首页 分享 根际温度胁迫对小麦根系形态及生理影响的研究进展

根际温度胁迫对小麦根系形态及生理影响的研究进展

来源:花匠小妙招 时间:2025-07-12 13:51

根系是小麦(Triticum aestivum)重要的营养器官之一,其主要作用是吸收水分和营养,根系的生长发育状况直接影响地上部的生长发育,进而影响小麦的产量和品质。根系的生长发育对环境因子变化较为敏感,小麦在生长期间常会经历各种恶劣的环境条件(低温、高温、干旱、洪涝和盐渍等)。近年来,温度胁迫已成为制约小麦生产的主要限制性因素[1-2]。根际环境是指与植物根系发生紧密相互作用的土壤微域环境[3],而根际温度指与植物根系发生紧密相互作用的土壤温度[4],本文中根际温度胁迫均指植株地上适温情况下仅根系部分的极端根际温度,环境温度胁迫指小麦完整植株处于温度胁迫。陈继康等[5]研究发现,大气温度会对土壤温度产生影响,浅层土温会因气温的变化而变化,呈正相关性。目前,由于全球气候变暖等因素影响,我国各地太阳辐射不断增强,最终导致小麦产区大气温度与根际温度升高,对作物产量造成影响[6]。可见,了解根际温度胁迫对小麦根系生长的影响具有重要意义。但已有的研究更强调气温对小麦生产的影响,极少有人重视小麦地下部分所受胁迫的影响,因此针对根际温度的理论研究还相当有限。

小麦根系形态及生理对根际温度胁迫的响应复杂,根系的表观形态及生理生化特性均会产生抗逆性变化[7]。深入了解小麦根系形态及生理对根际温度胁迫的响应,有助于揭示小麦对根际温度胁迫的适应性,为根系育种研究工作的开展提供理论基础[8]。小麦根系的理论研究相对滞后,但近年来有越来越多的国内外学者开始对植物地下部分进行研究,关注小麦根系定量性状的准确表型数据和生理生化指标,为更精确的QTL定位和小麦根系育种提供了可能[9-10]。在前人研究的基础上,本文梳理和总结了小麦根系生长对根际温度胁迫的响应,并对未来小麦根系抗逆研究方向进行总结与展望,以期为小麦根系育种和理想株型的培育提供参考。

1 小麦根系形态及生理对根际高温胁迫的响应

1.1 根际高温胁迫对小麦根系生长及根细胞形态的影响

研究[11⇓-13]表明,如“干热风”等极端高温天气频发,植物根际温度会显著升高,并直接影响小麦根系的生长发育、功能和活力水平。根际高温胁迫下,根系在植株的抗逆过程中起着关键作用,这与根系对温度的高敏感和其基本功能有关[4]。根际高温处理后,春、冬小麦幼苗的根重、最大根长、总根长及根冠比均显著降低,小麦幼苗整体表现出细弱的特点[12,14]。春、冬小麦的初生根和总侧根的延生生长在高温时远低于中温的情况,但春、冬小麦的分生组织体积变化却没有明显差异[15]。除了影响根系表观形态外,根际高温会造成根系总吸收面积和活性吸收面积的降低,导致根系活力显著降低,当根际高温胁迫发生时小麦根系吸收作用受阻[14]。

有研究[16]认为,根系活力的变化与根际高温下根系的木质化和木栓化衰老程度加快有关。还有研究[17]认为,根际高温会通过影响小麦根系对养分及生长调节剂的运输,最终达到根系衰老的结果。正常小麦的根在开花后与地上部分器官一样逐渐衰老,老化根的横切结构特点主要表现为皮层细胞萎缩脱落,中柱鞘细胞壁及中柱原属薄壁组织细胞壁出现明显的增厚栓化现象[18]。根际高温胁迫发生时小麦根系细胞衰老进程会产生相应变化,根际高温对小麦多级初生根系和次生根系衰老进程的影响是否相同等问题仍然具有研究潜力,且检测初生根系与次生根系的生理性状及其对根际高温胁迫响应有关的QTL位点有助于选育耐热小麦品种。

当前,关于根际高温胁迫对小麦幼苗根系生长及根细胞形态影响方面已有部分研究,但对于小麦成株根系的研究还严重缺乏,大田生产情况下小麦常在灌浆期经受根际高温胁迫,而目前关于成株小麦根系生长及根细胞形态对根际高温胁迫响应的认知还相当匮乏,加强这方面的理论研究有助于小麦根系育种和理想株型的培育。

1.2 根际高温胁迫对小麦根系活性氧平衡及质膜的影响

研究[14,19]发现,根际高温处理时小麦幼苗根系中丙二醛(malondialdehyde,MDA)含量大幅增加,根系质膜受害程度较大;小麦根系超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性随着胁迫时间的延长均呈先升后降的规律;SOD活性显著下降时过氧化物酶(peroxidase,POD)仍保持较高活性。POD被认为是木质素和木栓素生物合成中催化最后一步反应的酶[20],其活性高低会影响根系木质化与木栓化的进程,这也说明,根际高温胁迫下根系中POD活性长期处于较高水平,与根系衰老进程加快相关。SOD、POD和CAT作为细胞膜保护酶发挥作用,小麦通过提前调控相关基因的表达以有效消除活性氧(reactive oxygen species,ROS),Cu/Zn-SOD、Mn-SOD、POD和CAT基因均参与小麦幼苗高温胁迫应答反应[21]。进一步研究小麦根系抗氧化酶调控相关基因的表达调控,包括小麦相关基因启动子结构上与胁迫响应相关的转录因子结合位点等,对小麦抗逆性作用机制研究有重要意义,有助于了解信号传递途径和相关基因表达调控模式。

郭天财等[22]研究了根际高温胁迫对小麦根系质膜相对透性的影响,发现根系在长时间胁迫下透性显著升高。高温时,生物膜功能键断裂,导致膜蛋白变性,膜脂分子液化,膜结构破坏,生理功能异常,最终导致细胞死亡[23]。维持植物细胞完整性与植物对高温抗性有关,耐热型小麦生物膜中饱和脂肪酸相对含量升高,不饱和脂肪酸相对含量降低,结合基因表达情况发现,其是通过改变不饱和脂肪酸相对含量来实现质膜对高温的适应性[24]。不同植物或同一植物的不同组织部位在合成不饱和脂肪酸及其衍生物的种类与数量上存在差异,不同外来胁迫下植物不饱和脂肪酸及其衍生物的合成调控也存在差异,近年来学者关注去饱和酶基因的表达,验证了玉米中FAD7和FAD8去饱和酶基因的表达受温度胁迫的调节[25]。因此,进一步研究小麦根系中去饱和酶基因的表达,通过转基因或基因编辑技术进行定向分子育种,可改变小麦相关基因的表达特性,从而实现小麦抗性的改良。

1.3 根际高温胁迫对小麦根系渗透调节的影响

逆境下细胞积累无机离子以调节渗透势,无机离子吸收和积累与三磷酸腺苷(ATP)酶的活性有关,H+-ATP酶是一种重要的跨膜蛋白,目前发现仅存在于植物与真菌的质膜和内膜系统中[26]。质膜H+-ATP酶长期以来一直被认为是植物生长的动力来源,为物质跨膜转运提供能量[27]。郭启芳等[28]发现,温度敏感型小麦在环境高温处理下细胞膜H+-ATP酶与Ca2+-ATP酶活性显著下降,耐热品种小麦细胞膜H+-ATP酶与Ca2+-ATP酶活性维持较高水平。小麦根系质膜Ca2+-ATP酶最适活性温度低于叶质膜Ca2+-ATP酶,且根系质膜Ca2+-ATP酶活性远比叶质膜Ca2+-ATP酶高[29]。脱落酸(abscisic acid,ABA)诱导小麦根系质膜H+-ATP酶基因表达增强,使小麦抗逆性增强[30]。植物在遭受环境高温胁迫时,质膜H+-ATP酶活性在转录和翻译水平的调控过程中还需要植物激素、氧化酶、磷酸酶和蛋白激酶等胞内信号分子的介导。未来关于小麦的研究可重点分析根系质膜H+-ATP酶在响应环境胁迫因子时,植物细胞内的信号分子在质膜H+-ATP酶活性的转录及翻译后修饰调控过程中的作用及其介导途径,这既可丰富逆境植物的致伤机理,又可为小麦逆境耐受能力的提高提供新的视角和新的方法。

