单粒播种与施磷对间作花生种间竞争和生长的调控效应
开放科学(资源服务)标识码(OSID): 
0 引言
【研究意义】玉米(Zea mays)||花生(Arachis hypogaea)是一种较为常见的禾豆作物间作方式,对缓解华北平原地区粮油争地矛盾发挥了重要作用[1],但在其共处后期,间作花生处于光竞争劣势[2],造成产量不高[3],成为玉米||花生进一步高产的瓶颈[4]。因此,研究提高玉米||花生体系中花生种间竞争能力的调控措施及其机理,对玉米||花生高产栽培具有重要意义。【前人研究进展】间作能够增加农田生物多样性,改善土地生产能力,相比单作具有明显的生物和经济产量优势[5⇓-7],这主要是由于各作物生长发育阶段的时间和空间差异,改变了间作系统中光、温和水的空间分布和利用,从而显著提高作物的产量,实现资源的高效利用[8-9]。玉米||花生高矮相间,实现光能分层、立体高效利用[10],地上、地下种间作用明显,间作产量优势突出[11-12];施用磷肥能提高花生净光合速率、提高间作花生产量[3]。但在玉米||花生共处后期,由于地上部玉米的遮荫作用[4],使花生处于种间竞争劣势[12],降低花生干物质和产量[11]。已有报道,与花生机械化双粒同穴播种相比,单粒播种能明显增大花生一穴双株之间的距离,协调个体与群体关系,缓解生育后期种内竞争[13-14],避免“大小苗”现象,提高光合能力[15-16],增强抗逆性发挥个体潜力,延缓后期衰老[17],增加产量[18]。ADLER等[19]研究认为,降低种内竞争能缓解种间竞争。施磷能促进玉米||花生地下种间互作,提高间作花生产量[12]。【本研究切入点】针对花生单粒播种能缓解双粒播种种内矛盾,是否能提高玉米||花生体系中花生种间竞争能力和产量,施磷对其产生哪些影响等问题,目前还不清楚。【拟解决的关键问题】在两个磷水平下,以玉米||花生体系中双粒播种花生的强势株和弱势株为对照,研究单粒播种花生的相对玉米种间竞争力、净光合速率、最大生长速率、干物质积累与分配的特点,解释花生单粒播种与施磷协调间作花生种间竞争、促进生长和提高产量的机理,以期为玉米||花生高产、高效提供理论依据。
1 材料与方法
1.1 试验地概况
于2021—2022年在河南科技大学农场(33°35′— 35°05′N,111°8′—112°59′E)进行田间试验,该地属于半湿润、半干旱大陆性季风气候,全年日照时数约2 060 h,年平均降水量约610 mm,年均蒸发量约2 113 mm,年均气温约13.6 ℃,无霜期约217 d。土壤为黄潮土,耕层土壤全氮1.32 g·kg-1、有机质10.72 g·kg-1、碱解氮79.86 mg·kg-1、速效磷11.62 mg·kg-1、速效钾223.8 mg·kg-1、有效铁5.98 mg·kg-1、土壤容重1.35 g·cm-3,土壤pH 7.56。
1.2 试验设计
以玉米‘郑单958’和花生‘花育16’为供试材料。以玉米间作花生(玉米||花生)为研究对象,设种植方式、花生播种方式和施磷量3因素完全随机区组试验,即种植方式设花生单作和玉米||花生,花生播种方式设花生单粒播种和双粒播种,施磷量设施磷0(P0)和180 kg P2O5·hm-2(P180)2个水平,共8个处理,每个处理重复3次,共24个小区,每个小区长8 m,宽6 m,面积48 m2。
单作花生双粒播种时,行、穴距分别为30、20 cm,每穴2粒,密度33.33万株/hm2;单粒播种时,行、穴距分别为30、13.5 cm,每穴1粒,密度24.69万株/hm2。玉米||花生采用2﹕4模式,即2行玉米间作4行花生(
图1),垄底宽100 cm,垄面宽约70 cm;玉米宽行行距160 cm,窄行行距40 cm,株距20 cm,花生播于其宽行中,其单、双粒方式分别与单作单、双粒播种方式一致;玉米、花生间距35 cm。磷肥一次性基施;花生单作、间作施氮量均基施90 kg·hm-2,玉米单作、间作施氮量均为180 kg·hm-2,按基追比1﹕1两次施用,追肥在玉米小喇叭口期进行。氮肥施用尿素,磷肥施用磷酸二铵。2021年玉米、花生6月24日同时播种,10月13日同时收获;2022年花生6月14日播种、10月12日收获,玉米7月14日播种、10月28日收获。

Fig. 1 Illustration of maize and peanut intercropping in the field
Full size|PPT slide
1.3 测定项目与方法
1.3.1 干物质积累与分配、转移与贡献
分别于2021年苗后29、37、45、70 和93 d,及2022年苗后27、41、51、72和94 d取样。双粒播种的花生一穴双株中生长相对较大的一株定义为强势株,生长相对较小的一株定义为弱势株。每小区分别取4株,每个处理3次重复。自来水冲洗干净后,按茎、叶、荚果分样装袋,放入烘箱,105 ℃杀青30 min,75 ℃烘至恒重称重。相关指标计算方法如下:
干物质量采用Logistic生长模型[20]进行拟合,公式:
(1)
式中,y为任意时间干物质量(g/plant);K为最大干物质量(g/plant);t为生育期标尺,苗后天数(d);a、b为待定系数。对式(1)进行一阶求导得到植株生长速率函数:
(2)
对式(2)进行一阶求导、二阶求导并令其等于0,求出植株最大生长速率(Vmax):
(3)
干物质分配:总干物质量=茎重+叶重+果重;饱果期各部位干物质分配比率=(各部位干物质重/总干物质量)×100%。
干物质转移与贡献:转移量(TR)=最大茎(叶)干质量-收获期茎(叶)干质量;转移率(TA)=[最大茎(叶)干质量-收获期茎(叶)干质量]/最大茎(叶)干质量×100%;贡献率(CT)=(转运量/收获时荚果干质量)×100%。
1.3.2 光合相关参数
于花生结荚期和饱果期,选择晴天的9:00—11:30,使用LI-6400XT型光合仪(LI-COR,美国),分别选择代表性单作单双粒花生和间作单双粒花生植株主茎倒2或倒3叶,测定其光合速率。每个处理重复3次。
1.3.3 种间竞争相关参数
侵占力(A)表示间套作中一种作物相对于另一种作物的竞争能力——种间相对竞争能力[21]。
(4)
式中,Ap表示花生相对玉米的侵占力,Pm和Pp分别为间作玉米和间作花生的占地比例。如果A=0,则2种作物具有同等的竞争性;如果Ap>0,则花生占优势。本试验玉米与花生的占地比例均为﹕。
拥挤系数为基于单株平均产量或单位面积产量对物种集体行为进行反映,用以评定系统内种间资源竞争力的大小[21],其计算公式:
(5)
式中,Kp表示花生相对玉米的拥挤系数。
1.3.4 产量与偏土地当量比
收获期,花生单、双粒播种均连续选取具有代表性的20株,并测定其长度,计算其取样面积。风干后称量荚果质量,根据其所占面积计算产量。同时调查单株果数。间作花生偏土地当量比(LERP)=间作花生产量/单作花生产量。
1.4 数据处理
采用Microsoft Excel 2010、SPSS 22.0和Origin 2018等软件对数据进行再处理分析与作图。处理间显著性分析采用单因素方差分析(LSD法,α=0.05)。采用决定系数(R2)来检验Logistic模型精度。
2 结果
2.1 单粒播种和施磷对间作花生种间侵占力的影响
由
