Response mechanisms of woody plants to drought stress: a review based on plant hydraulic traits
Christidis N, Jones G S, Stott P A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 2015, 5(1): 46-50. DOI:10.1038/nclimate2468
[2]Easterling D R, Meehl G A, Parmesan C, Changnon S A, Karl T R, Mearns L O. Climate extremes: observations, modeling, and impacts. Science, 2000, 289(5487): 2068-2074. DOI:10.1126/science.289.5487.2068
[3]Trenberth K E, Dai A G, van der Schrier G, Jones P D, Barichivich J, Briffa K R, Sheffield J. Global warming and changes in drought. Nature Climate Change, 2014, 4(1): 17-22. DOI:10.1038/nclimate2067
[4]Duan H L, Duursma R, Huang G M, Smith R A, Choat B, O'Grady A, Tissue D. Elevated[CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell & Environment, 2014, 37(7): 1598-1613.
[5]Allen C, Breshears D, McDowell N. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 2015, 6: 1-55.
[6]Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the national academy of sciences of the united states of america, 2011, 108(4): 1474-1478.
[7]Narisma G T, Pitman A J, Eastman J, Watterson I G, Pielke R Sr, Beltrán-Przekurat A. The role of biospheric feedbacks in the simulation of the impact of historical land cover change on the Australian January climate. Geophysical Research Letters, 2003, 30(22): 1345-1360.
[8]McDowell N, Pockman W T, Allen C D, Breshears D D, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams D G, Yepez E A. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. The New Phytologist, 2008, 178(4): 719-739. DOI:10.1111/j.1469-8137.2008.02436.x
[9]Choat B, Brodribb T J, Brodersen C R, Duursma R A, López R, Medlyn B E. Triggers of tree mortality under drought. Nature, 2018, 558(7711): 531-539. DOI:10.1038/s41586-018-0240-x
[10]Roscher C, Gubsch M, Lipowsky A, Schumacher J, Weigelt A, Buchmann N, Schulze E D, Schmid B. Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity. Oikos, 2018, 127(6): 865. DOI:10.1111/oik.04815
[11]F. D. Transpiration and the Ascent of Sap in Plants. Nature, 1915, 94: 558-559. DOI:10.1038/094558a0
[12]Chen L T, Zhang Y, Nunes M H, Stoddart J, Khoury S, Chan A H Y, Coomes D A. Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: can a general model be applied across a growing season?. Remote Sensing of Environment, 2022, 269: 112767. DOI:10.1016/j.rse.2021.112767
[13]Kattge J, Ogle K, Bönisch G, Díaz S, Lavorel S, Madin J, Nadrowski K, Nöllert S, Sartor K, Wirth C. A generic structure for plant trait databases. Methods in Ecology and Evolution, 2011, 2(2): 202-213. DOI:10.1111/j.2041-210X.2010.00067.x
[14]Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen C, Fensham R, Laughlin D, Kattge J, Bönisch G, Kraft N J B, Jump A. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 2017, 20(4): 539-553. DOI:10.1111/ele.12748
[15]Harrison S, LaForgia M. Seedling traits predict drought-induced mortality linked to diversity loss. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5576-5581.
[16]Anderegg W R L, Trugman A T, Bowling D R, Salvucci G, Tuttle S E. Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14071-14076.
[17]Wieczynski D J, Boyle B, Buzzard V, Duran S M, Henderson A N, Hulshof C M, Kerkhoff A J, McCarthy M C, Michaletz S T, Swenson N G, Asner G P, Bentley L P, Enquist B J, Savage V M. Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2): 587-592.
[18]Brodersen C R, Roddy A B, Wason J W, McElrone A J. Functional status of xylem through time. Annual Review of Plant Biology, 2019, 70: 407-433. DOI:10.1146/annurev-arplant-050718-100455
[19]Katul G, Leuning R, Oren R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 2003, 26(3): 339-350.
[20]Cowan I R, Farquhar G D. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology, 1977, 31(4): 471-505.
[21]Dixon H H, Joly J. Ascent of Sap. Nature, 1900, 62: 572.