前人总结发现,脯氨酸(proline,Pro)是重要的有机渗透调节物质,几乎所有逆境,包括高温胁迫都会造成植物体内Pro的积累[31],高温条件下植物体内的Pro含量明显提升,并且发现抗热品种比不抗热品种可积累更多的Pro[32]。耐热抗旱品种小麦叶片与根系内Pro含量能够保持一定水平[33]。小麦幼苗整体在环境高温胁迫下Pro含量升高[34],但关于根系与叶片之间Pro含量调节的认知还相对匮乏,且确切的作用机制尚不清楚。对Pro转运相关基因的研究中,ProT基因家族和AAP基因家族中部分成员与Pro转运与吸收有关,其中AtProT1被认为在Pro长距离转运中起作用[35],ProTs被证实对胁迫条件下维持Pro的内稳态具有重要意义[36],AtAAP1在根际吸收Pro方面起作用[37],PtAAP11对Pro的高亲和力表明,其可能在木质部细胞分化时运输Pro[38]。对Pro运输和代谢的研究可了解逆境条件下植物积累Pro的规律及其作用机制,Pro代谢与转运相关基因的发掘与其在植物中的抗逆机制还需要深入探求。

可溶性糖是另一类渗透调节物质,包括蔗糖、葡萄糖、果糖和半乳糖等。在高温条件下,小麦幼苗根系可溶性糖含量随胁迫时间延长而下降[39],幼苗整体总糖减少[40]。可能是由于高温胁迫下随着细胞膜透性变化,小麦根系细胞代谢紊乱、呼吸加强的结果[17,41]。郭洪雪等[42]发现,高温胁迫下小麦幼苗整体可溶性糖含量升高,这可能是由于根际高温胁迫下小麦会调节根系与地上部中可溶性糖含量。可溶性糖除具有渗透调节作用外,还对植物不定根的发生起诱导作用[43]。目前,对可溶性糖的代谢及调控已有一定认识,而根际高温胁迫下小麦组织器官中可溶性糖分配的详细机制尚未见报道。

1.4 根际高温胁迫对小麦根系植物激素的影响

植物根系能感应根区环境变化,合成并输出信号物质并作用于地上部[44]。环境高温处理下,小麦幼苗根部ABA和吲哚乙酸(3-indoleacetic acid,IAA)的积累及其在叶与根中游离和结合形式的动态变化均表明植物激素在小麦发育与抗逆中的作用[45]。ABA是一种胁迫激素,根尖是合成ABA的主要场所,它沿着木质部运输到小麦地上器官,能作为传递根源逆境信号的物质,在调节植物对逆境的适应中极为重要[46]。ABA信号转导负向调控生长素的合成以调节植物根部分生组织活性,影响细胞周期进程;ABA与乙烯是协同与拮抗并存的相互作用,ABA通过介导乙烯途径作用于乙烯上游,从而调控根系生长;生长素在乙烯响应途径的下游起作用,介导根细胞的扩增[47]。此外,ABA对植物耐热性的影响还与其调节热激转录因子(heat shock transcription factor,HSF)和热激蛋白(heat shock protein,HSP)有关[48]。

小麦根系中植物激素ABA、乙烯和IAA含量及其在植物体内的动态变化极具研究潜力。ABA调控细胞周期进程的研究已取得一定进展,但与根系生长直接相关的研究还十分有限,且ABA是否与其他植物激素互作进而精细调控小麦根系发育等问题也尚待探索,对其详细生理机制的研究有助于小麦根系相关育种。

1.5 根际高温胁迫下小麦热激蛋白的研究

植物体内的热激蛋白在非生物胁迫中可以延缓植物衰老,并增强抗逆性[49]。高温环境胁迫下不同野生型小麦根系合成的HSP种类与总数存在显著差异,并且其根系获得的耐热性也存在差异[50]。小麦Hsf家族基因之间特性和功能差异明显,响应表达模式也不同[51]。热冲击下,HSF会促进HSP基因转录的起始,而在小麦根中HSF表达处于更高水平,其中TaHsfA2-10通过促进调节HSP基因的表达来对植物进行热耐受性调节[52]。TaHsfC2a在小麦灌浆期表达较高,基因过表达可上调大量旱、热和ABA相关基因的表达[53]。在环境高温胁迫下,小麦TaHsfA2f在不同组织器官中均有表达,但在成熟根中高表达,其表达能上调一系列热相关蛋白基因的表达,从而提高植株耐热性[54]。小麦中包含多个A2亚族基因且功能复杂多样,多个亚族基因如何相互协同调控下游不同响应基因的表达,如何赋予植株不同的耐热性,还需要对小麦Hsf家族基因进行深入研究和探讨。

以上文献显示,小麦根系对根际高温胁迫响应的研究已取得一定进展,但也存在许多空白有待进一步研究,如图1所示。

图1

图1  根际高温影响小麦根系发育的生理机制模式

sHSP:小分子热激蛋白,↑:活性或含量升高,↓:活性或含量降低,?:研究空白

Fig.1  The physiological mechanism of rhizosphere high temperature affecting wheat root development

sHSP: small heat shock proteins, ↑: activity or content increase, ↓: activity or content decrease, ?: research gap


2 小麦根系生长对根际低温胁迫的响应

2.1 根际低温胁迫对小麦根系生长及根细胞形态的影响

气候变化带来了极端低温天气的频发,我国“倒春寒”尤为严重[55]。极端气温伴随极端根际温度,严重影响了小麦的品质和产量[56]。根际低温处理下小麦根系生长缓慢,总根长、根系干重、最大根长及根系体积都显著降低,根冠比显著提高[14,57]。根际低温胁迫时,小麦根系活力与活跃吸收面积提高,但由于根系生长受阻,总吸收面积和总根系活力降低[14]。

为适应根际低温,小麦根系细胞壁会发生结构和物理特征的变化,包括特定多糖的合成与代谢[58]。环境低温胁迫下小麦根尖细胞结构发生明显变化,薄壁细胞形状不规则,表皮细胞较小,皮层细胞较大,维管束结构不明显,木质部排列无序[59]。目前主要从根系细胞显微结构角度研究根际低温根部输导功能的变化与其对地上部分的影响,若能进一步从超微结构角度研究根际低温胁迫对小麦根系的影响,包括根尖细胞的内质网、微体和高尔基体等在根际低温胁迫下的结构及功能的变化,将有助于从细胞学角度理解小麦抗逆性变化。此外,小麦不定根系中多级初生根与次生根在形态及生理性状方面存在差异,而二者在逆境下不同生育阶段的发育和功能均会受到调控[60],对其进一步细化研究,检测多级根性状及其根际低温胁迫响应有关的QTL位点,将有助于研究初生根与次生根的协调发展和小麦抗寒品种的选育。

当前关于根际低温胁迫对小麦幼苗根系生长及根细胞形态的影响方面有了部分研究,但对小麦成株根系的研究还严重缺乏,大田生产中小麦常在返青拔节期经受根际低温胁迫,而目前关于成株小麦根系生长及根细胞形态对根际低温胁迫响应的认知还相当匮乏,其理论研究有助于小麦根系育种和理想株型的培育。

2.2 根际低温胁迫对小麦根系活性氧平衡及质膜的影响

逆境胁迫下,ROS在植物体内大量积累,细胞稳态遭到破坏使细胞质膜受到过氧化伤害,且随着胁迫时间的延长,MDA在植物体内不断积累[61⇓-63]。研究[14,64]发现,低温环境胁迫对小麦根系SOD活性影响显著,短期胁迫酶活性显著增加,长期胁迫酶活性显著降低;低温环境胁迫下小麦根系POD活性提高并保持较高水平;低温环境胁迫使越冬期小麦根系CAT活性显著增加。小麦幼苗在低温胁迫下,叶绿体Cu/Zn-SOD和线粒体Mn-SOD基因的转录受到诱导,在转录水平上引发编码Cu/Zn- SOD和Mn-SOD基因过量表达,从而有效消除ROS,以应对低温胁迫[65]。已知POD参与IAA的氧化分解[66],而IAA在调节植物细胞伸长、细胞分化、生根和休眠等方面发挥重要作用,因此POD与调控小麦越冬休眠有关,这也在一定程度上解释了根际低温下小麦根系细胞壁结构的变化。编码CAT的基因表达表现出器官特异性[67],CAT1主要在叶片表达,CAT3主要在上胚轴表达,目前鲜有关于根系中CAT相关基因表达调控的研究,找到其在越冬期小麦根系中的显著变化与相关根系性状的联系是必要的。

