噬细胞的吞噬作用,显著增加ROS产生量以及NO、TNF-α和IL-6的分泌量(P<0.05)。在相同浓度下,JSP-4比JSP-3能够刺激细胞分泌更多的NO、TNF-α和IL-6,说明JSP-4具有更强的免疫调节作用,这可能与其更高的半乳糖醛酸结构域比例和相对重均分子量有关。上述研究成果初步证明了茉莉花渣果胶型多糖的免疫调节作用,为其在免疫调节剂方面的应用提供了初步依据。

Abstract: In order to explore the structural characteristics and immunomodulatory effects of pectic polysaccharides in Jasminum sambac flower waste, two polysaccharides, JSP-3 and JSP-4, were separated by water extraction, alcohol precipitation, deproteinization, anion exchange chromatography and gel chromatography. Its structural characteristics were analyzed with relative weight average molecular weight, monosaccharide composition, partial acid hydrolysis-LC-MS and NMR. Finally, the immunomodulatory effects of two polysaccharides were studied by using murine macrophage RAW 264.7 as a model, and measuring the effects on proliferation, phagocytosis, ROS production and secretion of NO, TNF-α and IL-6. The results showed that JSP-3 and JSP-4 were two homogeneous polysaccharides with relative molecular weights of 15.48 kDa and 44.75 kDa, respectively, mainly composed of galacturonic acid, rhamnose, galactose and arabinose, with different proportions of galacturonan domain (JSP-3: 32.87%±3.53%, JSP-4: 68.64%±0.67%) and rhamnogalacturonan domain (JSP-3: 61.12%±3.37%, JSP-4: 28.28%±0.46%), indicating that both are pectic polysaccharides. Compared with the control group, JSP-3 and JSP-4 have no cytotoxic effect within 12.5~100 μg/mL. At a certain concentration, it increased the production of ROS and the secretion of NO, TNF-α and IL-6, also promoted the phagocytosis of mouse macrophages significantly (P<0.05). At the same concentration, JSP-4 could stimulate cells to secrete more NO, TNF-α and IL-6 than JSP-3, indicating that JSP-4 had a stronger immunoregulatory effect, which might be associated with its higher proportion of galacturonan domain and relative molecular weight. The above research results preliminarily proved the immunomodulatory effect of pectic polysaccharide from Jasminum sambac flower waste, and would provide a basis for its potential application in immunomodulators.

图  1   JSP在弱阴离子交换层析上的洗脱曲线

Figure  1.   Elution curve of JSP on weak anion exchange chromatography

图  2   JSP-3和JSP-4的尺寸排阻色谱图(A)和葡聚糖标准曲线(B)

Figure  2.   SEC-ELSD chromatogram of JSP-3 and JSP-4 (A), and standards curve of dextran (B)

图  3   JSP-3和JSP-4的核磁共振氢谱(A, C)和核磁共振碳谱(B,D)

Figure  3.   1H NMR spectra of JSP-3(A) and JSP-4(C) and 13C NMR spectra of JSP-3(B) and JSP-4(D)

图  4   JSP-3和JSP-4对RAW 264.7的细胞增殖率(A)和吞噬作用(B)的影响

注:与对照相比,ns:不显著;*:具有显著性P<0.05;**:具有极显著性P<0.01;图5同。

Figure  4.   Effects of JSP-3 and JSP-4 on RAW 264.7 cell viability(A) and phagocytos(B)

图  5   JSP-3和JSP-4对RAW 264.7的ROS产生量(A)、NO分泌量(B)、TNF-α分泌量(C)和IL-6分泌量(D)的影响

Figure  5.   Effects of JSP-3 and JSP-4 on ROS production(A), NO(B), TNF-α(C) and IL-6(D) secretions of RAW 264.7 macrophages

图  6   JSP-3和JSP-4对TAK-242和C29预处理后的RAW 264.7的NO分泌量(A)、TNF-α分泌量(B)和IL-6分泌量(C)的影响

注:ns:不显著;与对照相比,*:具有显著性P<0.05;**:具有极显著性 P<0.01;与每组无抑制剂数据相比,##:具有极显著性 P<0.01。

Figure  6.   Effects of JSP-3 and JSP-4 on NO(A), TNF-α(B) and IL-6(C) secretion pretreated by TAK-242 and C29