[22]Scholander P F, Plumb R C, Bridgman W B, Hammel H T, Plumb R C, Bridgman W B, Richter H H, Plumb R C, Bridgman W B, Levitt J, Storvick T S, Plumb R C, Bridgman W B. On the ascent of sap. Science, 1973, 179(4079): 1248-1250. DOI:10.1126/science.179.4079.1248.a
[23]Tyree M T, Sperry J S. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: answers from a model. Plant Physiology, 1988, 88(3): 574-580. DOI:10.1104/pp.88.3.574
[24]Mott K A, Parkhurst D F. Stomatal responses to humidity in air and helox. Plant, Cell and Environment, 1991, 14(5): 509-515. DOI:10.1111/j.1365-3040.1991.tb01521.x
[25]Sperry J S, Hacke U G. Desert shrub water relations with respect to soil characteristics and plant functional type. Functional Ecology, 2002, 16(3): 367-378. DOI:10.1046/j.1365-2435.2002.00628.x
[26]Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 2017, 20(11): 1437-1447. DOI:10.1111/ele.12851
[27]Hochberg U, Windt C W, Ponomarenko A, Zhang Y J, Gersony J, Rockwell F E, Holbrook N M. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. Plant Physiology, 2017, 174(2): 764-775. DOI:10.1104/pp.16.01816
[28]Li X M, Blackman C J, Choat B, Duursma R A, Rymer P D, Medlyn B E, Tissue D T. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant, Cell & Environment, 2018, 41(3): 646-660.
[29]Kerstiens G. Cuticular water permeability and its physiological significance. Journal of Experimental Botany, 1996, 47(12): 1813-1832. DOI:10.1093/jxb/47.12.1813
[30]Borchert R, Pockman W T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiology, 2005, 25(4): 457-466. DOI:10.1093/treephys/25.4.457
[31]Zhang Y J, Rockwell F E, Graham A C, Alexander T, Holbrook N M. Reversible leaf xylem collapse: a potential circuit breaker against cavitation. Plant Physiology, 2016, 172(4): 2261-2274. DOI:10.1104/pp.16.01191
[32]Mcelrone A J, Bichler J, Pockman W T, Addington R N, Linder C R, Jackson R B. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant, Cell & Environment, 2007, 30(11): 1411-1421.
[33]Cuneo I F, Knipfer T, Brodersen C R, McElrone A J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiology, 2016, 172(3): 1669-1678. DOI:10.1104/pp.16.00923
[34]Tyree M T, Zimmermann M H. The cohesion-tension theory of sap ascent. Xylem Structure and the Ascent of Sap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 49-88.
[35]Choat B, Brodersen C R, McElrone A J. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. The New Phytologist, 2015, 205(3): 1095-1105. DOI:10.1111/nph.13110
[36]Brodribb T J, Skelton R P, McAdam S A M, Bienaimé D, Lucani C J, Marmottant P. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. The New Phytologist, 2016, 209(4): 1403-1409. DOI:10.1111/nph.13846
[37]Tyree M T, Cochard H, Cruiziat P, Sinclair B, Ameglio T. Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell & Environment, 1993, 16(7): 879-882.
[38]Rood S B, Patiño S, Coombs K, Tyree M T. Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees, 2000, 14(5): 248-257. DOI:10.1007/s004680050010
[39]Li J L, Chen X P, Niklas K, Sun J, Wang Z Y, Zhong Q L, Hu D D, Cheng D L. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 2021, 110: 248-261.
[40]Bartlett M K, Zhang Y, Kreidler N, Sun S W, Ardy R, Cao K F, Sack L. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters, 2014, 17(12): 1580-1590. DOI:10.1111/ele.12374
[41]Bartlett M K, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 2012, 15(5): 393-405. DOI:10.1111/j.1461-0248.2012.01751.x
[42]Sack L, Cowan P D, Jaikumar N, Holbrook N M. The 'hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 2003, 26(8): 1343-1356.
[43]Lenz T I, Wright I J, Westoby M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiologia Plantarum, 2006, 127(3): 423-433. DOI:10.1111/j.1399-3054.2006.00680.x
[44]Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 2002, 25(2): 275-294.