图2可知,在玉米||花生体系中,花生相对玉米的侵占力均为负值,随着生育天数的增加呈降低趋势;与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生的种间侵占力,提高幅度分别为29.72%—80.85%和38.91%—87.07%。与不施磷相比,施磷明显降低了单粒播种间作花生种间侵占力。

Fig. 2 Effects of peanut single-seed sowing and phosphorous application on interspecific aggressivity of intercropping peanut
Full size|PPT slide
2.2 单粒播种和施磷对间作花生种间拥挤系数的影响
由
图3可知,在玉米||花生体系中,花生相对玉米的拥挤系数随着生育天数的增加呈降低趋势;与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生的种间拥挤系数,提高幅度分别为76.59%—172.02%和244.43%—308.70%。与不施磷相比,施磷明显降低了单粒播种间作花生种间拥挤系数。

Fig. 3 Effects of peanut single-seed sowing and phosphorous application on interspecific crowding coefficient of intercropping peanut
Full size|PPT slide
2.3 单粒播种和施磷对间作花生光合性能的影响
由
表1可以看出,在玉米||花生体系中,单粒播种能提高花生功能叶的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),在饱果期提升幅度更为明显。与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生饱果期功能叶Pn,提升幅度分别为7.05%—8.36%和17.73%—18.38%;显著提高了间作花生饱果期功能叶Tr,提升幅度分别为14.20%—30.30%和48.30%—50.62%;与不施磷相比,施磷显著提高单粒播种间作花生功能叶Pn,提升幅度为7.43%—24.39%。
表1 单粒播种和施磷对间作花生功能叶光合性能的影响Table 1 Effects of peanut single-seed sowing and phosphorous application on photosynthetic performance in functional leaves of intercropping peanut
生育时期Growth stage P水平
P level 种植模式
Plant pattern 净光合速率Pn
(μmol·m-2·s-1) 气孔导度Gs
(mmol·m-2·s-1) 胞间CO2浓度Ci
(mmol·mol-1) 蒸腾速率Tr
(mmol·m-2·s-1) 结荚期
Pod-setting stage P0 SDSP 21.72e 1.026d 317.53c 14.54e WDSP 20.09f 1.017d 353.49b 11.15g SSP 23.93d 1.079c 299.34d 16.12c SDIP 20.46f 0.977e 357.08b 10.87g WDIP 19.15g 0.925f 368.69a 8.35h SIP 21.61e 1.063c 312.66c 12.91f P180 SDSP 27.21b 1.161b 300.15d 19.57b WDSP 25.40c 1.083c 320.96c 17.07c SSP 29.46a 1.294a 279.75f 21.46a SDIP 25.29c 0.993e 302.16d 15.68d WDIP 23.57d 0.932f 319.38c 13.09f SIP 26.88b 1.061c 290.37e 16.66c 饱果期
Pod-filling stage P0 SDSP 20.94c 0.436d 284.48c 5.17f WDSP 18.77d 0.390e 314.31a 3.32g SSP 22.13b 0.467c 275.11d 6.00e SDIP 19.14d 0.387e 301.20b 4.34f WDIP 17.40e 0.327f 313.45a 2.94g SIP 20.49c 0.420d 290.71bc 5.35ef P180 SDSP 22.09b 0.654b 268.53d 9.72b WDSP 20.77c 0.473c 282.19c 8.46c SSP 23.44a 0.723a 258.72e 11.58a SDIP 20.31c 0.472c 272.86d 7.39d WDIP 18.59d 0.435d 288.43bc 6.12e SIP 22.01b 0.599b 269.01d 9.11bSDSP:单作花生双粒播种的强势株Strong plant of sole peanut under double-seed sowing;WDSP:单作花生双粒播种的弱势株Week plant of sole peanut under double-seed sowing;SSP:单作花生单粒播种Sole peanut under single-seed sowing。同一列数据后不同小写字母表示处理间差异显著Different lowercase letters after the data in the same column mean significant difference among treatments (P<0.05)。下同The same as below
2.4 单粒播种和施磷对间作花生生长的影响
由
图4可知,在玉米||花生体系中,单粒播种可以提高花生的最大生长速率和干物质积累。与花生双粒播种的强势株和弱势株相比,单粒播种提高了间作花生最大生长速率,提高幅度分别为8.52%—25.76%和11.80%—78.69%,显著提高生育后期干物质积累,提升幅度分别为13.40%—42.45%和31.20%—87.36%。与不施磷相比,施磷对单粒播种间作花生的最大生长速率和干物质积累均有促进作用,提高幅度分别为39.66%—68.80%和6.53%—56.27%。

Fig. 4 Effects of peanut single-seed sowing and phosphorous application on dry matter and maximum growth rate of intercropping peanut
Maximum growth rate of peanutFull size|PPT slide
2.5 单粒播种和施磷对间作花生干物质积累与分配的影响
由
表2可知,在玉米||花生体系中,单粒播种会增加花生干物质在荚果中的分配比例,降低茎叶中的分配比例。与花生双粒播种的强势株和弱势株相比,显著提高干物质向荚果的分配比例,提高幅度分别为7.66%— 12.14%和14.09%—22.16%,向茎和叶中的分配比例分别降低2.81%—9.88%和7.74%—17.56%。施磷后,单粒播种间作花生向荚果的分配比例明显高于不施磷。