小麦根系随着低温胁迫时间的延长其外渗液电导率明显增大,细胞透性逐渐增大,这是由于膜体紧缩不均而出现断裂,因而会造成膜的破损渗漏[39]。膜脂肪酸不饱和指数(index of unsatu-rated fatty acid,IUFA),即不饱和脂肪酸在总脂肪酸中的相对比值可作为衡量植物抗冷性的重要生理指标,低温处理后小麦中不饱和脂肪酸含量上升,IUFA也上升,膜相变温度降低,小麦抗冷性提高[68]。已知脂肪酸代谢在植物的耐寒机制中起重要作用[69],下一步工作就是发掘调控脂肪酸代谢的相关基因。植物中FAD2基因参与去饱和反应,其表达强弱对植物抗寒能力的影响非常显著,并且该基因在不同组织器官中的表达量存在显著差异[25]。目前,小麦根系组织中脂质代谢以及相关基因表达调控的研究十分有限,未来应将根系中不饱和脂肪酸代谢途径分解,深入研究其中的特定路径产物的定位、调控和功能,以及它们与其他信号通路间的关系。

2.3 根际低温胁迫对小麦根系渗透调节的影响

植物根系无机离子的吸收和积累与ATP酶活性有关,H+-ATP酶、Ca2+-ATP酶和Mg2+-ATP酶的活性均决定了品种的抗逆能力[70]。刘炜等[71]研究发现,低温环境胁迫下耐冷小麦品种质膜Ca2+-ATP酶活性呈先增后减的规律,且始终维持在较高水平。低温胁迫下小麦幼苗根系质膜中H+-ATP酶活性下降,根液泡膜中H+-ATP酶活性增加[68]。王荣富等[72]研究认为,小麦质膜ATP酶活性的改变与膜脂相变无关,其原因可能是ATP酶本身结构的改变引起活化能的变化。目前,植物质膜ATP酶活性的调控机理是植物生理生态学领域的研究热点,但植物响应根际低温逆境因子的抗性机制中根系细胞内信号分子的作用及其传导途径在质膜ATP酶活性调控方面的研究还处于起步阶段,进一步完善相关研究可为小麦逆境耐受能力的提高提供新的视角。

Pro作为重要的渗透调节物质,在植物抗逆中有十分重要的作用。于晶[59]对小麦各器官不同时期低温胁迫下Pro含量进行了研究,发现胁迫初期叶与根中Pro含量大幅提高,但随着胁迫时间的延长,Pro含量逐渐降低。游离Pro含量的增加与小麦抗寒能力有关[73]。吡咯啉-5-羧酸合成酶(P5CS)与脯氨酸脱氢酶(ProDH)是植物中Pro合成与降解的关键酶,P5CS和ProDH基因的调节作用是控制Pro水平的关键机制[74]。目前国内外学者主要聚焦于盐碱与干旱胁迫下Pro积累机制的研究,已证明Ca2+、H2O2和ABA等信号分子参与了相关基因的调控[74-75],但关于根际低温胁迫的研究还相对薄弱,具体哪些信号分子参与了转导过程的研究尚不清楚,信号分子间的相互作用方式尚不明确,因此根际低温胁迫下植物Pro代谢具体过程有待研究。

低温逆境下植物体内常常积累大量的可溶性糖[76]。于晶[59]发现,在低温胁迫下越冬前小麦中可溶性糖含量不断增加,且根中的可溶性糖含量较高,而叶片中含量较少,这可能由于低温信号刺激,叶片中可溶性糖转移到地下器官中,为植物越冬积累必要物质。根系中可溶性糖含量差异决定了不同品种对根际低温的耐受性[77]。因此,低温胁迫下植物根系可溶性糖的积累与抗寒能力有关,进一步研究可溶性糖在小麦根系中的代谢与积累以及其在叶与根中的运输调控机制,对理解小麦根系低温耐受能力是很重要的。

2.4 根际低温胁迫对小麦根系植物激素的影响

ABA和赤霉素(gibberellins,GA)是植物体内重要的生长类激素,这2类激素被认为与植物抗寒性相关[78],其中ABA对于植物抗寒能力的提升最为显著[79]。低温环境胁迫下,小麦根系中ABA含量相对较高且呈现先升高后降低的趋势;GA在小麦根系中含量相对较低,随着胁迫时间的延长,GA含量变动幅度不大[59]。

已在许多模式植物及小麦中证明了ABA处理能通过上调小麦中TaSPS和TaSS等基因的表达提高可溶性糖在组织器官中的积累,以助于增强小麦的低温抗性[80-81]。当小麦经受环境低温胁迫时,ABA提高了根系维管组织的分化[82],同时影响分生组织微管蛋白和肌动蛋白的含量[83]。目前关于ABA及其类似物AMF在小麦根系低温响应调控中的表现仍未知,依赖ABA的信号调控通路在诱导产生低温抗性过程中,ABA与其他信号物质之间的交互方式也尚不清楚,特别是对小麦低温抗性及生长发育紧密相关的碳代谢系统的影响机制缺乏研究。

GA是植物根系伸长生长所必需的,其对根伸长生长的促进作用体现在促进细胞的伸长和增殖,其对根伸长生长的调控需要DELLA蛋白的参与。GA在根系生长发育过程中可能通过影响IAA的合成与运输来调控根系的伸长与生长[84]。GA相关基因参与了植物耐低温的调控过程,GA合成代谢和信号传导过程紧密参与其中。目前关于GA在小麦根系低温响应调控中的表现仍未知,逆境胁迫下GA与ABA等其他信号物质之间存在互作,但具体方式尚不能精确诠释[85]。

研究小麦根系内源激素在根际低温胁迫下的变化为研究小麦根系抗冷基因提供了生理生化基础,进一步研究调控内源激素相关基因、揭示不同激素在调整根际低温胁迫下根系生长的交互机制是未来重点研究方向。

2.5 根际低温胁迫对小麦根系低温诱导蛋白的影响

研究[86]表明,可将低温诱导蛋白分为8种类型,当前研究抗冻能力集中于抗冻蛋白(antifreeze protein,AFP)和脱水蛋白(dehydrin,DHN)。

在很多植物中均有对AFP的研究,AFP多定位于细胞的质外体中,多数发现于植物的叶片、根和芽中[87]。目前认为,AFP在植物根系等组织器官抗寒中的作用主要包括降低原生质溶液的冰点、抑制重结晶、降低冰晶的生长速度、保护细胞膜系统和组织细胞内冰晶的形成等[88]。AFP的表达包含钙信号的调控,钙与激素可通过调节相关基因表达使AFP积累[86]。目前关于AFP基因的应用是一大热点,如何提取出相关基因并在小麦等粮食作物中异源表达进而获得抗寒性强的转基因植株将是今后粮食作物基因工程研究的主要内容之一。

DHN家族成员通过多种转运方式定位于植物细胞,主要在植物营养器官中受诱导表达[89],在冬小麦中2种脱水蛋白相似蛋白在线粒体中积累以响应环境低温胁迫,其积累与植物耐寒能力呈正相关[90]。DHN在低温刺激后有使蛋白维持正确折叠或防止聚集的作用,其高亲水性可帮助植物维持细胞形态避免过度失水[91]。小麦的脱水蛋白WCS120、WCS200、Wcor410和COR39在低温下可被诱导积累,细胞抗冻脱水能力提高,植物耐寒性增强[92-93]。从“郑引1号”小麦中克隆得到脱水蛋白DHN14基因,其可响应低温胁迫并对乳酸脱氢酶具有一定的保护作用[94]。DHN的表达有依赖ABA和转录激活因子(C-repeat binding factor,CBF)2种途径[95]。随着对DHN在逆境条件下对植物保护功能的广泛研究,越来越多的DHN被发现。目前,小麦中关于DHN在干旱胁迫应答过程的作用机制研究较多,期待能进一步加深DHN抗低温作用机制、表达调控以及相关信号转导过程的研究,进而为利用DHN进行小麦抗低温分子育种研究奠定基础。

以上文献显示,小麦根系对根际低温胁迫响应的研究已取得一定进展,但仍存在许多空白需要进一步研究,现总结如图2所示。

图2

图2  根际低温影响小麦根系生长的生理机制模式

↑:活性或含量升高,↓:活性或含量降低,-:无明显变化,?:研究空白

Fig.2  The physiological mechanism of rhizosphere low temperature affecting wheat root development