[45]Lamy J B, Delzon S, Bouche P S, Alia R, Vendramin G G, Cochard H, Plomion C. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. The New Phytologist, 2014, 201(3): 874-886. DOI:10.1111/nph.12556
[46]Lobo A, Torres-Ruiz J M, Burlett R, Lemaire C, Parise C, Francioni C, Truffaut L, Tomášková I, Hansen J K, Kjær E D, Kremer A, Delzon S. Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks. Forest Ecology and Management, 2018, 424: 53-61. DOI:10.1016/j.foreco.2018.04.031
[47]Maherali H, Pockman W T, Jackson R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 2004, 85(8): 2184-2199. DOI:10.1890/02-0538
[48]Choat B, Jansen S, Brodribb T J, Cochard H, Delzon S, Bhaskar R, Bucci S J, Feild T S, Gleason S M, Hacke U G, Jacobsen A L, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell P J, Nardini A, Pittermann J, Pratt R B, Sperry J S, Westoby M, Wright I J, Zanne A E. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491(7426): 752-755. DOI:10.1038/nature11688
[49]Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms. Oecologia, 2012, 168(1): 1-10. DOI:10.1007/s00442-011-2064-3
[50]Wason J W, Anstreicher K S, Stephansky N, Huggett B A, Brodersen C R. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. The New Phytologist, 2018, 219(1): 77-88. DOI:10.1111/nph.15135
[51]Powers J S, Vargas G G, Brodribb T J, Schwartz N B, Pérez-Aviles D, Smith-Martin C M, Becknell J M, Aureli F, Blanco R, Calderón-Morales E, Calvo-Alvarado J C, Calvo-Obando A J, Chavarría M M, Carvajal-Vanegas D, Jiménez-Rodríguez C D, Murillo Chacon E, Schaffner C M, Werden L K, Xu X T, Medvigy D. A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 2020, 26(5): 3122-3133. DOI:10.1111/gcb.15037
[52]Skelton R P, West A G, Dawson T E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5744-5749.
[53]Chen Z C, Li S, Luan J W, Zhang Y T, Zhu S D, Wan X C, Liu S R. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. Tree Physiology, 2019, 39(8): 1428-1437. DOI:10.1093/treephys/tpz045
[54]Chen Z C, Li S, Wan X C, Liu S R. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 2022, 13: 926535. DOI:10.3389/fpls.2022.926535
[55]Tomasella M, Casolo V, Aichner N, Petruzzellis F, Savi T, Trifilò P, Nardini A. Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. Plant Physiology and Biochemistry, 2019, 145: 1-9. DOI:10.1016/j.plaphy.2019.10.024
[56]Zhang H X, Li X R, Guan D X, Wang A Z, Yuan F H, Wu J B. Nitrogen nutrition addition mitigated drought stress by improving carbon exchange and reserves among two temperate trees. Agricultural and Forest Meteorology, 2021, 311: 108693. DOI:10.1016/j.agrformet.2021.108693
[57]Signori-Mueller C, Oliveira R S, Barros F D V, Tavares J V, Cilpin M, Diniz F C, Zevallos M J M, Yupayccana C A S, Acosta M, Bacca J, Chino R S C, Cuellar G M A, Cumapa E R M, Martinez F, Mullisaca F M P, Nina A, Sanchez Jm B, Silva L F D, Tello L, Tintaya J S, Ugarteche M T M, Baker T R, Bittencourt P R L, Borma L S. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12(1): e206. DOI:10.1038/s41467-020-20648-5
[58]Landhäusser S M, Chow P S, Dickman L T, Furze M E, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H, Hoch G, McDowell N G, Richardson A D, Richter A, Adams H D. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 2018, 38(12): 1764-1778. DOI:10.1093/treephys/tpy118
[59]Blumstein M, Gersony J, Martínez-Vilalta J, Sala A N. Global variation in nonstructural carbohydrate stores in response to climate. Global Change Biology, 2023, 29(7): 1854-1869. DOI:10.1111/gcb.16573
[60]Furze M E, Huggett B A, Aubrecht D M, Stolz C D, Carbone M S, Richardson A D. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. The New Phytologist, 2019, 221(3): 1466-1477. DOI:10.1111/nph.15462
[61]Martín-Gómez P, Aguilera M, Pemán J, Gil-Pelegrín E, Ferrio J P. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). Tree Physiology, 2017, 37(11): 1478-1492. DOI:10.1093/treephys/tpx101
[62]Wiley E, Helliker B. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 2012, 195(2): 285-289. DOI:10.1111/j.1469-8137.2012.04180.x
[63]Takahashi K, Furuhata K. Shoot growth and seasonal changes of nonstructural carbohydrate concentrations at the upper and lower distribution limits of three conifers. Landscape and Ecological Engineering, 2016, 12(2): 239-245. DOI:10.1007/s11355-016-0294-6
[64]Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 2017, 40(1): 4-10.
