披碱草属4个牧草品种苗期抗寒性综合评价
图 1 供试材料苗期图片
Figure 1. Seedling stage images of the test materials
图 2 低温胁迫对披碱草属4个牧草品种抗氧化酶活性的影响
不同大写字母表示同一温度下不同材料间差异显著(P < 0.05),不同小写字母表示同一材料不同温度处理间差异显著(P < 0.05)。DM代表同德短芒披碱草,LMM代表同德老芒麦,F代表‘陇中1号’肥披碱草,CS代表甘南垂穗披碱草,下图同。
Figure 2. Effects of low-temperature stress on antioxidant enzyme activities of four Elymus species
Different capital letters indicate significant differences among different materials for the same temperature at the 0.05 level, different lowercase letters indicate significant differences among different treatment for the same material at the 0.05 level, DM represents Elymus breviaristatus ‘Tongde’,LMM represents Elymus sibiricus ‘Tongde’, F represents Elymus excelsus ‘Longzhong No. 1’ and CS represents Elymus nutans ‘Gannan’. This is applicable for the following figures as well.
图 3 低温胁迫对披碱草属4个牧草品种渗透调节物质的影响
Figure 3. Effects of low-temperature stress on osmotic adjustment substances of four Elymus species
图 4 低温胁迫对披碱草属4个牧草品种MDA的影响
Figure 4. Effects of low temperature stress on MDA of four Elymus species
图 5 低温胁迫对披碱草属4个牧草品种REC的影响
Figure 5. Effects of low-temperature stress on REC of four Elymus species
图 6 低温胁迫对披碱草属4个牧草品种叶绿素含量的影响
Figure 6. Effects of low-temperature stress on chlorophyll content of four Elymus species
图 7 低温胁迫对披碱草属4个牧草品种光和气体交换参数的影响
Figure 7. Effects of low-temperature stress on photosynthetic characteristics of four Elymus species
图 8 低温胁迫对披碱草属4个牧草品种叶绿素荧光参数的影响
Figure 8. Effects of low-temperature stress on chlorophyll fluorescence parameters of four Elymus species
表 1 供试材料信息
Table 1 Information on test materials
种质编号Germplasm code 种质名称
Germplasm name 供种单位
Seed supply unit DM 同德短芒披碱草
Elymus breviaristatus ‘Tongde’ 青海大学
Qinhai University LMM 同德老芒麦
Elymus sibiricus ‘Tongde’ 青海大学
Qinhai University F ‘陇中1号’肥披碱草
Elymus excelsus ‘Longzhong No. 1’ 中国农业科学院兰州畜牧与兽药研究所
Lanzhou Institute of Husbandry and Pharmaceutical Sciences,
Chinese Academy of Agricultural Sciences CS 甘南垂穗披碱草
Elymus nutans ‘Gannan’ 甘肃省玛曲县草原站
Grassland Station of Maqu County, Gansu Province
表 2 低温胁迫下披碱草属4个牧草品种的评价指标相对隶属值和综合评价值
Table 2 Relative subordinate value and comprehensive evaluation value of evaluation indexes of four Elymus varieties under low-temperature stress
指标Index 10 ℃ 5 ℃ 0 ℃ DM LMM F CS 权重
Weight DM LMM F CS 权重
Weight DM LMM F CS 权重
Weight SOD 0.56 0.00 0.57 1.00 0.130 0.63 1.00 0.00 0.14 0.129 0.18 1.00 0.00 0.57 0.162 POD 0.02 1.00 0.00 0.33 0.143 0.16 1.00 0.00 0.32 0.096 0.00 1.00 0.23 0.54 0.073 CAT 0.64 1.00 0.00 0.35 0.043 0.72 1.00 0.00 0.67 0.029 0.65 1.00 0.00 0.78 0.072 MDA 0.93 0.00 1.00 0.94 0.051 0.38 0.38 0.00 1.00 0.051 0.46 0.00 0.18 1.00 0.043 REC 1.00 0.09 0.51 0.00 0.074 1.00 0.00 0.94 0.46 0.082 0.23 0.30 0.00 1.00 0.064 SS 0.46 0.00 1.00 0.73 0.053 0.31 0.00 1.00 0.58 0.061 0.40 0.00 1.00 0.40 0.043 Pro 0.30 0.00 1.00 0.06 0.067 0.40 0.00 1.00 0.21 0.054 0.44 0.00 1.00 0.26 0.061 Pn 1.00 