↑: increased activity or content, ↓: reduced activity or content, -: no significant change, ?: research gap


3 展望

近年来,国内外科研工作者已将目光从研究植物地上器官转移至研究地下根系,针对小麦根际温度胁迫响应生理机制及相关逆境蛋白和激素的调控效应等方面已取得一定进展,但关于小麦不同时期多级根如何响应根际温度胁迫、相关信号分子间如何互作等问题尚缺深入研究,阻碍了小麦根系遗传育种的发展。综合已有研究成果,认为以下5个方面仍具有极大的研究潜力。

(1)根际温度胁迫阻碍小麦根系生长,猜测根际高温加快器官木质化和木栓化进程,进而导致根系衰老加速,根际低温引起根系细胞结构无序,进而阻碍正常生理功能。当前小麦逆境抗性的理论研究多选择幼苗作为试验材料,但对于小麦成株的研究相对匮乏,其理论研究有助于小麦根系育种和理想株型的培育。此外,小麦初生根与次生根的生长进程存在差异,其在小麦不同时期的生理功能也存在差异,将根系结构细化并深入研究抗逆生理极有可能成为新的研究方向。

(2)植物地上部分与根系之间信号网络错综复杂,并且会发生不同激素信号途径的交互作用。目前已有大量研究者投入到植物激素信号通路重要元件的研究中。揭示不同激素在根系抗逆生长过程中的交互机制是未来小麦抗逆研究领域的重要课题,对小麦根系植物激素作用在合适发育阶段的控制也将是抗性改良工程极具潜力的研究方向。

(3)目前,植物质膜ATP酶活性的调控机理是植物生理生态学领域的研究热点,但植物响应根际温度逆境因子的抗性机制中根系细胞内信号分子的作用及其传导途径在质膜ATP酶活性调控方面的研究还处于起步阶段,进一步完善相关研究可为小麦逆境耐受能力的提高提供新的视角。Ca2+和ABA等信号分子参与调控Pro与可溶性糖代谢和转运的相关基因,但关于根际温度胁迫的研究还相对较弱,进一步完善响应机制有助于阐明植物的抗逆性机理,如何应用Pro和可溶性糖代谢与转运相关基因改善植物的抗逆能力还需要深入探求。

(4)关于植物衰老响应及调控热激蛋白信号通路的研究对了解植物适应性机制、提高抗逆性、培育抗逆作物及降低环境因素对植物的伤害等方面意义重大。小麦中Hsf家族基因是当前研究热点,其功能复杂多样性赋予其极大的研究潜力,研究结果将为今后小麦根系响应温度胁迫的分子机制研究和抗逆品种的培育提供理论基础。

(5)AFP和DHN可防止低温胁迫对生物体细胞造成损伤和致死,从而提高生物体对低温的适应能力,具备广阔的应用前景。如何从植物中分离出活性更高的AFP和DHN,并通过遗传转化获得抗冻性强的转基因植株将是今后植物抗冻基因工程研究的主要内容之一。此外,在一些植物中还存在着一些具有调控AFP和DHN积累的物质,如ABA和乙烯等,进一步研究小麦根际温度胁迫下根系调控低温诱导蛋白积累的分子机制有助于理解小麦抗逆性的获取并为抗逆品种的培育提供理论基础。

参考文献

[1]

Kakanur Y, Baviskar V S, Navathe S, et al.

Impact of heat and drought stress on phenological development and yield in bread wheat

Plant Physiology Reports, 2021, 26(2):357-367.

DOI:10.1007/s40502-021-00586-0    URL     [本文引用: 1]

[2]

Chad Z, Hilary B, Roberta N, et al.

Place,proximity,and perceived harm:extreme weather events and views about climate change

Climatic Change, 2018, 149(3):349-365.

DOI:10.1007/s10584-018-2251-x    URL     [本文引用: 1]

[3]

张太平, 潘伟斌.

根际环境与土壤污染的植物修复研究进展

生态环境, 2003, 12(1):76-80.

[本文引用: 1]

[4]

宋敏丽, 温祥珍, 李亚灵.

根际高温对植物生长和代谢的影响综述

生态学杂志, 2010, 29(11):2258-2264.

[本文引用: 2]

[5]

陈继康, 李素娟, 张宇, 等.

不同耕作方式麦田土壤温度及其对气温的响应特征——土壤温度日变化及其对气温的响应

中国农业科学, 2009, 42(7):2592-2600.

[本文引用: 1]

[6]

Zhou Y, Xu L, Xu Y, et al.

A meta-analysis of the effects of global warming on rice and wheat yields in a rice-wheat rotation system

Food and Energy Security, 2021, 10:e316.

[本文引用: 1]

[7]

许璐璐, 王涵, 高盼盼, 等.

环境胁迫对植物根系形态的影响

安徽农业科学, 2020, 48(14):16-19.

[本文引用: 1]

[8]

Qin X, Feng F, Wen X, et al.

Historical genetic responses of yield and root traits in winter wheat in the yellow-Huai-Hai River valley region of China due to modern breeding (1948-2012)

Plant and Soil, 2018, 439:7-18.

DOI:10.1007/s11104-018-3832-1    URL     [本文引用: 1]

[9]

赵德勇.

非生物胁迫条件小麦根系性状的遗传学基础研究进展

分子植物育种, 2020, 18(4):1236-1243.

[本文引用: 1]

[10]

Hendel E, Bacher H, Oksenberg A, et al.

Deciphering the genetic basis of wheat seminal root anatomy uncovers ancestral axial conductance alleles

Plant,Cell and Environment, 2021, 44(6):1921-1934.

DOI:10.1111/pce.14035    URL     [本文引用: 1]

[11]

Qingzhang X, Bingru H.

Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass

Crop Science, 2000, 40(5):1368-1374.

DOI:10.2135/cropsci2000.4051368x    URL     [本文引用: 1]

[12]

Tahir I, Nakata N, Yamaguchi T, et al.

Influence of High shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages

Journal of Agronomy and Crop Science, 2010, 194(2): 141-151.

DOI:10.1111/j.1439-037X.2008.00298.x    URL     [本文引用: 2]

[14]

裴红宾, 张永清, 上官铁梁.

根区温度胁迫对小麦抗氧化酶活性及根苗生长的影响

山西师范大学学报(自然科学版), 2006, 20(2):78-81.

[本文引用: 6]

[15]

Patnaik B, Sinha K.

Effect of temperature on the root growth of wheat cultivars

Indian Journal of Plant Physiology, 2001, 70(4):381-391.

[本文引用: 1]

[16]

尹能文, 李加纳, 刘雪, 等.

高温干旱下油菜的木质化应答及其在茎与根中的差异

作物学报, 2017, 43(11):1689-1695.

DOI:10.3724/SP.J.1006.2017.01639     [本文引用: 1]

以正常生长和高温干旱复合胁迫下甘蓝型油菜中双10号的茎和根为材料,采用组织化学、生物化学、气相色谱-质谱联用(GC-MS)分析技术,研究了木质部结构和木质素成分的胁迫应答规律及其在茎和根中的差别。冰冻切片组织化学染色显示,与正常生长的网室植株(正常植株)相比,高温干旱下生长的温室植株(胁迫植株)的茎和根中木质部均显著加厚,染色更深;与此对应,溴乙酰法测定的茎木质素总量比对照增加31.64%。此外,胁迫茎中的导管孔径明显变小,但根中的导管孔径和导管数量均明显增加。硫代酸解法测定木质素单体表明,胁迫茎中被解离出的木质素单体总量比对照降低40.08%,说明有更高的缩合键比例;S/G值(1.82)比对照(1.29)大大增高,说明S型木质素比例增加而G型木质素比例下降。油菜茎与根木质化性状比较显示,根木质素比茎木质素含有更高比例的缩合键,茎中S型木质素占主体(S/G=1.29),而根中G型木质素占主体(S/G=0.49)且H型木质素含量(7.43%)比茎中(0.83%)高近10倍。H型和G型木质素单体的苯环甲基化程度比S型低,单体间更容易形成缩合键,根中高比例H型和G型木质素单体可能是导致其具有高比例缩合键的主要原因。

[18]

马元喜, 王化岑, 王晨阳, 等.

冬小麦根系各级分枝形成及其解剖结构研究

作物学报, 2002, 28(3):327-332.

[本文引用: 1]

[19]

Asthir B, Koundal A, Bains N S.