表  1   JSP-3和JSP-4的主要化学组成

Table  1   Major chemical composition of JSP-3 and JSP-4

多糖名称中性糖含量(%)糖醛酸含量(%)蛋白含量(%) JSP-333.72±1.6451.25±2.530.84±0.09JSP-427.14±1.5277.43±3.120.89±0.08

表  2   JSP-3和JSP-4的单糖组成摩尔比和结构域占比

Table  2   Monosaccharide molecular ratio and structural domain ratio of JSP-3 and JSP-4

摩尔比 (%)JSP-3JSP-4 Man0.53±0.021.29±0.16Rha13.86±1.145.56±0.30GlcA2.74±0.460.77±0.10GalA46.83±2.5074.31±0.37Gal14.22±0.2611.20±0.60Xyl2.75±0.640.80±0.30Ara18.98±1.256.17±0.28HGa32.87±3.5268.64±0.67RG-Ib61.12±3.3728.29±0.46 注:a: HG=GalA-Rha; b: RG-I=2(Rha)+Ara+Gal。

表  3   部分酸水解后的JSP-3和JSP-4 的LC-MS解析结果

Table  3   The LC-MS identification results of partial acid hydrolyzed JSP-3 and JSP-4

JSP-3 JSP-4推测结构保留时间(min)[M+H]+保留时间(min)[M+H]+ 120.037525.2003 19.546525.19962PMP-GalA215.568701.230815.161701.23022PMP-(GalA)2312.870877.264312.463877.26122PMP-(GalA)3411.6891053.294311.4511053.29402PMP-(GalA)4510.7621229.332910.5231229.3262PMP-(GalA)5610.0871405.35089.8481405.3512PMP-(GalA)6718.857495.224818.366495.22132PMP-Rha819.953671.252019.462671.25612PMP-Rha-GalA917.092817.3171ndnd2PMP-Rha-GalA-Rha1014.725993.3444ndnd2PMP-(Rha-GalA)21112.2071315.4335ndnd2PMP-(Rha-GalA)3 注:nd: 未检出。 [1] 安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶挥发性成分在窨制过程中的变化研究[J]. 茶叶通讯,2020,47(1):67−74. [AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication,2020,47(1):67−74. doi: 10.3969/j.issn.1009-525X.2020.01.013

AN H M, OU X C, XIONG Y F, et al. Study on the change of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication, 2020, 47(1): 67-74. doi: 10.3969/j.issn.1009-525X.2020.01.013

[2] 唐雅园, 何雪梅, 孙健 等. 茉莉花非挥发性成分及其功能活性研究进展[J]. 食品研究与开发,2021,42(11):189−195. [TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development,2021,42(11):189−195. doi: 10.12161/j.issn.1005-6521.2021.11.030

TANG Y Y, HE X M, SUN J, et al. Research progress in non-volatile components and d functional activities of Jasminum sambac (L. ) Aiton[J]. Food Research and Development, 2021, 42(11): 189-195. doi: 10.12161/j.issn.1005-6521.2021.11.030

[3] 刘威. 茉莉花渣的综合利用研究进展[J]. 湖南农业科学,2017,56(1):112−114. [LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences,2017,56(1):112−114. doi: 10.16498/j.cnki.hnnykx.2017.001.028

LIU W. Research progress in comprehensive utilization of jasmine flower residues[J]. Hunan Agricultural Sciences, 2017(1): 112-114. doi: 10.16498/j.cnki.hnnykx.2017.001.028

[4] 韦英亮, 崔建国, 范磊. 茉莉花渣资源高值化利用探讨[J]. 化工技术与开发,2008,46(4):44−46,13. [WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry,2008,46(4):44−46,13. doi: 10.3969/j.issn.1671-9905.2008.04.013

WEI Y L, CUI J G, FAN L. Research of higher value application for Jasminum sambac waste[J]. Technology Development of Chemical Industry, 2008(4): 44-46, 13. doi: 10.3969/j.issn.1671-9905.2008.04.013

[5]

TANG Y Y, SHENG J F, HE X M, et al. Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea[J]. Foods,2021,10(10):2375. doi: 10.3390/foods10102375

[6] 邹瑶, 齐桂年, 陈盛相 等. 茉莉花渣多糖的提取分离及抗氧化作用[J]. 四川农业大学学报,2012,30(1):78−81. [ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University,2012,30(1):78−81. doi: 10.3969/j.issn.1000-2650.2012.01.015