表2 花生单粒播种和施磷对间作花生干物质积累与分配的影响Table 2 Effects of peanut single-seed sowing and phosphorous application on dry matter accumulation and distribution of intercropping peanut
P水平P level 种植模式
Plant pattern 干物质积累量 Dry matter accumulation (g/plant) 干物质分配比例 Dry matter distribution ratio (%) 茎Stem 叶Leaf 荚果Pod 茎Stem 叶Leaf 荚果Pod P0 SDSP 17.11d 9.83d 21.78d 35.12b 20.18c 44.70b WDSP 12.17f 8.19e 11.79g 37.87a 25.47a 36.67d SSP 18.41c 10.31d 25.70c 33.84c 18.94e 47.22a SDIP 14.28e 9.21d 17.51f 34.83c 22.46b 41.28c WDIP 10.74g 7.22f 11.46g 36.50b 24.54a 38.95d SIP 17.43d 12.15c 22.86d 33.88c 21.68b 44.44b P180 SDSP 22.49b 15.13b 31.18b 32.69c 21.99b 45.32b WDSP 15.14e 9.96d 14.02g 38.70a 25.46a 35.85e SSP 24.68a 16.10a 37.14a 31.67d 20.66c 47.67a SDIP 17.36d 11.92c 19.85e 35.33b 24.26a 40.40d WDIP 12.95f 8.30e 12.53g 38.34a 24.57a 37.09d SIP 18.95c 12.83c 36.32c 32.61c 22.08b 45.31b
2.6 单粒播种和施磷对间作花生干物质转移与贡献的影响
由
表3可知,在玉米||花生体系中,单粒播种能提高花生茎、叶中干物质转移量、转移率以及贡献率。与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了茎、叶干物质对荚果的贡献率,提升幅度为14.58%—24.63%和47.45%—128.33%。施磷提高了单粒播种间作花生茎对荚果的贡献率,降低了叶对荚果的贡献率。
表3 花生单粒播种和施磷对间作花生干物质转移与贡献的影响Table 3 Effects of single-seed sowing and phosphorous application on dry matter transfer and contribution rate of intercropping peanut
P水平P level 种植模式
Plant pattern 转移量
Dry matter transfer (g/plant) 转移率
Dry matter transfer ratio (%) 贡献率
Contribution rate to seed (%) 茎Stem 叶Leaf 茎Stem 叶Leaf 茎Stem 叶Leaf 茎+叶Stem+Leaf P0 SDSP 0.55e 2.97ab 2.94g 21.51b 2.64g 14.29c 16.93e WDSP 0.24f 0.22e 1.91h 2.62h 2.01g 1.87h 3.87h SSP 1.54c 3.77a 7.01e 22.76b 6.63f 16.27b 22.90c SDIP 1.62c 2.55b 9.02d 21.70b 9.22d 14.57c 23.79c WDIP 1.06d 1.25c 8.80d 15.30d 9.20d 10.91d 20.11d SIP 2.37b 4.11a 11.41c 25.27a 10.86c 18.80a 29.65a P180 SDSP 2.36b 1.48c 9.88d 10.14f 7.56e 4.75g 12.31f WDSP 0.99d 0.70d 5.61f 7.20g 6.58f 4.63g 11.21g SSP 4.13a 2.57b 14.34b 13.78e 11.13c 6.93f 18.05e SDIP 2.89b 1.70c 13.59b 15.16d 14.54b 8.57e 23.12c WDIP 1.15d 0.31e 7.13e 3.67h 9.16d 2.43h 11.60fg SIP 4.02a 2.69b 17.50a 17.33c 15.87a 10.62d 26.48b
2.7 单粒播种和施磷对间作花生产量构成及偏土地当量比的影响
由
表4可知,在玉米||花生体系中,单粒播种可以提高花生单株果数、百果重、产量和偏土地当量比。与花生双粒播种相比,单粒播种显著提高了间作花生的单株果数、百果重和产量,提升幅度分别为61.36%—146.19%、6.55%—19.35%和18.84%—33.32%,明显提高间作花生偏土地当量比。与不施磷相比,施磷显著提高了单粒播种花生的单株果数和产量,提升幅度为19.55%—60.00%和20.17%—63.39%。年际间方差分析表明,磷水平和种植模式互作对花生产量的影响均达极显著水平,而年份、磷水平和种植模式间的互作差异不显著,说明磷水平和种植模式对花生产量有促进作用。
表4 花生单粒播种和施磷对间作花生产量构成及偏土地当量比的影响Table 4 Effects of peanut single-seed sowing and phosphorous application on yield composition and LERP of intercropping peanut
年份Year P水平
P level 种植模式
Cropping
system 单株果数
Number of pods per plant 百果重
100-pods weight
(g) 株数
Number of plant
(×105/hm2) 产量
Yield
(kg·hm-2) 偏土地当量比
LERP 2021 P0 DSP 20.5d (23.2/17.8) 96.6d (119.1/74.0) 2.64a (1.42+1.22) 3886d (2500+1386) SSP 31.0b 123.1b 1.72c 4301c DIP 13.2f (14.8/11.5) 75.0f (76.1/73.9) 1.54b (0.82+0.72) 1267h (711+556) 0.327 SIP 21.3d 82.2e 1.03d 1506g 0.350 P180 DSP 24.4c (26.7/22.0) 115.6c (119.7/111.6) 2.66a (1.43+1.23) 5172b (3153+2019) SSP 35.2a 134.9a 1.73c 5514a DIP 15.8e (18.3/13.3) 80.4g (80.2/80.7) 1.55b (0.83+0.73) 2070f (1210+860) 0.400 SIP 25.5c 94.5d 1.03d 2460e 0.446 2022 P0 DSP 19.3f (22.2/16.5) 123.1d (125.6/120.6) 2.68a (1.43+1.25) 5631d (3120+2511) SSP 38.7c 128.5c 