Putrescine modulates antioxidant defense response in wheat under high temperature stress

Biologia Plantarum, 2012, 56(4):757-761.

DOI:10.1007/s10535-012-0209-1    URL     [本文引用: 1]

[20]

Razem F A, Bernards M A.

Reactive oxygen species production in association with suberization:evidence for an NADPH- dependent oxidase

Journal of Experimental Botany, 2003, 54 (384):935-941.

DOI:10.1093/jxb/erg094    URL     [本文引用: 1]

[21]

Wang X, Cai J, Liu F L, et al.

Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings

Plant Physiology and Biochemistry, 2014, 74:185-192.

DOI:10.1016/j.plaphy.2013.11.014    PMID:24308988     [本文引用: 1]

Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However, plants experienced priming (PH) up-regulated the Rubisco activase B encoding gene RcaB, which was in accordance with the higher photosynthesis rate in relation to the non-primed plants (NH) under the later high temperature stress. In relation to NH, the major chlorophyll a/b-binding protein gene Cab was down-regulated in PH plants, implying a reduction of the light absorption to protect the photosystem II from excitation energy under high temperature stress. At the same time, under the later high temperature stress PH plants showed significantly higher actual photochemical efficiency, indicating an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD) in mitochondria, which contributed to the lower superoxide radical production rate and malondialdehyde concentration in both chloroplasts and mitochondria. The improved antioxidant capacity in chloroplasts and mitochondria was related to the up-regulated expressions of Cu/Zn-SOD, Mn-SOD and GR in PH. Collectively, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level.Copyright © 2013 Elsevier Masson SAS. All rights reserved.

[22]

郭天财, 王晨阳, 朱云集, 等.

后期高温对冬小麦根系及地上部衰老的影响

作物学报, 1998, 24(6):957-962.

[本文引用: 1]

[23]

Yue N, Xiang Y.

An overview of biomembrane functions in plant responses to high-temperature stress

Frontiers in Plant Science, 2018, 9:915.

DOI:10.3389/fpls.2018.00915    PMID:30018629     [本文引用: 1]

Biological membranes are highly ordered structures consisting of mosaics of lipids and proteins. Elevated temperatures can directly and effectively change the properties of these membranes, including their fluidity and permeability, through a holistic effect that involves changes in the lipid composition and/or interactions between lipids and specific membrane proteins. Ultimately, high temperatures can alter microdomain remodeling and instantaneously relay ambient cues to downstream signaling pathways. Thus, dynamic membrane regulation not only helps cells perceive temperature changes but also participates in intracellular responses and determines a cell's fate. Moreover, due to the specific distribution of extra- and endomembrane elements, the plasma membrane (PM) and membranous organelles are individually responsible for distinct developmental events during plant adaptation to heat stress. This review describes recent studies that focused on the roles of various components that can alter the physical state of the plasma and thylakoid membranes as well as the crucial signaling pathways initiated through the membrane system, encompassing both endomembranes and membranous organelles in the context of heat stress responses.

[24]

王飞, 马金玲, 秦丹丹, 等.

小麦耐热及热敏感基因型在高温胁迫下膜透性及膜脂组分的差异

农业生物技术学报, 2013, 21(8):904-910.

[本文引用: 1]

[25]

Dar A A, Choudhury A R, Kancharla P K, et al.

The FAD2 gene in plants:occurrence,regulation,and role

Frontiers in Plant Science, 2017, 8:1789.

DOI:10.3389/fpls.2017.01789    URL     [本文引用: 2]

[26]

Kaba A K, Janicka-Russak M G.

Differential regulation of vacuolar H+-ATPase and H+-PPase in Cucumis sativus roots by zinc and nickel

Plant Science, 2011, 180(3):531-539.

DOI:10.1016/j.plantsci.2010.11.013    URL     [本文引用: 1]

[27]

Duby G, Boutry M.

The plant plasma membrane proton pump ATPase:a highly regulated P-type ATPase with multiple physiological roles

Pflügers Archiv:European Journal of Physiology, 2009, 457(3):645-655.

DOI:10.1007/s00424-008-0457-x    URL     [本文引用: 1]

[28]

郭启芳, 吴耀领, 王玮.

干旱、高温及共胁迫下不同小麦品种的生理生化响应差异

山东农业科学, 2014, 46(11):32-38.

[本文引用: 1]

[29]

胡建成, 郑海金, 陈鑫阳, 等.

小麦根和叶细胞质膜Ca2+- ATPase性质的比较

植物学报, 1997(5):439-444.

[本文引用: 1]

[30]

Qian Z, Zhao Y J, Zhao B C, et al.

Cloning and functional analysis of wheat V-H+-ATPase subunit genes

Plant Molecular Biology, 2009, 69:33-46.

DOI:10.1007/s11103-008-9403-8    PMID:18836689     [本文引用: 1]

The root microsomal proteomes of salt-tolerant and salt-sensitive wheat lines under salt stress were analyzed by two-dimensional electrophoresis and mass spectrum. A wheat V-H(+)-ATPase E subunit protein was obtained whose expression was enhanced by salt stress. In silicon cloning identified the full-length cDNA sequences of nine subunits and partial cDNA sequences of two subunits of wheat V-H(+)-ATPase. The expression profiles of these V-H(+)-ATPase subunits in roots and leaves of both salt-tolerant and salt-sensitive wheat lines under salt and abscisic acid (ABA) stress were analyzed. The results indicate that the coordinated enhancement of the expression of V-H(+)-ATPase subunits under salt and ABA stress is an important factor determining improved salt tolerance in wheat. The expression of these subunits was tissue-specific. Overexpression of the E subunit by transgenic Arabidopsis thaliana was able to enhance seed germination, root growth and adult seedling growth under salt stress.

[31]

焦蓉, 刘好宝, 刘贯山, 等.

论脯氨酸累积与植物抗渗透胁迫

中国农学通报, 2011, 27(7):216-221.

[本文引用: 1]

[32]

Chaitanya K V, Sundar D, Reddy A R.

Mulberry leaf metabolism under high temperature stress

Biologia Plantarum, 2001, 44(3):379-384.

DOI:10.1023/A:1012446811036    URL     [本文引用: 1]

[33]

Barunawati N, Maghfoer M D, Kendarini N, et al.

Proline and specific root length as response to drought of wheat lines (Triticum aestivum L.)

Agrivita:Journal of Agricultural Science, 2016, 38(3):296-302.

[本文引用: 1]

[34]

王向阳, 王淑俭, 彭文博, 等.

高温对小麦幼苗生理特性影响的初步研究

河南农业大学学报, 1992, 26(1):9-15.

[本文引用: 1]

[35]

Silke G, Thilo W, Andreas M, et al.

The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns

Plant Physiology, 2005, 137(1):117-126.

PMID:15618414     [本文引用: 1]

Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K(m) = 0.1-0.3 mM), lower for Pro (K(m) = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K(m) = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.

[36]

Lehmann S, Funck D, Szabados L, et al.

Proline metabolism and transport in plant development

Amino Acids, 2010, 39(4):949-962.

DOI:10.1007/s00726-010-0525-3    PMID:20204435     [本文引用: 1]

Proline fulfils diverse functions in plants. As amino acid it is a structural component of proteins, but it also plays a role as compatible solute under environmental stress conditions. Proline metabolism involves several subcellular compartments and contributes to the redox balance of the cell. Proline synthesis has been associated with tissues undergoing rapid cell divisions, such as shoot apical meristems, and appears to be involved in floral transition and embryo development. High levels of proline can be found in pollen and seeds, where it serves as compatible solute, protecting cellular structures during dehydration. The proline concentrations of cells, tissues and plant organs are regulated by the interplay of biosynthesis, degradation and intra- as well as intercellular transport processes. Among the proline transport proteins characterized so far, both general amino acid permeases and selective compatible solute transporters were identified, reflecting the versatile role of proline under stress and non-stress situations. The review summarizes our current knowledge on proline metabolism and transport in view of plant development, discussing regulatory aspects such as the influence of metabolites and hormones. Additional information from animals, fungi and bacteria is included, showing similarities and differences to proline metabolism and transport in plants.

[37]

Molly P, Justin F, Mechthild T.

Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake

Journal of Experimental Botany, 2014, 65(18):5193-5204.

DOI:10.1093/jxb/eru278    URL     [本文引用: 1]

[38]

Couturier J, Faÿ E D, Fitz M, et al.