[65]Guo J S, Gear L, Hultine K, Koch G, Ogle K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. Plant Cell & Environment, 2020, 43(6): 1467-1483.
[66]Dickman L T, McDowell N G, Grossiord C, Collins A D, Wolfe B T, Detto M, Wright S J, Medina-Vega J A, Goodsman D, Rogers A, Serbin S P, Wu J, Ely K S, Michaletz S T, Xu C G, Kueppers L, Chambers J Q. Homoeostatic maintenance of nonstructural carbohydrates during the 2015-2016 El Niño drought across a tropical forest precipitation gradient. Plant, Cell & Environment, 2019, 42(5): 1705-1714.
[67]O'Brien M J, Leuzinger S, Philipson C D, Tay J, Hector A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 2014, 4(8): 710-714. DOI:10.1038/nclimate2281
[68]O'Brien M J, Reynolds G, Ong R, Hector A. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nature Ecology & Evolution, 2017, 1(11): 1643-1648.
[69]Mudrák O, de Bello F, Doležal J, Lepš J. Changes in the functional trait composition and diversity of meadow communities induced by Rhinanthus minor L. Folia Geobotanica, 2016, 51(1): 1-11. DOI:10.1007/s12224-016-9238-z
[70]Feng Z Z, Büker P, Pleijel H, Emberson L, Karlsson P E, Uddling J. A unifying explanation for variation in ozone sensitivity among woody plants. Global Change Biology, 2018, 24(1): 78-84. DOI:10.1111/gcb.13824
[71]Rosana L, Javier C F, MartinStPaul Nicolas K, Hervé C, Brendan C. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. New Phytologist, 2021, 230(2): 497-509. DOI:10.1111/nph.17185
[72]Xu H Y, Wang H, Prentice I C, Harrison S, Wright I. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 2021, 232(3): 1286-1296. DOI:10.1111/nph.17656
[73]Serra-Maluquer X, Gazol A, Anderegg W R L, Martínez-Vilalta J, Mencuccini M, Camarero J J. Wood density and hydraulic traits influence species' growth response to drought across biomes. Global Change Biology, 2022, 28(12): 3871-3882. DOI:10.1111/gcb.16123
[74]Lozano Y M, Carlos A A T, Flaig Isabel C, Matthias C R. Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 2020, 34(11): 2224-2235. DOI:10.1111/1365-2435.13656
[75]Comas L H, Becker S R, Cruz V M V, Byrne P F, Dierig D A. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013, 4: 442.
[76]Zufferey V, Cochard H, Ameglio T, Spring J L, Viret O. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). Journal of Experimental Botany, 2011, 62(11): 3885-3894. DOI:10.1093/jxb/err081
[77]Brundrett M C. Coevolution of roots and mycorrhizas of land plants. The New Phytologist, 2002, 154(2): 275-304. DOI:10.1046/j.1469-8137.2002.00397.x
[78]Comas L H, Mueller K E, Taylor L L, Midford P E, Callahan H S, Beerling D J. Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 2012, 173(6): 584-595. DOI:10.1086/665823
[79]Yang Q P, Zhang W D, Li R S, Xu M, Wang S L. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 2016, 30(5): 1863-1871. DOI:10.1007/s00468-016-1419-0
[80]Brodribb T J, McAdam S A, Carins Murphy M R. Xylem and stomata, coordinated through time and space. Plant, Cell & Environment, 2017, 40(6): 872-880.
[81]Deans R M, Brodribb T J, McAdam S A M. An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics. Plant Physiology, 2017, 174(2): 478-486. DOI:10.1104/pp.17.00150
[82]Drake P L, Froend R H, Franks P J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal Experimental Botany, 2013, 64(2): 495-505. DOI:10.1093/jxb/ers347
[83]Irvine J, Perks M P, Magnani F, Grace J. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiology, 1998, 18(6): 393-402. DOI:10.1093/treephys/18.6.393
[84]Lawson T, Blatt, M R. Stomatal Size, speed, and responsiveness Impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164(4): 1556-1570. DOI:10.1104/pp.114.237107
[85]Saliendra N Z, Sperry J S, Comstock J P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in betula-occidentalis. Planta, 1995, 196(2): 357-366.