1.76c 7131b DIP 14.7g (17.3/12.0) 143.6b (146.4/140.8) 1.57b (0.84+0.73) 2915h (1746+1169) 0.517 SIP 28.3d 153.0a 1.04d 3828f 0.536 P180 DSP 24.4e (27.0/21.7) 120.2d (121.9/118.5) 2.78a (1.47+1.31) 6531c (3521+3010) SSP 47.8a 127.2c 1.82c 8391a DIP 18.4f (21.8/15.0) 128.7c (132.5/124.8) 1.67b (0.88+0.79) 3455g (2018+1437) 0.528 SIP 45.3b 153.6a 1.09d 4600e 0.548 P水平P level 165.10** 种植模式Cropping system 1588.03** P水平×种植模式P level×Cropping system 14.77** 年份×P水平×种植模式Year×P level×Cropping system 0.229NS DSP:双粒播种的单作花生Double-seed sowing of sole peanut;DIP:双粒播种的间作花生Double-seed sowing of intercropping peanut;DSP与DIP括号中的数值分别代表强势株与弱势株对应值The values in DSP and DIP brackets represent the corresponding values of strong and weak plants, respectively;DSP与DIP的单株果数以及百果重为强势株与弱势株的平均值,DSP与DIP的株数以及产量为强势株与弱势株之和The number of pods per plant and 100-pod weight of DSP and DIP were the average value of strong and weak plants, the number of plants and yield were the sum value of strong and weak plants;同一列中数据后不同小写字母表示同一年份处理间差异显著Different lowercase letters after the data in the same column mean significant difference among treatments at 0.05 level in the same year (P<0.05);**差异极显著Extremely significant difference (P<0.01);*差异显著Significant difference (P<0.05);NS:无显著性差异Non-significant difference (P>0.05)
3 讨论
3.1 单粒播种与施磷对间作花生种间竞争力的影响
间作优势主要来源于作物种间相互竞争、互补效应,其竞争、互补效应因作物物种不同而存在差异[22]。协调物种间的竞争、增强互补效应,可以提高资源的利用率、增加系统产量,利于促进农业的可持续发展[23]。已有研究报道,玉米||花生地上、地下存在明显的种间作用,其地上种间作用改善田间小气候,提高玉米功能叶的光饱和点和CO2羧化固定能力、花生功能叶对弱光吸收转化能力[2-3],分层、立体高效利用光能[10];其地上种间作用表现为具有明显的氮、磷营养间作优势和种间铁氮互惠利用效应,间作优势显著[11-12],但在其共处期,花生由于受玉米遮荫影响而处于种间光竞争劣势[4,12],限制花生进一步高产。本研究表明,花生单粒播种明显提高间作花生相对玉米的侵占力和拥挤系数(
图2、
图3),证明通过花生单粒播种能缓解玉米||花生体系中种间竞争,提高花生种间竞争力。这与单粒播种能缓解因双粒播种之间存在的种内竞争密切相关。因为,相较花生双粒播种,单粒播种能有效地减缓种内竞争,协调个体与种群之间的关系[24],降低群体种内的资源竞争[14]。这与REN等[25]研究发现,在玉米||大豆体系中缓解种内竞争,能协调种间关系的研究结果相一致,因为种内关系的改善有利于提高种间互补效应[19,26],提高作物获取资源的能力[27]。研究还发现,由于磷肥促进间作玉米生长,增大其叶面积[28],加剧玉米对花生的光竞争[2],造成在施磷条件下,单粒播种间作花生相对玉米的侵占力和拥挤系数均小于不施磷,但高于施磷条件下的双粒播种花生(
图2、
图3)。
3.2 单粒播种与施磷对间作花生生长及产量的影响
在玉米||花生体系中,生育后期花生光能利用不足,是制约其增产的主要原因[2]。通过化学调控和增施磷肥可以改善间作花生光照环境,促进其生长和产量的提高[28]。本研究表明,花生单粒播种较双粒播种显著提高了间作花生功能叶的净光合速率,促进花生生长,增加其干物质的积累。这与单粒播种增强间作花生种间竞争能力,从而改善玉米、花生内部光竞争密切相关。因为与双粒播种相比,单粒播种的株距大于一穴双株之间的株距,优化群体结构[17],改善花生冠层光环境,提高其净光合速率[15]。对多数高矮作物间作体系研究认为,通过改善复合群体冠层内部光环境,提高低位作物光照,能提高其光合速率,促进生长[29⇓-31]。磷肥直接参与花生光合作用的光合磷酸化和碳同化过程,提高光能利用率[10],促进花生干物质积累[26],本研究中,与不施磷相比,施磷肥能提高间作花生光合速率,促进花生生长。本研究还发现,单粒播种能促进花生干物质向荚果的分配,提高茎、叶干物质对荚果的贡献率,进而提高间作花生产量和偏土地当量比。这与ZHANG等[32]在单作中单粒播种可以促进花生干物质向荚果分配的研究结果一致。由于磷肥能促进地下种间互作而提高间作花生荚果产量[12],故在本研究中,表现出施磷较不施磷能促进间作花生干物质向荚果分配,提高间作花生产量、增大间作优势。另较2021年,2022年延期玉米播种能提高间作花生产量和间作优势,这与赵建华等[22]研究结果相反,造成这一现象的原因关键在于两地所处生态环境不同。本试验区适当延迟玉米播期更利于玉米||花生高产。
4 结论
在玉米||花生体系中,可以通过花生单粒播种缓解双粒播种种内矛盾,协调玉米||花生体系中的种间作用,增强花生种间竞争能力,提高荚果产量和间作优势。其关键机理在于花生单粒播种较双粒播种显著提高间作花生相对玉米的侵占力和拥挤系数,提高花生净光合速率,促进生长,增加其干物质的积累及其向荚果分配。施用磷肥对其具有正向调控效应。
{{custom_citation.pmid}8}
=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.pmid}4}{{custom_citation.pmid}1}[1]ZHAO X H,
DONG Q Q,
HAN Y,
ZHANG K Z,
SHI X L,
YANG X,
YUAN Y,
ZHOU D Y,
WANG K,
WANG X G,
JIANG C J,
LIU X B,
ZHANG H,
ZHANG Z M,
YU H Q. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiology, 2022, 22: 14.
Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut.The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi.Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.© 2022. The Author(s).
{{custom_citation.pmid}9}https://doi.org/{{custom_citation.pmid}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.url}7}本文引用 [{{custom_citation.url}8}]摘要{{custom_citation.url}6}[2]焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32(6): 917-923.
JIAO N Y,
NING T Y,
ZHAO C,
WANG Y,
SHI Z Q,
HOU L T,
FU G Z,
JIANG X D,
LI Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. (in Chinese)
{{custom_citation.url}4}https://doi.org/{{custom_citation.url}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}6}{{custom_citation.url}2}本文引用 [{{custom_citationIndex}3}]摘要{{custom_ref.citationList}1}[3]焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.
摘要
揭示玉米(Zea mays)和花生(Arachis hypogaea)间作提高花生对弱光利用能力的光合特点及磷(P)肥效应, 对阐明间作花生适应弱光的光合机理和提高间作花生的产量具有重要意义。该试验于2011-2012年在河南科技大学试验农场分析了间作花生功能叶的叶绿素含量与构成、光响应曲线和CO<sub>2</sub>响应曲线特点和荧光参数。结果表明: 与单作花生相比, 施P与不施P条件下玉米和花生间作显著(p < 0.01)提高了花生功能叶的叶绿素b含量, 降低了叶绿素a/b, 显著提高了光系统II最大光化学效率(F<sub>v</sub>/F<sub>m</sub>)、实际光化学效率(Φ<sub>PSII</sub>)、光化学猝灭系数(q<sub>P</sub>)、表观量子效率(AQY)和弱光时的光合速率, 显著降低了气孔导度、二磷酸核酮糖羧化酶羧化速率(V<sub>cmax</sub>)、电子传递速率(J<sub>max</sub>)和磷酸丙糖利用速率(TPU); 与不施P相比, 施P有利于提高间作花生功能叶的叶绿素含量, 显著提高了Φ<sub>PSII</sub>、q<sub>P</sub>、V<sub>cmax</sub>、J<sub>max</sub>和TPU, 说明间作花生通过提高功能叶的叶绿素b含量, 改变叶绿素构成, 提高了光系统II的F<sub>v</sub>/F<sub>m</sub>、Φ<sub>PSII</sub>和q<sub>P</sub>, 增强了对光能的捕获和转化能力, 提高了对弱光的利用能力, 而并非提高了对CO<sub>2</sub>的羧化固定能力; 施P有利于提高间作花生对弱光的利用能力和产量, 土地当量比提高了6.2%-9.3%。
JIAO N Y,
YANG M K,
NING T Y,
YIN F,
XU G W,
FU G Z,
LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
{{custom_citation.annotation}9}https://doi.org/{{custom_citation.annotation}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}1}{{custom_citation.annotation}7}本文引用 [{{custom_ref.citedCount>0}8}]0}7}=={{custom_ref.citedCount>0}6}.length-1" m-for-val="custom_bodyP_id" m-for-array="{{custom_ref.citedCount>0}5}">0}4}" value="{{custom_ref.citedCount>0}3}">0}2} && {{custom_ref.citedCount>0}1}!=''" style="color: #666;">摘要0}0} && {{custom_citationIndex}9}!=''" class="glyphicon glyphicon-triangle-bottom biaotijiantoush biaotijiantoush1" onclick="ckwx_show_hide(this)">{{custom_citationIndex}6}[4]WANG Q,
SUN Z X,
BAI W,
ZHANG D S,
ZHANG Y,
WANG R N,
VAN DER WERF W,
EVERS J B,
STOMPH T J,
GUO J P,
ZHANG L Z. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.
{{custom_citationIndex}4}https://doi.org/{{custom_citationIndex}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}6}{{custom_ref.citationList}2}本文引用 [{{custom_ref.id}3}]摘要{{custom_ref.citedCount}1}[5]ZHANG D S,
DU G J,
SUN Z X,
BAI W,
WANG Q,
FENG L S,
ZHENG J M,
ZHANG Z,
LIU Y,
YANG S,
YANG N,
FENG C,
CAI Q,
EVERS J B,
VAN DER WERF W,
ZHANG L Z. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94: 1-11.
{{custom_citationIndex}9}https://doi.org/{{custom_citationIndex}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}1}{{custom_ref.citationList}7}本文引用 [{{custom_ref.bodyP_ids}8}]摘要{{custom_ref.id}6}[6]唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.