PtAAP11,a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar

Journal of Experimental Botany, 2010, 61(6):1671-1682.

DOI:10.1093/jxb/erq036    PMID:20190041     [本文引用: 1]

Amino acids are the currency of nitrogen exchange between source and sink tissues in plants and constitute a major source of the components used for cellular growth and differentiation. The characterization of a new amino acid transporter belonging to the amino acid permease (AAP) family, AAP11, expressed in the perennial species Populus trichocarpa is reported here. PtAAP11 expression analysis was performed by semi-quantitative RT-PCR and GUS activity after poplar transformation. PtAAP11 function was studied in detail by heterologous expression in yeast. The poplar genome contains 14 putative AAPs which is quite similar to other species analysed except Arabidopsis. PtAAP11 was mostly expressed in differentiating xylem cells in different organs. Functional characterization demonstrated that PtAAP11 was a high affinity amino acid transporter, more particularly for proline. Compared with other plant amino acid transporters, PtAAP11 represents a novel high-affinity system for proline. Thus, the functional characterization and expression studies suggest that PtAAP11 may play a major role in xylogenesis by providing proline required for xylem cell wall proteins. The present study provides important information highlighting the role of a specific amino acid transporter in xylogenesis in poplar.

[39]

魏乐, 杜军华.

高温和零上低温对小麦根系含糖量及细胞透性的影响

青海师范大学学报(自然科学版), 1999, 35(1):36-40.

[本文引用: 2]

[40]

Xia J, Zhao Y H, Wang W K, et al.

Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

Scientific Reports, 2015, 5(10):14426.

DOI:10.1038/srep14426    URL     [本文引用: 1]

[41]

Sasaki K, Itagi T.

Effect of root cooling treatment of nutrient solution on growth and yield of tomato,cucumber and melon

Environment Control in Biology, 2010, 27(3):89-95.

DOI:10.2525/ecb1963.27.89    URL     [本文引用: 1]

[42]

郭洪雪, 宋希云, 燕增文, 等.

高温胁迫对小麦幼苗几个生理生化指标的影响

华北农学报, 2007, 22(增):71-74.

[本文引用: 1]

[43]

Takahashi F, Sato-Nara K, Kobayashi K, et al.

Sugar-induced adventitious roots in Arabidopsis seedlings

Journal of Plant Research, 2003, 116(2):83-91.

PMID:12736780     [本文引用: 1]

The effects of sugars on root growth and on development of adventitious roots were analyzed in Arabidopsis thaliana. Seeds were sown on agar plates containing 0.0-5.0% sugars and placed vertically in darkness (DD) or under long day (LD, 16 h:8 h) conditions, so that the seedlings were constantly attached to the agar medium. In the sucrose-supplemented medium, seedlings showed sustained growth in both DD and LD. However, only dark-grown seedlings developed adventitious roots from the elongated hypocotyl. The adventitious roots began to develop 5 days after imbibition and increased in number until day 11. They could, however, be initiated at any position along the hypocotyl, near the cotyledon or the primary root. They were initiated in the pericycle in the same manner as ordinary lateral roots. Sucrose, glucose and fructose greatly stimulated the induction of adventitious roots, but mannose or sorbitol did not. Sucrose at concentrations of 0.5-2.0% was most effective in inducing adventitious roots, although 5.0% sucrose suppressed induction. Direct contact of the hypocotyl with the sugar-supplemented agar medium was indispensable for the induction of adventitious roots.

[44]

Garay-Arroyo A, Sánchez M D L P S, Azpeitia E, et al.

Hormone symphony during root growth and development

Developmental Dynamics, 2012, 241(12):1867-1885.

DOI:10.1002/dvdy.23878    PMID:23027524     [本文引用: 1]

Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.Copyright © 2012 Wiley Periodicals, Inc.

[45]

Kosakivska I, Voytenko L V, Likhnyovskiy R V, et al.

Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings

Genetics and Plant Physiology, 2014, 4(3/4):201-208.

[本文引用: 1]

[46]

Verslues P E, Zhu J K.

Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress

Biochemical Society Transactions, 2005, 33(2):375-379.

DOI:10.1042/BST0330375    URL     [本文引用: 1]

[47]

朱晓琛, 张汉马, 南文斌.

脱落酸调控植物根系生长发育的研究进展

植物生理学报, 2017, 53(7):1123-1130.

[本文引用: 1]

[48]

Wang X, Zhuang L, Shi Y, et al.

Up-Regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis

International Journal of Molecular Sciences, 2017, 18(9):1981.

DOI:10.3390/ijms18091981    URL     [本文引用: 1]

[49]

Mammadov J, Buyyarapu R, Guttikonda S K, et al.

Wild relatives of maize,rice,cotton,and soybean:treasure troves for tolerance to biotic and abiotic stresses

Frontiers in Plant Science, 2018, 9:886.

DOI:10.3389/fpls.2018.00886    PMID:30002665     [本文引用: 1]

Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review.

[50]

Yildiz M, Oglu S T.

Synthesis of soluble heat shock proteins in seminal root tissues of some cultivated and wild wheat genotypes

Acta Biologica Hungarica, 2006, 57(1):81-95.

PMID:16646527     [本文引用: 1]

Effect of heat stress on the synthesis of soluble heat shock proteins (HSPs) and the regrowth in seminal roots of three cultivated and three wild wheat genotypes was examined. In regrowth experiments, 2-d-old etiolated seedlings were exposed to 23 (control), 32, 35, 37 and 38 degrees C for 24 h, and 35 and 37 degrees C (24 h) followed by 50 degrees C (1 h). The lengths of the seminal roots generally decreased significantly at the end of 48 and 72 h recovery growth periods at 35, 37 and 38 degrees C temperature treatments compared with control. Genotypic variability was significant level at all temperature treatments for the seminal root length. Also, genotypic differences for the number of seminal roots were determined among the wheat cultivars and between the wild wheat species and the wheat cultivars at all temperature treatments; but genotypic differences among wild wheat species were only detected at 37-->50 degrees C treatment. Acquired thermotolerance for the seminal root length is over 50% at 37-->50 degrees C treatment. The genotypic variability of soluble heat shock proteins in seminal root tissues were analyzed by two-dimensional electrophoresis (2-DE). Total number of low molecular weight (LMW) HSPs was more than intermediate-(IMW) and high- (HMW) HSPs at high temperature treatments. The most of LMW HSPs which were generally of acidic character ranged between 14.2-30.7 kDa. The genotypes had both common (43 HSP spots between at least two genotypes and 23 HSP spots between 37 and 37-->50 degrees C) and genotype-specific (72 HSP spots) LMW HSPs.

[51]

Duan S, Liu B, Zhang Y, et al.

Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L

BioMed Central, 2019, 20(1):257.

[本文引用: 1]

[52]

Guo X L, Yuan S N, Zhang H N, et al.

Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10

BMC Plant Biology, 2020, 20(1):364.

DOI:10.1186/s12870-020-02555-5    URL     [本文引用: 1]

[53]

Hu X J, Chen D, Mclntyre C L, et al.

Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway

Plant,Cell and Environment, 2018, 41(1):79-98.

DOI:10.1111/pce.12957    URL     [本文引用: 1]

[54]

张园园, 赵慧, 张玉杰, 等.

小麦热激转录因子基因TaHsfA2f生物学特性及耐热性调控作用

农业生物技术学报, 2019, 27(5):69-79.

[本文引用: 1]

[55]

陈襄礼, 李林峰, 王重锋, 等.

小麦倒春寒发生特点及防御措施初探

河南农业科学, 2014, 43(2):35-37.

[本文引用: 1]

[56]

Ji H, Xiao L, Xia Y, et al.

Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat

Agricultural and Forest Meteorology, 2017, 243:33-42.

DOI:10.1016/j.agrformet.2017.04.016    URL     [本文引用: 1]

[57]

刘炜, 杨君林, 许安民, 等.

不同根区温度对冬小麦生长发育及养分吸收的影响

干旱地区农业研究, 2010, 28(4):197-201.

[本文引用: 1]

[58]

Zabotin A I, Barisheva T S, Zabotina O A, et al.

Alterations in cell walls of winter wheat roots during low temperature acclimation

Journal of Plant Physiology, 1998, 152(4):473-479.

DOI:10.1016/S0176-1617(98)80266-6    URL     [本文引用: 1]

[59]

于晶. 寒地冬小麦东农冬麦1号抗寒机理研究.

哈尔滨:

东北农业大学, 2009.