0.49 0.00 0.73 0.044 0.00 1.00 0.00 0.89 0.036 0.17 1.00 0.00 0.35 0.050 Tr 0.56 1.00 0.00 0.35 0.040 0.00 1.00 0.03 0.41 0.050 0.00 1.00 0.29 0.47 0.057 Gs 0.24 0.80 0.00 1.00 0.068 0.17 0.86 0.00 1.00 0.102 0.19 0.94 0.00 1.00 0.094 Chl 0.67 0.91 0.00 1.00 0.093 0.95 1.00 0.17 0.00 0.201 0.95 0.91 1.00 0.00 0.099 Fv/Fm 0.00 0.98 1.00 1.00 0.005 0.47 1.00 0.48 0.00 0.018 0.86 1.00 0.74 0.00 0.017 Fv/Fo 0.00 1.00 0.23 0.09 0.021 1.00 1.00 0.43 0.00 0.060 1.00 0.68 0.47 0.00 0.054 ΦPSⅡ 0.23 1.00 0.65 0.00 0.052 0.79 1.00 0.93 0.00 0.062 0.72 1.00 0.74 0.00 0.055 ETR 1.00 0.00 0.08 0.16 0.052 1.00 0.16 0.08 0.00 0.062 1.00 0.00 0.39 0.40 0.055 NPQ 1.00 0.35 0.46 0.00 0.033 1.00 0.98 0.39 0.00 0.034 1.00 0.41 0.00 0.94 0.046 qP 0.00 0.98 1.00 0.59 0.044 0.20 0.98 1.00 0.00 0.045 0.17 0.99 1.00 0.00 0.041 评分 Score 0.51 0.62 0.39 0.53 0.69 0.86 0.35 0.38 0.59 0.87 0.38 0.43 排名 Rank 3 1 4 2 2 1 4 3 2 1 4 3 SOD:超氧化物歧化酶;POD:过氧化物酶;CAT:过氧化氢酶;MDA:丙二醛;REC:相对电导率;SS:可溶性糖;Pro:脯氨酸;Pn:净光合速率;Tr:蒸腾速率;Gs:气孔导度;Chl:叶绿素;Fv/Fm:PSⅡ最大光化学效率;Fv/Fo:PSⅡ潜在活性;ΦPSⅡ:实际光能转化效率;ETR:PSⅡ光合电子传递速率;NPQ:非光化学猝灭系数;qP:光化学猝灭系数。
SOD: superoxide dismutase; POD: Peroxidase; CAT: catalase; MDA: malondialdehydem; REC: relative electrical; SS: soluble sugar; Pro: proline; Pn: net photosynthesis rate; Tr: transpiration rate; Gs: stomatal conductance; Chl: chlorophyll; Fv/Fm: maximumphotochemical efficiency of PSⅡ; Fv/Fo: potential activity of PSⅡ; ΦPSⅡ: actual light energy conversion efficiency; ETR: photosynthetic electron transport rate; NPQ: non-photochemical quenching coefficient; qP: photochemical quenching coefficient. SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; MDA: malondialdehydem; REC: relative electrical; SS: soluble sugar; Pro: proline; Pn: net photosynthesis rate; Tr: transpiration rate; Gs: stomatal conductance; Chl: chlorophyll; Fv/Fm: maximumphotochemical efficiency of PSⅡ; Fv/Fo: potential activity of PSⅡ; ΦPSⅡ: actual light energy conversion efficiency; ETR: photosynthetic electron transport rate; NPQ: non-photochemical quenching coefficient; qP: photochemical quenching coefficient. [1] 郭子武, 李宪利, 高东升, 段成国. 植物低温胁迫响应的生化与分子生物学机制研究进展. 中国生态农业学报, 2004, 12(2): 59-62.
GUO Z W, LI X L, GAO D S, DUAN C G. Advance in the mechanism of biochemistry and molecular biology in response to cold stress of plant. Chinese Journal of Eco-Agriculture, 2004, 12(2): 59-62.
[2] 舒必超, 杨勇, 刘雪勇, 蒋元利, 向佐湘, 胡龙兴. 低温胁迫对狗牙根生理及基因表达的影响. 草业学报, 2018, 27(11): 106-119. doi: 10.11686/cyxb2018133SHU B C, YANG Y, LIU X Y, JIANG Y L, XIANG Z X, HU L X. Effect of low temperature stress on physiology and gene expression in Bermuda grass. Acta Prataculturae Sinica, 2018, 27(11): 106-119. doi: 10.11686/cyxb2018133
[3] 苗佳敏, 钟金城, 陈智华. 披碱草属种质资源研究现状. 草业与畜牧, 2009(8): 1-6.MIAO J M, ZHONG J C, CHEN Z H. Research progress of germplasm resource of Elymus. Journal of Grassland and Forage Science, 2009(8): 1-6.