[86]Tardieu F, Davies W J. Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughted plants. Plant, Cell & Environment, 1993, 16(4): 341-349.
[87]Vilagrosa A, Bellot J, Vallejo V R, Gil-Pelegrín E. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany, 2003, 54(390): 2015-2024. DOI:10.1093/jxb/erg221
[88]Baltzer J L, Davies S J, Bunyavejchewin S, Noor N S M. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Functional Ecology, 2008, 22(2): 221-231. DOI:10.1111/j.1365-2435.2007.01374.x
[89]Bartlett M K, Zhang Y, Kreidler N, Sun S W, Ardy R, Cao K F, Sack L. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters, 2014, 17(12): 1580-1590. DOI:10.1111/ele.12374
[90]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2009, 103(4): 551-560. DOI:10.1093/aob/mcn125
[91]Dichio B, Xiloyannis C, Sofo A, Montanaro G. Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiology, 2006, 26(2): 179-185. DOI:10.1093/treephys/26.2.179
[92]Logullo M A, Salleo S. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. The New phytologist, 1988, 108(3): 267-276. DOI:10.1111/j.1469-8137.1988.tb04162.x
[93]Hinckley T M, Duhme F, Hinckley A R, Richter H. Water relations of drought hardy shrubs-osmotic potential and stomatal reactivity. Plant, Cell & Environment, 1980, 3(2): 131-140.
[94]Martinez-Vilalta J, Prat E, Oliveras I, Piñol J. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia, 2002, 133(1): 19-29. DOI:10.1007/s00442-002-1009-2
[95]Morgan J M. Osmoregulation and water-stress in higher-plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1984, 35: 299-319. DOI:10.1146/annurev.pp.35.060184.001503
[96]Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 2002, 163(2): 361-367. DOI:10.1016/S0168-9452(02)00140-1
[97]Pita P, Pardos J A. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiology, 2001, 21(9): 599-607. DOI:10.1093/treephys/21.9.599
[98]Tyree M T, Hammel H T. Measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. Journal of Experimental Botany, 1972, 23(74): 267-282.
[99]Barnard D M, Bauerle W L. The implications of minimum stomatal conductance on modeling water flux in forest canopies. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1322-1333. DOI:10.1002/jgrg.20112
[100]Delzon S, Douthe C, Sala A N, Cochard H. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environment, 2010, 33(12): 2101-2111.
[101]Jordan G J, Brodribb T J. Incontinence in aging leaves: deteriorating water relations with leaf age in Agastachys odorata (Proteaceae), a shrub with very long-lived leaves. Functional Plant Biology, 2007, 34(10): 918-924. DOI:10.1071/FP07166
[102]Barbour M M, Farquhar G D, Buckley T N. Leaf water stable isotopes and water transport outside the xylem. Plant, Cell & Environment, 2017, 40(6): 914-920.
[103]Scoffoni C, Albuquerque C, Brodersen C, Townes S V, John G P, Cochard H, Buckley T, McElrone A, Sack L. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 2017, 213(3): 1076-1092. DOI:10.1111/nph.14256
[104]Trifiló P, Raimondo F, Savi T, LoGullo M A, Nardini A. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. Journal of Experimental Botany, 2016, 67(17): 5029-5039. DOI:10.1093/jxb/erw268
[105]Williams L J, Bunyavejchewin S, Baker P J. Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues. Oecologia, 2008, 155(3): 571-582. DOI:10.1007/s00442-007-0938-1
[106]Williams R J, Myers B A, Muller W J, Duff G A, Eamus D. Leaf phenology of woody species in a North Australian tropical savanna. Ecology, 1997, 78(8): 2542-2558. DOI:10.1890/0012-9658(1997)078[2542:LPOWSI]2.0.CO;2
[107]Brodribb Tim J, Jordan Greg J, Carpenter Raymond J. Unified changes in cell size permit coordinated leaf evolution. The New Phytologist, 2013, 199(2): 559-70. DOI:10.1111/nph.12300
[108]North G B, Nobel P S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of agave-deserti (Agavaceae). American Journal of Botany, 1991, 78(7): 906-915. DOI:10.1002/j.1537-2197.1991.tb14494.x
[109]Zhu J M, Brown K M, Lynch J P. Root cortical aerenchyma improves the drought tolerance of maize (Zea maysL.). Plant, Cell & Environment, 2010, 33(5): 740-749.