摘要
可下载PDF全文。
TANG X M,
HUANG Z P,
WU H N,
LIU J,
JIANG J,
TANG R H. Correlation and principal component analysis of the soil environmental factors in maize/peanut intercropping conditions. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)
{{custom_ref.id}4}https://doi.org/{{custom_ref.id}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_bodyP_id}6}{{custom_bodyP_id}2}本文引用 [{{custom_citation.annotation}3}]摘要{{custom_citation.annotation}1}[7]REN J H,
ZHANG L Z,
DUAN Y,
ZHANG J,
EVERS J B,
ZHANG Y,
SU Z C,
VAN DER WERF W. Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168-176.
{{custom_citation.annotation}9}https://doi.org/{{custom_citation.annotation}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}1}{{custom_citation.annotation}7}本文引用 [{{custom_citation.annotation}8}]摘要{{custom_citation.annotation}6}[8]HAGE-AHMED K,
KRAMMER J,
STEINKELLNER S. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza, 2013, 23(7): 543-550.
{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}6}{{custom_citation.annotation}2}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[9]ZHANG Y,
DUAN Y,
NIE J Y,
YANG J,
REN J H,
VAN DER WERF W,
EVERS J B,
ZHANG J,
SU Z C,
ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225: 105778.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]王飞, 刘领, 武岩岩, 李雪, 孙增光, 尹飞, 焦念元, 付国占. 玉米花生间作改善花生铁营养提高其光合特性的机理. 植物营养与肥料学报, 2020, 26(5): 901-913.
WANG F,
LIU L,
WU Y Y,
LI X,
SUN Z G,
YIN F,
JIAO N Y,
FU G Z. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]JIAO N Y,
WANG F,
MA C,
ZHANG F S,
JENSEN E S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]JIAO N Y,
WANG J T,
MA C,
ZHANG C C,
GUO D Y,
ZHANG F S,
JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.
ZHANG J L,
GUO F,
MIAO H C,
LI L M,
YANG S,
GENG Y,
MENG J J,
LI X G,
WAN S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2): 52-58. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]LIANG X Y,
GUO F,
FENG Y,
ZHANG J L,
YANG S,
MENG J J,
LI X G,
WAN S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26(12): 3700-3706.
摘要
在大田条件下,以大粒型花生品种‘花育22’为材料,研究了22.5万株·hm<sup>-2</sup>(S<sub>1</sub>)、19.5万株·hm<sup>-2</sup>(S<sub>2</sub>)、16.5万株·hm<sup>-2</sup>(S<sub>3</sub>)3个密度单粒精播条件下,花生冠层微环境、光合特性及产量的差异.结果表明: 与传统双粒穴播15万穴·hm<sup>-2</sup>相比,3个密度的单粒精播模式均提高了花生生育期内的冠层透光率、冠层温度、CO<sub>2</sub>浓度,降低了冠层相对湿度,改善了生育中后期的冠层微环境;单粒精播模式下花生叶片的光合色素含量、光合速率均高于传统双粒穴播,其中,S<sub>2</sub>和S<sub>3</sub>处理的效果显著.综合冠层微环境特征、光合特性及产量等因素分析,单粒精播模式S<sub>2</sub>(19.5万株·hm<sup>-2</sup>)处理的群体大小适宜,个体分布均匀一致,不仅缓解了群体与个体间的矛盾,而且优化了冠层微环境,提高了花生不同层次叶片的光合特性,增加了后期光合产物的合成与积累,实现了产量的最大化.
LIANG X Y,
GUO F,
ZHANG J L,
MENG J J,
LI L,
WAN S B,
LI X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]CHEN T,
ZHANG J,
WANG X,
ZENG R,
CHEN Y,
ZHANG H,
WAN S,
ZHANG L. Monoseeding increases peanut (Arachis hypogaea L.) yield by regulating shade-avoidance responses and population density. Plants, 2021, 10(11): 2405.
We aimed to elucidate the possible yield-increasing mechanisms through regulation of shade-avoidance responses at both physiological and molecular levels under monoseeding. Our results revealed that monoseeding decreased the main stem height but increased the main stem diameter and the number of branches and nodes compared to the traditional double- and triple-seeding patterns. The chlorophyll contents were higher under monoseeding than that under double- and triple-seeding. Further analysis showed that this, in turn, increased the net photosynthetic rate and reallocated higher levels of assimilates to organs. Monoseeding induced the expression patterns of Phytochrome B (Phy B) gene but decreased the expression levels of Phytochrome A (Phy A) gene. Furthermore, the bHLH transcription factors (PIF 1 and PIF 4) that interact with the phytochromes were also decreased under monoseeding. The changes in the expression levels of these genes may regulate the shade-avoidance responses under monoseeding. In addition, monoseeding increased pod yield at the same population density through increasing the number of pods per plant and 100-pod weight than double- and triple-seeding patterns. Thus, we inferred that monoseeding is involved in the regulation of shade-avoidance responsive genes and reallocating assimilates at the same population density, which in turn increased the pod yield.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]YANG S,
ZHANG J,
GENG Y,
TANG Z,
WANG J,
GUO F,
MENG J,
WANG Q,
WAN S,
LI X. Transcriptome analysis reveals the mechanism of improving erect-plant-type peanut yield by single- seeding precision sowing. PeerJ, 2021, 9: e10616.
In China, double-seed (DS) sowing (i.e., sowing two seeds per hole) has been conventionally performed towards the erect-plant-type peanuts to increase the low germination rate due to poor seed preservation conditions. However, the corresponding within-hole plant competition usually limits the subsequent plant growth and the final yield. We developed a high-yield cultivation system of single-seed (SS) precision sowing to solve this paradox, saving 20% of seeds and increasing yields by more than 10% relative to the conventional DS sowing.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]万书波, 张佳蕾, 张智猛. 花生种植技术的重大变革——单粒精播. 中国油料作物学报, 2020, 42(6): 927-933.