[本文引用: 4]

[60]

臧贺藏, 王言景, 张均, 等.

冬小麦初生根与次生根形态、生理性状差异分析

河南农业科学, 2018, 47(6):24-29.

[本文引用: 1]

[61]

Li X, Cai J, Liu F, et al.

Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat

Plant Physiology and Biochemistry, 2014, 82:34-43.

DOI:10.1016/j.plaphy.2014.05.005    PMID:24887010     [本文引用: 1]

Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2 °C lower temperature than the ambient temperature, viz., 10.0 °C) at the Zadoks growth stage 28 (i.e. re-greening stage, starting on 20th of March) for 7 d, and after 14 d of recovery the plants were subsequently subjected to a 5 d low temperature stress (8.4 °C lower than the ambient temperature, viz., 14.1 °C) at the Zadoks growth stage 31 (i.e. jointing stage, starting on 8th April). Compared to the non-primed plants, the cold-primed plants possessed more effective oxygen scavenging systems in chloroplasts and mitochondria as exemplified by the increased activities of SOD, APX and CAT, resulting in a better maintenance in homeostasis of ROS production. The trapped energy flux (TRO/CSO) and electron transport (ETO/CSO) in the photosynthetic apparatus were found functioning well in the cold-primed plants leading to higher photosynthetic rate during the subsequent low temperature stress. Collectively, the results indicate that cold priming activated the sub-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

[62]

Kreslavski V D, Los D A, Allakhverdiev S I, et al.

Signaling role of reactive oxygen species in plants under stress

Russian Journal of Plant Physiology, 2012, 59(2):141-154.

DOI:10.1134/S1021443712020057    URL     [本文引用: 1]

[64]

张璐鑫. 低温胁迫对小麦根系生理及茎基腐病致病菌含量影响.

保定:

河北农业大学, 2021.

[本文引用: 1]

[65]

Naydenov N G, Khanam S, Siniauskaya M, et al.

Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold,salinity and osmotic stresses

Genes and Genetic Systems, 2010, 85(1):31-42.

PMID:20410663     [本文引用: 1]

Mitochondrial functions are potential targets of abiotic stresses that are major environmental factors limiting plant development and productivity. To evaluate mitochondrial responses to abiotic stresses we studied mitochondrial transcriptome profiles at the early stages of wheat development after imbibition under normal and induced stress conditions. Three stresses given were low temperature (4 degrees C), high salinity (0.2 M NaCl) and high osmotic potential (0.3 M mannitol). All these stresses greatly reduced growth but dramatically increased respiration both via the cytochrome and alternative pathways. Macroarray analysis of the mitochondrial transcriptome revealed that most of the changes in transcript levels were stress specific but groups of genes responded commonly to different stresses. Under 3-days continuous stresses, 13 genes showed low temperature specific responses with either up- or down-regulation, while 14 and 23 genes showed responses specific to high salinity and high osmotic potential, respectively. On the other hand, 13 genes showed common responses, among which cob and ccmFn increased their transcript levels while transcripts of the other genes including nad6, atp4 and atp9 decreased. The differential profiles of mitochondrial transcriptome revealed by the macroarray analysis were verified by the quantitative reverse transcriptase PCR analysis. Taken together, three among five nuclear-encoded mitochondria-targeted genes included in the array showed decreases under the stresses, while MnSOD and AOX increased their transcript amounts. Our results indicated the existence of common and different regulatory mechanisms that can sense different abiotic stresses and modulate both nuclear and mitochondrial gene expression in germinating wheat embryos and seedlings.

[66]

Beffa R, Martin H V, Pilet P E.

In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

Plant Physiology, 1990, 94(2):485-491.

DOI:10.1104/pp.94.2.485    PMID:16667738     [本文引用: 1]

Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl(2) and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [(3)H] indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol.

[67]

Redinbaugh M G, Wadsworth G J, Scandalios J G.

Characterization of catalase transcripts and their differential expression in maize

Biochimica et Biophysica Acta, 1988, 951(1):104-116.

PMID:2461221     [本文引用: 1]

In maize, the three unlinked catalase (EC 1.11.1.6) structural genes (Cat1, Cat2 and Cat3) are differentially expressed temporally, spatially and in response to environmental signals in the developing seedling. In order to understand more fully the molecular mechanisms involved in catalase gene expression, full-length cDNA clones representing the maize Cat1, Cat2 and Cat3 transcripts were isolated and characterized. DNA sequence analysis confirmed that each cDNA encodes a unique catalase protein. Gene-specific probes for the three maize catalase cDNAs were isolated and used to probe blots of poly(A)+ RNA isolated from various maize tissues. Cat1 mRNA was found in scutella, milky endosperm of immature kernels, leaves and epicotyls. The Cat2 mRNA was present primarily in post-germinative scutella, with lower levels in leaves and epicotyls. Cat3 mRNA was detected primarily in epicotyls and, to a lesser extent, in leaves and scutella. The gene-specific probes hybridized with maize genomic DNA blots in simple, but unique patterns, indicating that there is one, or a very few copies of each catalase gene. The coding region of the Cat3 cDNA comprised 66% G + C, which led to a strong codon usage bias in this gene. This codon bias was also seen with the Cat2 transcripts, but not with those for Cat1. A high degree of similarity was found between the maize catalase nucleic acid and deduced amino-acid sequences and those of sweet potato and rat liver catalase.

[68]

范琼花. 硅对低温胁迫小麦光合作用和膜脂肪酸组成及膜功能的影响.

北京:

中国农业科学院, 2008.

[本文引用: 2]

[69]

Cosmin B, Basu S K.

The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression

Plant Omics, 2009, 2(2):78-84.

[本文引用: 1]

[70]

Bonza M C, Michelis M.

The plant Ca2+-ATPase repertoire:biochemical features and physiological functions

Plant Biology, 2011, 13(3):421.

DOI:10.1111/j.1438-8677.2010.00405.x    PMID:21489092     [本文引用: 1]

Ca(2+)-ATPases are P-type ATPases that use the energy of ATP hydrolysis to pump Ca(2+) from the cytoplasm into intracellular compartments or into the apoplast. Plant cells possess two types of Ca(2+) -pumping ATPase, named ECAs (for ER-type Ca(2+)-ATPase) and ACAs (for auto-inhibited Ca(2+)-ATPase). Each type comprises different isoforms, localised on different membranes. Here, we summarise available knowledge of the biochemical characteristics and the physiological role of plant Ca(2+)-ATPases, greatly improved after gene identification, which allows both biochemical analysis of single isoforms through heterologous expression in yeast and expression profiling and phenotypic analysis of single isoform knock-out mutants.© 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

[71]

刘炜, 孙德兰, 王红, 等.

2℃低温下抗寒冬小麦与冷敏感春小麦幼苗细胞质膜Ca2+-ATPase活性比较

作物学报, 2002, 28(2):227.

[本文引用: 1]

[72]

王荣富, 张云华, 于江龙.

零下低温对小麦线粒体Na+/K+-ATP酶活性的影响

安徽农业大学学报, 2002, 29(2):108-113.

[本文引用: 1]

[73]

Kolupaev Y E, Yastreb T O, Oboznyi A I, et al.

Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress

Russian Journal of Plant Physiology, 2016, 63(3):326-337.

DOI:10.1134/S1021443716030067    URL     [本文引用: 1]

[75]

Wen J F, Gong M, Liu Y, et al.

Effect of hydrogen peroxide on growth and activity of some enzymes involved in proline metabolism of sweet corn seedlings under copper stress

Scientia Horticulturae, 2013, 164:366-371.

DOI:10.1016/j.scienta.2013.09.031    URL     [本文引用: 1]

[76]

Klimov S V, Burakhanova E A, Alieva G P, et al.

Ability of winter wheat plants to become hardened against frost related to peculiarities of carbon dioxide exchange,biomass synthesis,and various forms of water-soluble carbohydrates

Biology Bulletin, 2010, 37(2):168-173.

DOI:10.1134/S1062359010020111    URL     [本文引用: 1]

[77]

Equiza M A.

Root growth inhibition by low temperature explains differences in sugar accumulation between spring and winter wheat

Functional Plant Biology, 2001, 28:1249-1259.

DOI:10.1071/PP01118    URL     [本文引用: 1]

[78]

Sun X, Hu C, Tan Q, et al.

Endogenous hormone in response to molybdenum in winter wheat roots under low temperature stress

Journal of Food Agriculture and Environment, 2010, 8(3):597-601.