[110]Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7362-7366.
[111]Lopez B, Sabate S, Gracia C. Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiology, 1998, 18(8-9): 601-606. DOI:10.1093/treephys/18.8-9.601
[112]Bleby T M, Mcelrone A J, Jackson R B. Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell & Environment, 2010, 33(12): 2132-2148.
[113]Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 2006, 63(6): 625-644. DOI:10.1051/forest:2006042
[114]Canadell J, Jackson R B, Ehleringer J R, Mooney H A, Sala O E, Schulze E D. Maximum rooting depth of vegetation types at the global scale. Oecologia, 1996, 108(4): 583-595. DOI:10.1007/BF00329030
[115]Mcelrone A J, Pockman W T, Martínez-Vilalta J, Jackson R B. Variation in xylem structure and function in stems and roots of trees to 20 m depth. The New Phytologist, 2004, 163(3): 507-517. DOI:10.1111/j.1469-8137.2004.01127.x
[116]Padilla F M, Pugnaire F I. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 2007, 21(3): 489-495. DOI:10.1111/j.1365-2435.2007.01267.x
[117]Pinheiro H A, Damatta F M, Chaves A R M, Loureiro M E, Ducatti C. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 2005, 96(1): 101-108. DOI:10.1093/aob/mci154
[118]Schulze E D, Mooney H A, Sala O E, Jobbagy N, Buchmann N, Bauer G, Canadell J, Jackson R B, Loreti J, Oesterheld M, Ehleringer J R. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 1996, 108(3): 503-511. DOI:10.1007/BF00333727
[119]Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. The New Phytologist, 2010, 188(4): 1113-1123. DOI:10.1111/j.1469-8137.2010.03439.x
[120]Brodribb T J, Bowman D M J S, Nichols S, Delzon S, Burlett R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. The New Phytologist, 2010, 188(2): 533-542. DOI:10.1111/j.1469-8137.2010.03393.x
[121]Choat B, Ball M, Luly J, Holtum J. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 2003, 131(1): 41-48. DOI:10.1104/pp.014100
[122]Choat B, Jansen S, Zwieniecki M A, Smets E, Holbrook N M. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. Journal of Experimental Botany, 2004, 55(402): 1569-1575. DOI:10.1093/jxb/erh173
[123]Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P. Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)). Annals of Forest Science, 2011, 68(4): 747-757. DOI:10.1007/s13595-011-0091-1
[124]Fonti P, Vonarx G, García-González I, Eilmann B, Sass-Klassen U, Gärtner H, Eckstein D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. The New Phytologist, 2010, 185(1): 42-53. DOI:10.1111/j.1469-8137.2009.03030.x
[125] [126]Hacke U G, Sperry J S, Pittermann J. Analysis of circular bordered pit function-II. Gymnosperm tracheids with torus-margo pit membranes. American Journal of Botany, 2004, 91(3): 386-400. DOI:10.3732/ajb.91.3.386
[127]Hacke U G, Sperry J S, Pockman W T, Davis S D, Mcculloh K A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126(4): 457-461. DOI:10.1007/s004420100628
[128]Hoffmann W A, Marchin R M, Abit P, Lau O L. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 2011, 17(8): 2731-2742. DOI:10.1111/j.1365-2486.2011.02401.x
[129]Jansen S, Baas P, Gasson P, Lens F, Smets E. Variation in xylem structure from tropics to tundra: Evidence from vestured pits. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8833-8837.
[130]Jansen S, Baas P, Gasson P, Smets E. Vestured pits: Do they promote safer water transport?. International Journal of Plant Science, 2003, 164(3): 405-413. DOI:10.1086/374369
[131]Pittermann J, Sperry J S, Hacke U G, Wheeler J K, Sikkema E H. Torus-margo pits help conifers compete with angiosperms. Science, 2005, 310(5756): 1924. DOI:10.1126/science.1120479
[132]Sperry J S, Hacke U G, Pittermann J. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 2006, 93(10): 1490-1500. DOI:10.3732/ajb.93.10.1490
[133]Wheeler J K, Sperry J S, Hacke U G, Hoang N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 2005, 28(6): 800-812.