ZOU Y, QI G N, CHEN S X, et al. Extraction, separation and anti-oxidation activity of polysaccharide from jasmine dried residue[J]. Journal of Sichuan Agricultural University, 2012, 30(1): 78-81. doi: 10.3969/j.issn.1000-2650.2012.01.015

[7] 邹瑶, 齐桂年. 茉莉花渣多糖降血糖、改善糖尿病症状作用的研究[J]. 食品科技,2011,36(2):157−160. [ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology,2011,36(2):157−160. doi: 10.13684/j.cnki.spkj.2011.02.068

ZOU Y, QI G N. The hypoglycemic activity and improvement of diabetic symptoms of polysaccharides from jasmine dried residue on diabetic mellitus mice[J]. Food Science and Technology, 2011, 36(2): 157-160. doi: 10.13684/j.cnki.spkj.2011.02.068

[8] 王密, 蒋昀靓, 邝晓聪 等. 茉莉花、茉莉花茶提取液对部分免疫效应的影响[J]. 中国病理生理杂志,2011,27(7):1428−1430. [WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology,2011,27(7):1428−1430. doi: 10.3969/j.issn.1000-4718.2011.07.034

WANG M, JIANG Y L, KUANG X C, et al. Effects of jasmine tea extracts on fuctions of mouse immune cells[J]. Chinese Journal of Pathophysiology, 2011, 27(7): 1428-1430. doi: 10.3969/j.issn.1000-4718.2011.07.034

[9]

WU J J, XU Y B, SU J, et al. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity[J]. Carbohydrate Polymers,2020,248:116780. doi: 10.1016/j.carbpol.2020.116780

[10]

WU M Q, LI W, ZHANG Y L, et al. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste[J]. Carbohydrate Polymers,2021,253:117190. doi: 10.1016/j.carbpol.2020.117190

[11]

MZOUGHI Z, MAJDOUB H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials[J]. International Journal of Biological Macromolecules,2021,173:554−579. doi: 10.1016/j.ijbiomac.2021.01.144

[12]

LI Z, BRATLIE K M. The influence of polysaccharides-based material on macrophage phenotypes[J]. Macromolecular Bioscience,2021,21(8):2100031. doi: 10.1002/mabi.202100031

[13]

CHEN S C, KHAN B M, CHEONG K L, et al, Pumpkin polysaccharides: Purification, characterization and hypoglycemic potential[J]. International Journal of Biological Macromolecules, 2019, 139: 842-849.

[14]

ZHANG W H, WU J, WENG L Y, et al. An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate[J]. Carbohydrate Polymers,2020,227:115332. doi: 10.1016/j.carbpol.2019.115332

[15] 王佳, 李进霞, 张慧芝 等. 虎杖多糖乙醇分级纯化及其抗氧化性[J]. 食品工业科技,2019,40(1):92−95. [WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry,2019,40(1):92−95. doi: 10.13386/j.issn1002-0306.2019.01.017

WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry, 2019, 40(1): 92-95. doi: 10.13386/j.issn1002-0306.2019.01.017

[16] 邓丽莉, 潘晓倩, 生吉萍 等. 考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化[J]. 食品科学,2012,33(24):185−189. [DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science,2012,33(24):185−189. doi: 10.7506/spkx1002-6630-201224038

DENG L L, PAN X Q, SHENG J P, et al. Optimization of experimental conditions for the determination of water soluble protein in apple pulp using Coomassie brilliant blue method[J]. Food Science, 2012, 33(24): 185-189. doi: 10.7506/spkx1002-6630-201224038

[17]

KLAVONS J A, BENNETT R D. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins[J]. Journal of Agricultural and Food Chemistry,1986,34(4):597−599. doi: 10.1021/jf00070a004

[18]

ZHU M Q, HUANG R M, WEN P, et al. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels[J]. Carbohydrate Polymers,2021,254:117371. doi: 10.1016/j.carbpol.2020.117371

[19]

LI S S, YANG G, YAN J M, et al. Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera[J]. International Journal of Biological Macromolecules,2018,111:660−666. doi: 10.1016/j.ijbiomac.2018.01.015

[20]