WAN S B,
ZHANG J L,
ZHANG Z M. Great change of peanut planting technology: Single seed sowing. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 927-933. (in Chinese)
In traditional peanut planting, two or more seeds were planted in one hole. Seedlings in the same<br>hole competed for fertilizer, water resources, light and heat resources, which led to the different growth of seedlings<br>and limited increase of pod yield. The peanut cultivation and physiological ecology innovation team of Shandong<br>Academy of Agricultural Science has established peanut single seed sowing technology. It sowed one seed in a hole<br>instead of two or more, and expanded plant spacing, alleviated the competition between adjacent plants, and made<br>the individual uniform, orderly and robust, which could give full play to the potential of single plant production. The<br>number of plants per unit area decreased, which made the group structure more reasonable, and increased the distri⁃<br>bution rate of photosynthetic products to pods, thus increased production by increasing economic coefficient. This<br>paper discussed the development process, breakthrough of the theory, technology and development prospect of pea⁃<br>nut single seed sowing technology, and brought forward the technical bottleneck to limit large-scale promotion, in<br>order to speed up the application of this technology.<br><br>
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]ADLER P B,
SMULL D,
BEARD K H,
CHOI R T,
FURNISS T,
KULMATISKI A,
MEINERS J M,
TREDENNICK A T,
VEBLEN K E. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21(9): 1319-1329.
Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra- and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five-fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra- and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.© 2018 John Wiley & Sons Ltd/CNRS.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1): 112-115.
CUI D Q. Analysis and making good fitting degree test for Logistic curve regression equation. Mathematical Statistics and Management, 2005, 24(1): 112-115. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]GHOSH P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 2004, 88(2/3): 227-237.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26(11): 1634-1642.
ZHAO J H,
SUN J H,
LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]WU K X,
FULLEN M A,
AN T X,
FAN Z W,
ZHOU F,
XUE G F,
WU B Z. Above- and below-ground interspecific interaction in intercropped maize and potato: A field study using the ‘target’ technique. Field Crops Research, 2012, 139: 63-70.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]KOKKORIS G D,
TROUMBIS A Y,
LAWTON J H. Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 1999, 2: 70-74.
Strength of interactions between species may be an important tool in our effort to understand community structure. Recent theoretical and empirical findings suggest that despite the presence of some strong interactions, weak interactions prevail in communities. Here, we examine how mean interaction strengths change as theoretical competition communities assemble and what the distribution of interaction coefficients is in the communities that are formed during the assembly process. Our results show that the mean competition strengths fall as assembly progresses and that most interactions in the communities formed are weak. Communities that are invulnerable to further invasions are those where interspecific interactions are weaker than the average interaction strength between species in the pool. If these results can be generalized to more than one trophic level, implications for management and conservation of natural communities are substantial.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]REN Y,
ZHANG L,
YAN M,
ZHANG Y,
CHEN Y,
PALTA J A,
ZHANG S. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Scientific Reports, 2021, 11(1): 15760.
The relative contribution of above- and below-ground competition to crop yield under intercropping systems is critical to understanding the mechanisms of improved yield. Changes in the content of above- and below-ground biomass, leaf photosynthetic rate (Pn), leaf area index (LAI), chlorophyll meter reading (SPAD), diffuse non interceptance (DIFN), soil water storage (SWS), crop nitrogen (N), and phosphorus (P) uptake were examined in a 2-year trial of different maize-soybean intercropping systems on the Loess Plateau, China. Compared with the sole cropping system, shoot biomass of maize was increased by 54% in M2S2 and 62% in M2S4 strip intercropping treatment. The crop N and P uptake of maize increased significantly, by 54% and 50% in M2S2 and by 63% and 52% in M2S4 compared with their respective sole crop. LAI values of maize in intercropping systems were 14% and 15% for M2S2 and M2S4 less than that in the sole crop. The DIFN of intercropped maize was increased by 41% and 48% for M2S2 and M2S4 compared to monocrop. There were no significant differences in Pn and SWS in both crops between the two cropping systems. The contribution rate of DIFN in M2S2 and crop P uptake in M2S4 on the biological yield in intercropping system was the highest among all factors. We conclude that the sowing proportion affects above- and below-ground competition in maize-soybean intercropping systems.© 2021. The Author(s).
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]CALLAWAY R M,
WALKER L R. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology, 1997, 78(7): 1958-1965.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94.
摘要
合理的种间配置是间作系统中作物获取高产,种间相互作用发挥优势的关键。本研究设置蚕豆/玉米(M/F)、大豆/玉米(M/S)和豌豆/玉米(M/P) 3种豆科作物与玉米间作模式,以及相应单作种植,通过测定单间作条件下作物产量、生物量,明确3种豆科作物与玉米间作对间作玉米生产力和间作作物种间资源竞争力的影响。结果表明,3种间作模式均具有间作优势,土地当量比(LER)均大于1,两年平均土地当量比分别为1.38 (M/F)、1.19 (M/S)、1.26 (M/P);两年结果均是M/S中玉米产量最高,至收获期,与大豆间作的玉米产量可达单作玉米产量的93.6% (2017)和71.2% (2018);M/S中玉米的穗粒数显著高于M/F和M/P中;地上部生物量及采样期平均生长速率均表现为M/S>M/P>M/F;共生期内大豆相对于玉米的资源竞争力(A<sub>sm</sub>)随共生期推进逐渐降低,而蚕豆相对于玉米的竞争力(A<sub>fm</sub>)和豌豆相对于玉米的竞争力(A<sub>pm</sub>)逐渐升高;玉米单独生长时期3种间作模式玉米的补偿效应(CE)无显著差异,各间作模式两年平均CE值均小于1;因此,在本试验条件下,甘肃河西走廊灌区玉米与大豆间作是保证间作玉米稳产的有效措施。
ZHAO J H,
SUN J H,
CHEN L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]焦念元, 汪江涛, 尹飞, 李亚辉, 付国占, 李友军. 化学调控与施磷肥对玉米花生间作光合物质积累和产量的影响. 江苏农业科学, 2016, 44(4): 99-104.