[134]Willson C J, Jackson R B. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiologia Plantarum, 2006, 127(3): 374-382. DOI:10.1111/j.1399-3054.2006.00644.x
[135]Choat B. Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 2013, 33(7): 669-671. DOI:10.1093/treephys/tpt046
[136]Pockman W T, Sperry J S. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. American Journal of Botany, 2000, 87(9): 1287-1299. DOI:10.2307/2656722
[137]Tyree M T, Sperry J S. Vulnerability of Xylem to Cavitation and Embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 19-36. DOI:10.1146/annurev.pp.40.060189.000315
[138]Urli M, Porté A J, Cochard H, Guengant Y, Burlett R, Delzon S. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 2013, 33(7): 672-683.
[139]Goldstein G, Andrade J L, Meinzer F C, Holbrook N M, Cavelier J, Jackson P, Celis A. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ, 1998, 21(4): 397-406. DOI:10.1046/j.1365-3040.1998.00273.x
[140]Meinzer F C, Johnson D M, Lachenbruch B, McCulloh K A, Woodruff D R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 2009, 23(5): 922-930. DOI:10.1111/j.1365-2435.2009.01577.x
[141]Meinzer F C, McCulloh K A. Xylem recovery from drought-induced embolism: where is the hydraulic point of no return?. Tree Physiology, 2013, 33(4): 331-334. DOI:10.1093/treephys/tpt022
[142]Maurel C, Verdoucq L, Luu D T, Santoni V. Plant aquaporins: Membrane channels with multiple integrated functions. Annual Review of Plant Biology, 2008, 59: 595-624. DOI:10.1146/annurev.arplant.59.032607.092734
[143]Vandeleur R K, Mayo G, Shelden M C, Gilliham M, Kaiser B N, Tyerman S D. The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine. Plant Physiology, 2009, 149(1): 445-60. DOI:10.1104/pp.108.128645
[144]Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M. The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 2007, 247(4): 788-803. DOI:10.1016/j.jtbi.2007.03.036
[145]Martinez-Vilalta J, Mencuccini M, Alvarez X, Camacho J, Loepfe L, Pinol J. Spatial distribution and packing of xylem conduits. American Journal of Botany, 2012, 99(7): 1189-1196. DOI:10.3732/ajb.1100384
[146]Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk H J, Schmitt M, Schuldt B, Jansen S. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. Iawa Journal, 2016, 37(2): 152-171. DOI:10.1163/22941932-20160128
[147]Pittermann J, Choat B, Jansen S, Stuart S A, Lynn L, Dawson T E. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiology, 2010, 153(4): 1919-1931. DOI:10.1104/pp.110.158824
[148]Chave J, Coomes D, Jansen S, Lewis S L, Swenson N G, Zanne A E. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12(4): 351-366. DOI:10.1111/j.1461-0248.2009.01285.x
[149]Ellmore G S, Zanne A E, Orians C M. Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Botanical Journal of the Linnean Society, 2006, 150(1): 61-71. DOI:10.1111/j.1095-8339.2006.00510.x
[150] [151]Orians C M, Smith S D P, Sack L. How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species. Journal of Experimental Botany, 2005, 56(418): 2267-2273. DOI:10.1093/jxb/eri233
[152]Schenk H J. Clonal splitting in desert shrubs. Plant Ecology, 1999, 141(1-2): 41-52.
[153]Schenk H J, Espino S, Goedhart C M, Nordenstahl M, Cabrera H I M, Jones C S. Hydraulic integration and shrub growth form linked across continental aridity gradients. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11248-11253.
[154]Zanne A E, Sweeney K, Sharma M, Orians C M. Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Functional Ecology, 2006, 20(2): 200-206. DOI:10.1111/j.1365-2435.2006.01101.x
[155]Werden L K, Averill C, Crowther T W, Calderón-Morales E, Toro L, Alvarado J P, Gutiérrez L M, Mallory D E, Powers J S. Below-ground traits mediate tree survival in a tropical dry forest restoration. Philosophical Transactions of The Royal Society B Biological Sciences, 2023, 378(1867).
[156]Yi K, Dragoni D, Phillips R P, Roman D T, Novick K A. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Tree Physiology, 2017, 37(10): 1393. DOI:10.1093/treephys/tpx014
[157]Gleason S, Westoby M, Jansen S, Choat B, Hacke U, Pratt R, Bhaskar R, Brodribb T, Bucci S, Cao K, Cochard H, Delzon S, Domec J, Fan Z, Feild T, Jacobsen A, Johnson D M, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh K, Mencuccini M, Mitchell P, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber S G, Sperry J, Wright I, Zanne A. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209(1): 123-136. DOI:10.1111/nph.13646
[158]Yao G Q, Nie Z F, Turner N, Li F M, Gao T P, Fang X W, Scoffoni C. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. The New Phytologist, 2020, 229: 230-244.