[本文引用: 1]

[79]

Rao K M, Raghavendra A S, Reddy K J.

Physiology and molecular biology of stress tolerance in plants

Physiology and Molecular Biology of Stress Tolerance in Plants, 2006, 6349:131-155.

[本文引用: 1]

[80]

Pagter M, Liu F, Jensen C R, et al.

Effects of chilling temperatures and short photoperiod on PSII function,sugar concentrations and xylem sap ABA concentrations in two Hydrangea species

Plant Science, 2008, 175(4):547-555.

DOI:10.1016/j.plantsci.2008.06.006    URL     [本文引用: 1]

[81]

Huang X, Shi Z, Hu A, et al.

ABA is involved in regulation of cold stress response in bermudagrass

Frontiers in Plant Science, 2017, 8:1613.

DOI:10.3389/fpls.2017.01613    PMID:29081782     [本文引用: 1]

As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L). Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S) and cold-resistant (R) Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 mu M ABA solution and exposed to 4 degrees C temperature. After 7 days of cold treatment, the electrolyte leakage (EL), malonaldehyde (MDA) and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL), MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased delta 13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA-or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.

[82]

Olinevich O V, Khokhlova L P, Raudaskoski M.

The microtubule stability increases in abscisic acid-treated and cold-acclimated differentiating vascular root tissues of wheat

Journal of Plant Physiology, 2002, 159(5):465-472.

DOI:10.1078/0176-1617-00642    URL     [本文引用: 1]

[83]

Khokhlova L P, Olinevich O V, Tarakanova N Y, et al.

Oryzalin- induced changes in water status and cytoskeleton proteins of winter wheat seedlings upon cold acclimation and ABA treatment

Russian Journal of Plant Physiology, 2004, 51(5):684-696.

DOI:10.1023/B:RUPP.0000040757.07698.d8    URL     [本文引用: 1]

[84]

李桂俊. 赤霉素对细胞壁组分以及拟南芥主根伸长的影响.

南京:

南京农业大学, 2015.

[本文引用: 1]

[85]

Zentella R, Zhang Z L, Stephen G, et al.

Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis

The Plant Cell, 2007, 19(10):3037-3057.

DOI:10.1105/tpc.107.054999    URL     [本文引用: 1]

[86]

Gupta R, Deswal R.

Antifreeze proteins enable plants to survive in freezing conditions

Journal of Biosciences, 2014, 39(5):931-944.

PMID:25431421     [本文引用: 2]

Overwintering plants secrete antifreeze proteins (AFPs) to provide freezing tolerance. These proteins bind to and inhibit the growth of ice crystals that are formed in the apoplast during subzero temperatures. Antifreeze activity has been detected in more than 60 plants and AFPs have been purified from 15 of these, including gymnosperms, dicots and monocots. Biochemical characterization of plant antifreeze activity, as determined by the high ice recrystallization inhibition (IRI) activities and low thermal hysteresis (TH) of AFPs, showed that their main function is inhibition of ice crystal growth rather than the lowering of freezing temperatures. However, recent studies showed that antifreeze activity with higher TH also exists in plants. Calcium and hormones like ethylene and jasmonic acid have been shown to regulate plant antifreeze activity. Recent studies have shown that plant AFPs bind to both prism planes and basal planes of ice crystals by means of two flat ice binding sites. Plant AFPs have been postulated to evolve from the OsLRR-PSR gene nearly 36 million years ago. In this review, we present the current scenario of plant AFP research in order to understand the possible potential of plant AFPs in generation of freezing-tolerant crops.

[88]

郭惠红, 高述民, 李凤兰, 等.

植物抗冻蛋白和抗寒基因表达的调控

植物生理学报, 2003, 39(6):555-560.

[本文引用: 1]

[89]

Rorat T, Szabala B M, Grygorowicz W J, et al.

Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species

Planta, 2006, 224(1):205-221.

DOI:10.1007/s00425-005-0200-1    URL     [本文引用: 1]

[90]

Borovskii G B, Stupnikova I V, Antipina A I, et al.

Accumulation of proteins immunochemically related to dehydrins in mitochondria of plants exposed to low temperature

Doklady Biochemistry and Biophys, 2000, 371:46-49.

[本文引用: 1]

[91]

Ellis R J.

From chloroplasts to chaperones:how one thing led to another

Photosynthesis Research, 2004, 80:333-343.

PMID:16328830     [本文引用: 1]

Two lessons I have learned during my research career are the importance of following up unexpected observations and realizing that the most obvious interpretation of such observations can be rational but wrong. When you carry out an experiment there is usually an expectation that the result will fall within a range of predictable outcomes, and it is natural to feel pleased when this turns out to be the case. In my view this response is a mistake. What you should be hoping for is a puzzling result that was not anticipated since with persistence and luck further experiments may uncover something new. In this article I give a personal account of how studies of the synthesis of proteins by isolated intact chloroplasts from pea leaves eventually led to the discovery of the chaperonins and the formulation of the general concept of the molecular chaperone function that is now seen to be a fundamental aspect of how all cells work.

[92]

Houde M, Daniel C, Lachapelle M, et al.

Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues

Plant Journal for Cell and Molecular Biology, 2010, 8(4):583-593.

DOI:10.1046/j.1365-313X.1995.8040583.x    URL     [本文引用: 1]

[93]

Houde M, Dallaire S, N'Dong D, et al.

Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves

Plant Biotechnology Journal, 2010, 2(5):381-387.

DOI:10.1111/j.1467-7652.2004.00082.x    URL     [本文引用: 1]

[94]

史学英, 田野, 李核, 等.

小麦K2型脱水蛋白DHN14响应非生物胁迫的功能分析

西北农林科技大学学报(自然科学版), 2019, 47(5):29-37.

[本文引用: 1]

[95]

Giordani T, Natali L, D Ercole A, et al.

Expression of a dehydrin gene during embryo development and drought stress in ABA- deficient mutants of sunflower (Helianthus annuus L.)

Plant Molecular Biology, 1999, 39(4):739-748.

PMID:10350088     [本文引用: 1]

The synthesis of a particular class of proteins, the dehydrins, is a common response to drought in plants. Dehydrins are known to be synthesized by the cell in response to abscisic acid, which represents a link between environment and nuclear activity, though dehydrin genes may be expressed even constitutively. We have investigated the relationship between abscisic acid (ABA) and accumulation of a dehydrin mRNA in sunflower, in which a dehydrin cDNA (HaDhnla) was isolated. In particular, we studied changes in the steady-state level of dehydrin transcripts in two mutants for ABA synthesis and accumulation: nd-1 (an albino, non-dormant and lethal mutant with a very low ABA content and no ABA accumulation in response to stress) and w-1 (a wilty mutant, with reduced ABA accumulation) during embryo and plantlet development and drought stress. Differences between genotypes were observed through embryogenesis: w-1 shows a lower content of dehydrin transcripts in the early stages compared to control plants, indicating that ABA affects dehydrin mRNA accumulation; however, dehydrin transcripts level appears independent of ABA content in late embryogenesis. Also during drought stress in w-1 adult leaves, ABA is not quantitatively related to the steady-state level of the HaDhn1a transcripts. Finally, data on nd-1 mutant show a high level of dehydrin transcripts after drought stress in plantlet cotyledons and leaflets. These results indicate the existence of two regulation pathways of HaDhn1a transcripts accumulation, an ABA-dependent and an ABA-independent one, which may have cumulative effects.

相关知识

干旱胁迫对花生根系生长发育和生理特性的影响
根际氧含量影响植物生长的生理生态机制研究进展
花后喷施KH2PO4对灌浆期高温胁迫下小麦根系生理特性及产量的影响
小麦对盐碱胁迫响应及耐盐碱调控技术研究进展
植物根系分泌物与根际微生物交互作用机制研究进展
水分胁迫对覆膜滴灌棉花根系活力和叶片生理的影响
药用植物根际微生物对其品质形成的影响及其作用机制的研究进展
嫁接对园艺植物生理影响的研究进展
沙旱生灌木对干旱胁迫的响应研究进展
凤仙花生物量及抗氧化酶系统对重金属铅胁迫的生理响应

网址: 根际温度胁迫对小麦根系形态及生理影响的研究进展 https://www.huajiangbk.com/newsview2144910.html

所属分类:花卉
上一篇: 多酚抵御衰老和光老化的研究(下)
下一篇: 多酚在植物中的分布及其生物活性研

推荐分享