首页 分享 Python优雅地可视化数据

Python优雅地可视化数据

来源:花匠小妙招 时间:2025-01-11 22:24

最近看《机器学习系统设计》…前两章。学到了一些用Matplotlib进行数据可视化的方法。在这里整理一下。

声明:由于本文的代码大部分是参考书中的例子,所以不提供完整代码,只提供示例片段,也就是只能看出某一部分用法,感兴趣的需要在自己的数据上学习测试。

最开始,当然还是要导入我们需要的包:

# -*- coding=utf-8 -*- from matplotlib import pyplot as plt from sklearn.datasets import load_iris import numpy as np import itertools12345 1. 画散点图

画散点图用plt.scatter(x,y)。画连续曲线在下一个例子中可以看到,用到了plt.plot(x,y)。

plt.xticks(loc,label)可以自定义x轴刻度的显示,第一个参数表示的是第二个参数label显示的位置loc。

plt.autoscale(tight=True)可以自动调整图像显示的最佳化比例 。

plt.scatter(x,y) plt.title("Web traffic") plt.xlabel("Time") plt.ylabel("Hits/hour") plt.xticks([w*7*24 for w in range(10)],['week %i' %w for w in range(10)]) plt.autoscale(tight=True) plt.grid() ##plt.show()12345678

画出散点图如下:

这里写图片描述

2. 多项式拟合并画出拟合曲线

## 多项式拟合 fp2 = np.polyfit(x,y,3) f2 = np.poly1d(fp2) fx = np.linspace(0,x[-1],1000) plt.plot(fx,f2(fx),linewidth=4,color='g') ## f2.order: 函数的阶数 plt.legend(["d=%i" % f2.order],loc="upper right") plt.show()123456789

效果图:

这里写图片描述

3. 画多个子图

这里用到的是sklearn的iris_dataset(鸢尾花数据集)。

此数据集包含四列,分别是鸢尾花的四个特征:

sepal length (cm)——花萼长度sepal width (cm)——花萼宽度petal length (cm)——花瓣长度petal width (cm)——花瓣宽度

这里首先对数据进行一定的处理,主要就是对特征名称进行两两排列组合,然后任两个特征一个一个做x轴另一个做y轴进行画图。

# -*- coding=utf-8 -*- from matplotlib import pyplot as plt from sklearn.datasets import load_iris import numpy as np import itertools data = load_iris() #print(data.data) #print(data.feature_names) #print(data.target) features = data['data'] feature_names = data['feature_names'] target = data['target'] labels = data['target_names'][data['target']] print(data.data) print(data.feature_names)

123456789101112131415161718

这里有一个排列组合参考代码,最后是取出了两两组合的情况。

排列组合的结果是feature_names_2包含了排列组合的所有情况,它的每一个元素包含了一个排列组合的所有情况,比如第一个元素包含了所有单个元素排列组合的情况,第二个元素包含了所有的两两组合的情况……所以这里取出了第二个元素,也就是所有的两两组合的情况

feature_names_2 = [] #排列组合 for i in range(1,len(feature_names)+1): iter = itertools.combinations(feature_names,i) feature_names_2.append(list(iter)) print(len(feature_names_2[1])) for i in feature_names_2[1]: print(i)123456789

下面是在for循环里画多个子图的方法。对我来说,这里需要学习的有不少。比如

for i,k in enumerate(feature_names_2[1]):这一句老是记不住。比如从列表中取出某元素所在的索引的方法:index1 = feature_names.index(k[0]),也即index = list.index(element)的形式。比如for循环中画子图的方法:plt.subplot(2,3,1+i)比如for循环的下面这用法:for t,marker,c in zip(range(3),">ox","rgb"):

plt.figure(1) for i,k in enumerate(feature_names_2[1]): index1 = feature_names.index(k[0]) index2 = feature_names.index(k[1]) plt.subplot(2,3,1+i) for t,marker,c in zip(range(3),">ox","rgb"): plt.scatter(features[target==t,index1],features[target==t,index2],marker=marker,c=c) plt.xlabel(k[0]) plt.ylabel(k[1]) plt.xticks([]) plt.yticks([]) plt.autoscale() plt.tight_layout() plt.show()1234567891011121314

这里的可视化效果如下:

这里写图片描述

4. 画水平线和垂直线

比如在上面最后一幅图中,找到了一种方法可以把三种鸢尾花分出来,这是我们需要画出模型(一条直线)。这个时候怎么画呢?

下面需要注意的就是plt.vlines(x,y_min,y_max)和plt.hlines(y,x_min,x_max)的用法。

plt.figure(2) for t,marker,c in zip(range(3),">ox","rgb"): plt.scatter(features[target==t,3],features[target==t,2],marker=marker,c=c) plt.xlabel(feature_names[3]) plt.ylabel(feature_names[2]) # plt.xticks([]) # plt.yticks([]) plt.autoscale() plt.vlines(1.6, 0, 8, colors = "c",linewidth=4,linestyles = "dashed") plt.hlines(2.5, 0, 2.5, colors = "y",linewidth=4,linestyles = "dashed") plt.show() 1234567891011

此时可视化效果如下:

这里写图片描述

5. 动态画图

plt.ion()打开交互模式。plt.show()不再阻塞程序运行。

注意plt.axis()的用法。

plt.axis([0, 100, 0, 1]) plt.ion() for i in range(100): y = np.random.random() plt.autoscale() plt.scatter(i, y) plt.pause(0.01)12345678

可视化效果:

这里写图片描述

公众号CVPy,分享OpenCV和Python的实战内容。每一篇都会放出完整的代码。欢迎关注。1

公众号CVPy

相关知识

基于Python实现交互式数据可视化的工具(用于Web)
基于Python的全国主要城市天气数据可视化大屏系统
鸢尾花数据集如何可视化
Python在线零售数据关联规则挖掘Apriori算法数据可视化
Python实现NIKE耐克女REACT跑步鞋数据分析和可视化
Python中的数据可视化:Matplotlib基础与高级技巧
python 怎么加载鸢尾花数据
python 鸢尾花数据集下载
【python数据挖掘课程】十九.鸢尾花数据集可视化、线性回归、决策树花样分析
鸢尾花Python数据分析

网址: Python优雅地可视化数据 https://www.huajiangbk.com/newsview1544921.html

所属分类:花卉
上一篇: 360度大数据洞察:融研究院引领
下一篇: 怎样用好数据洞察驱动生意增长?

推荐分享