XIONG B Y, ZHANG W C, WU Z Y, et al. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L. )[J]. International Journal of Biological Macromolecules,2021,181:824−834. doi: 10.1016/j.ijbiomac.2021.03.202

[21]

ZHU Y L, HE Z X, BAO X Y, et al. Purification, in-depth structure analysis and antioxidant stress activity of a novel pectin-type polysaccharide from Ziziphus jujuba cv. Muzao residue[J]. Journal of Functional Foods,2021,80:104439. doi: 10.1016/j.jff.2021.104439

[22]

WANG N F, ZHANG X J, WANG S W, et al. Structural characterisation and immunomodulatory activity of polysaccharides from white asparagus skin[J]. Carbohydrate Polymers,2020,227:115314. doi: 10.1016/j.carbpol.2019.115314

[23]

ADEREM A, UNDERHILL D M. Mechanisms of phagocytosis in macrophages[J]. Annual Review of Immunology,1999,17:593−623. doi: 10.1146/annurev.immunol.17.1.593

[24]

MUÑOZ-ALMAGRO N, VENDRELL-CALATAYUD M, MÉNDEZ-ALBIÑANA P, et al. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante)[J]. Carbohydrate Polymers,2021,272:118411. doi: 10.1016/j.carbpol.2021.118411

[25]

SONG C, HUANG F H, LIU L Y, et al. Characterization and prebiotic properties of pectin polysaccharide from Clausena lansium (Lour. ) Skeels fruit[J]. International Journal of Biological Macromolecules,2022,194:412−421. doi: 10.1016/j.ijbiomac.2021.11.083

[26]

REICHEMBACH L H. , DE OLIVEIRA PETKOWICZ C L. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties[J]. Carbohydrate Polymers,2020,245:116473. doi: 10.1016/j.carbpol.2020.116473

[27]

LAI H L, YANG L C, LIN P T, et al. Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system[J]. International Journal of Biological Macromolecules,2020,155:951−960. doi: 10.1016/j.ijbiomac.2019.11.054

[28]

YIN M, ZHANG Y, LI H. Advances in research on immunoregulation of macrophages by plant polysaccharides[J]. Frontiers in Immunology,2019,10:145. doi: 10.3389/fimmu.2019.00145

[29]

SCIALÒ F, FERNÁNDEZ-AYALA D J, SANZ A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease[J]. Frontiers in Physiology,2017,8:428. doi: 10.3389/fphys.2017.00428

[30]

SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology,2018,233(9):6425−6440. doi: 10.1002/jcp.26429

[31]

POPOV S V, OVODOVA R G, OVODOV Y S. Effect of lemnan, pectin from Lemna minor L. and its fragments on inflammatory reaction[J]. Phytotherapy Research,2006,20(5):403−407. doi: 10.1002/ptr.1869

[32]

HUANG L L, ZHAO J, WEI Y L, et al. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch[J]. Carbohydrate Polymers,2021,269:118288. doi: 10.1016/j.carbpol.2021.118288

[33]

ZHANG Q, XU Y, LV J J, et al. Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory[J]. International Journal of Biological Macromolecules,2018,113:195−204. doi: 10.1016/j.ijbiomac.2018.02.064

[34]

SATOH T, AKIRA S. Toll-like receptor signaling and its inducible proteins[J]. Microbiology Spectrum, 2016, 4(6).

[35]

LI M Z, WEN J J, HUANG X J, et al. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis[J]. Food Chemistry,2021,374:131586.

相关知识

中药多糖免疫调节作用机制的研究进展
食物中活性成分对机体的免疫调节作用研究进展
菠萝蜜果肉中多糖免疫调节作用及其机制研究
具有免疫活性的植物多糖的作用机理.ppt
茉莉花渣的综合利用.doc
石榴籽多糖的理化性质与生物活性.docx
黄秋葵花多糖的结构、免疫调节活性及机制研究
茉莉花渣多糖的提取分离及抗氧化作用.pdf
山药多糖结构、生物活性及其机制研究进展
植物多糖的保健功能及开发前景

网址: 茉莉花渣中果胶型多糖的结构特征与免疫调节作用 https://www.huajiangbk.com/newsview1635777.html

所属分类:花卉
上一篇: Chin Med:芒柄花黄素通过
下一篇: 天然多糖的来源、化学结构及免疫增

推荐分享