[159]Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T L, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. DOI:10.1038/nature02403
[160]Reich P B. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. DOI:10.1111/1365-2745.12211
[161]Anderegg W R L, Berry J A, Smith D D, Sperry J S, Anderegg L D L, Field C B. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 233-237.
[162]Mantova M, Herbette S, Cochard H, Torres-Ruiz J M. Hydraulic failure and tree mortality: from correlation to causation. Trends in Plant Science, 2022, 27(4): 335-345. DOI:10.1016/j.tplants.2021.10.003
[163]Anderegg W R L, Klein T, Bartlett M, Sack L, Pellegrini A F A, Choat B, Jansen S. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 5024-5029.
[164]McDowell N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 2011, 155(3): 1051-1059. DOI:10.1104/pp.110.170704
[165]Klein T, Hoch G, Yakir D, Körner C. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology, 2014, 34(9): 981-992. DOI:10.1093/treephys/tpu071
[166]Sevanto S, McDowell N G, Dickman L T, Pangle R, Pockman W T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 2014, 37(1): 153-161.
[167]Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology, 2010, 154(1): 357-372. DOI:10.1104/pp.110.157008
[168]Stitt M, Lunn J, Usadel B. Arabidopsis and primary photosynthetic metabolism-more than the icing on the cake. The Plant Journal, 2010, 61(6): 1067-1091. DOI:10.1111/j.1365-313X.2010.04142.x
[169]Gibon Y, Pyl E T, Sulpice R, Lunn J E, Höhne M, Günther M, Stitt M. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply whenArabidopsisis grown in very short photoperiods. Plant, Cell & Environment, 2009, 32(7): 859-874.
[170]Khaitran J K, Ylioja T, Billings R F, Régnière J, Ayres M, Ayres M. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications, 2007, 17(3): 882-899. DOI:10.1890/06-0512
[171]Ayres M P, Lombardero M J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 2000, 262(3): 263-286. DOI:10.1016/S0048-9697(00)00528-3
[172]Lloret F, Siscart D, Dalmases C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 2004, 10(12): 2092-2099. DOI:10.1111/j.1365-2486.2004.00870.x
[173]Andrea N, Marta B, Tadeja S. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. The New Phytologist, 2013, 200(2): 322-329. DOI:10.1111/nph.12288
[174]Anderegg W, Berry J, Smith D D, Sperry J, Anderegg L, Field C. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. National Acad Sciences, 2012, 109(1): 233-237. DOI:10.1073/pnas.1107891109
[175]Wullschleger S D, McLaughlin S B, Ayres M P. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Canadian Journal of Forest Research, 2004, 34(11): 2387-2393. DOI:10.1139/x04-118
[176]Wallin K F, Kolb T E, Skov K R, Wagner M R. Effects of crown scorch on ponderosa pine resistance to bark beetles in northern Arizona. Environmental Entomology, 2003, 32(3): 652-661. DOI:10.1603/0046-225X-32.3.652
相关知识
Response mechanisms of woody plants to drought stress: a review based on plant hydraulic traits
The role of jasmonic acid in stress resistance of plants: a review
Review on the mechanisms of the response to salinity
Chemically Induced Mutants of Brassica oleracea var. botrytis Maintained Stable Resistance to Drought and Salt Stress after Regeneration and Micropropagation
A review of the studies on the response of aquatic vegetation to hydrodynamic stress in lakes
Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses
Research Progress on Response of Hemerocallis to Abiotic Stresses
Research Progress on Physiological Mechanism of Silicon on Enhancing Plant Drought Resistance
植物毒理学文献计量分析及其研究思路与方法评论
Response of biomass and antioxidant enzyme activities of Gymnocarpos przewalskii seedlings to drought stress
网址: Response mechanisms of woody plants to drought stress: a review based on plant hydraulic traits https://www.huajiangbk.com/newsview2038199.html
上一篇: 《美军生存手册》丛林、沼泽、海滩 |
下一篇: 科学网—揭示干旱对植物群落的调控 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039