JIAO N Y,
WANG J T,
YIN F,
LI Y H,
FU G Z,
LI Y J. Effects of chemical regulation and phosphorus fertilization on photosynthetic material accumulation and yield of intercropped maize and peanut. Jiangsu Agricultural Sciences, 2016, 44(4): 99-104. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]ROBAKOWSKI P,
BIELINIS E,
SENDALL K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. Journal of Plant Research, 2018, 131(3): 505-523.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]GAO L,
XU H,
BI H,
XI W,
BAO B,
WANG X,
BI C,
CHANG Y. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS ONE, 2013, 8(7): e70739.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤,
RAZA A, 张熠,
AHMAD I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
摘要
【目的】阐明玉米-大豆带状间作下大豆植株冠层在不同种植密度下的光环境变化规律,明确种植密度对间作大豆叶片光合特性、产量形成及茎秆抗倒的影响,为构建寡日照地区间作大豆合理群体密度提供理论参考。【方法】本研究以大豆(川豆-16)和玉米(正红-505)为试验材料。采用双因素随机区组设计,主因素为种植方式,设玉米-大豆带状间作和大豆带状单作2个水平,副因素为大豆的3个种植密度(PD1=17株/m<sup>2</sup>,PD2=20株/m<sup>2</sup>,PD3=25株/m<sup>2</sup>),研究种植密度对间作大豆冠层内部光环境变化、叶片光合特性、植株生长动态、田间倒伏率及产量构成等的影响。【结果】2年结果表明,在玉米-大豆带状间作系统中,大豆生长中后期受高位作物玉米遮荫和自荫性增加的影响,其植株群体冠层内部的光合有效辐射(PAR)、叶面积指数(LAI)、叶片光合能力、分枝数及产量显著降低,但受玉米影响的程度因大豆种植密度的不同而不同。在间作模式下,PD1和PD2处理的大豆植株群体冠层光合有效辐射比PD3处理分别增加了45.4%和24.8%,净光合速率分别增加了46.1%和12.3%,单株有效荚数分别增加了53.2%和27.2%,单株分枝数分别增加了270.4%和140.9%,田间倒伏率分别降低了50.3%和19.3%。相关性分析发现,间作大豆的田间倒伏率与冠层内部光合有效辐射、叶片净光合速率、茎秆抗折力、茎叶干物质比、单株分枝数及单株有效荚数呈显著负相关,与株高、叶面积指数和单株无效荚数呈显著正相关。【结论】在玉米-大豆带状间作模式下,20株/m<sup>2</sup>的大豆密度(PD2)有利于创造良好的群体冠层内部光环境,降低植株田间大豆倒伏率,增加光合产物积累,从而提高大豆产量。
CHENG B,
LIU W G,
WANG L,
XU M,
QIN S S,
LU J J,
GAO Y,
LI S X,
RAZA A,
ZHANG Y,
AHMAD I,
JING S Z,
LIU R J,
YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
【Objective】The aim of this study was to reveal the light environment change law of soybean canopy under different planting densities in maize-soybean strip intercropping, and to clarify the effects of density on leaf photosynthetic characteristics, yield and stem lodging resistance of soybean, so as to provide the theoretical reference for the construction of reasonable population density of intercropped soybean in low radiation area. 【Method】In this study, soybean genotype of Chuandou-16 and maize genotype of Zhenghong-505 were used as experimental materials. The two-factor random expulsion design was adopted, among which maize-soybean strip intercropping and monocropping were the main factors, and three planting densities of soybean (PD1 = 17 plants/m2, PD2 = 20 plants/m2, PD3 = 25 plants/m2) were the secondary factors. Effects of planting density on light environment of canopy, photosynthetic characteristics, growth dynamics, lodging percentage and yield composition of soybean were investigated. 【Result】Two-year data showed that the growth of soybean was affected by the shading of maize and self-shade at the middle and later stages in the maize-soybean strip intercropping system. The photosynthetic active radiation (PAR) in the canopy of the plant population, leaf area index (LAI), leaf photosynthetic capacity, number of branches and yield were significantly decreased, while the degree of being affected by maize varied with soybean planting densities. In the strip intercropping, compared with PD3, the PAR in soybean population canopy of PD1 and PD2 increased by 45.4% and 24.8% respectively, the Pn of leaves increased by 46.1% and 12.3%, respectively, the Ep increased by 53.2% and 27.2%, respectively, the Bn increased by 270.4% and 140.9%, respectively, and the lodging percentage decreased by 50.3% and 19.3%, respectively. Correlation analysis showed that lodging percentage was significantly negatively correlated with the PAR, net photosynthetic rate (Pn), stem bending force (SBF), dry weight of stem / leaf ratio (S﹕L), number of branches per plant (Bn) and number of effective pods per plant (Ep), and positively correlated with plant height (PH), LAI and number of ineffective pods per plant (nEp). 【Conclusion】Therefore, in the maize-soybean strip intercropping, the appropriate planting density (20 plants/m2) was beneficial to create a better light environment of soybean population, reduce the lodging percentage, increase the accumulation of photosynthates, and thus improve the yield of soybean.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]ZHANG J L,
GENG Y,
GUO F,
LI X G,
WAN S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}相关知识
单粒播种与施磷对间作花生种间竞争和生长的调控效应
玉米花生间作群体互补竞争及防风蚀效应研究
豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响
花生间作大葱条件下氮磷钾肥配施效应的研究
花生专家万书波,一穴双粒单粒精播,向下一个高产记录进发!
南京土壤所:种间邻居通过调节根内生微生物群落结构促进花生生长
玉米花生宽幅间作技术
花生生长与荚果发育规律研究
玉米/花生间作改善花生铁营养的分子生态调控机制
不同行比间作向日葵与花生的光合特性和产量
网址: 单粒播种与施磷对间作花生种间竞争和生长的调控效应 https://www.huajiangbk.com/newsview2452724.html
| 上一篇: 南京大学孙博教授应邀来我校讲学 |
下一篇: 莲瓣兰盆景的栽培技术花期调控技术 |
推荐分享
- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