[4] 孙建萍, 袁庆华. 披碱草属种质资源研究进展. 草业科学, 2005, 22(12): 2-5. doi: 10.3969/j.issn.1001-0629.2005.12.002SUN J P, YUAN Q H. Research progress of the germplasm resource of Elymus. Pratacultural Science, 2005, 22(12): 2-5. doi: 10.3969/j.issn.1001-0629.2005.12.002
[5] 张尚雄, 尼玛平措, 徐雅梅, 苗彦军, 包赛很那, 张卫红. 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价. 草业科学, 2016, 33(6): 1154-1163.ZHANG S X, Nimapingcuo, XU Y M, MIAO Y J, Baosaihenna, ZHANG W H. Physiological responses to low temperature stress and cold tolerance evaluation in three Elymus species. Pratacultural Science, 2016, 33(6): 1154-1163.
[6] 雷雪峰, 马爱生, 李海翠, 王彩艳, 刘红媛. 8种禾本科牧草低温胁迫的生理响应及抗寒性比较. 江苏农业科学, 2019, 47(9): 218-222.LEI X F, MA A S, LI H C, WANG C Y, LIU H Y. Physiological response and cold resistance comparison of 8 Gramineae grasses under low temperature stress. Jiangsu Agricultural Sciences, 2019, 47(9): 218-222.
[7] 魏巍. 藏北高寒区4种野生披碱草属牧草生产性能及品质差异. 西藏农业科技, 2019, 41(4): 28-31.WEI W. Differences of productivity and quality of 4 wild Elymus L. species of alpine regions in northern Tibet. Tibet Journal of Agricultural Sciences, 2019, 41(4): 28-31.
[8]CUI G W, JI G X, LIU S Y, LI B, ZHANG P. Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai-Tibetan Plateau. Acta Physiologiae Plantarum, 2019, 41(7): 115-125. doi: 10.1007/s11738-019-2904-z
[9]ZHANG A, CUI L, PAN G, LI L, HUSSAIN Q, ZHANG X, ZHENG J, CROWLEY D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture Ecosystems & Environment, 2010, 139(4): 469-475.
[10] 徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42(7): 311-312.XU X J, LI Y C. Comparison of two relative conductivity determination methods of plants. Jiangsu Agricultural Sciences, 2014, 42(7): 311-312.
[11]APEL K, HIET H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1): 373-399. doi: 10.1146/annurev.arplant.55.031903.141701
[12]ROGER M R. Handbook of Plant Ecophysiology Techniques. The Netherlands: Kluwer Academic Publishers, 2001:1387-1388.
[13]ZHANG X, ZHANG L, SUN Y, ZHENG S, WANG J, ZHANG T. Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings (Brassica rapa L.). Plant Physiology and Biochemistry, 2020, 157: 402-415. doi: 10.1016/j.plaphy.2020.11.006
[14] 贾祥, 多吉格桑, 赵爱民, 张文才, 曲尼加措, 拉巴卓玛, 普布次仁, 苗彦军. 4种禾本科牧草苗期抗寒性综合评价. 草地学报, 2020, 28(5): 1372-1378.JIA X, Duojigesang, ZHAO A M, ZHANG W C, Qunijiacuo, Labazhuoma, Pubuciren, MIAO Y J. Comprehensive evaluation of cold resistance of 4 species of Gramineae at seedling stage. Acta Agrestia Sinica, 2020, 28(5): 1372-1378.
[15] 何子华, 杨成行, 王沛, 包爱科, 马清. 高寒地区6种禾本科牧草对低温胁迫的生理响应及耐寒性评价. 草业科学, 2021, 38(10): 2019-2028.HE Z H, YANG C H, WANG P, BAO A K, MA Q. Effect of low-temperature stress on the physiological responses of six gramineous forages in alpine regions and evaluation of their cold resistance. Pratacultural Science, 2021, 38(10): 2019-2028.
[16] 刘磊, 陈立波, 李志勇, 王美珍, 郭淑晶. 晚秋温度对苜蓿地上部游离脯氨酸、可溶性糖和POD活性的影响. 草业科学, 2009, 26(10): 89-93. doi: 10.3969/j.issn.1001-0629.2009.10.013LIU L, CHEN L B, LI Z Y, WANG M Z, GUO S J. Effect of temperature in late autumn on free proline, soluble sugar and POD in alfalfa. Pratacultural Science, 2009, 26(10): 89-93. doi: 10.3969/j.issn.1001-0629.2009.10.013
[17] 牛素贞, 宋勤飞, 樊卫国, 陈正武. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响. 生态学报, 2017, 37(21): 7333-7341.NIU S Z, SONG Q F, FAN W G, CHEN Z W. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants. Acta Ecologica Sinica, 2017, 37(21): 7333-7341.
[18] 李雪凝, 董守坤, 刘丽君, 徐亚会, 高鑫宇, 王利彬. 干旱胁迫对春大豆超氧化物歧化酶活性和丙二醛含量的影响. 中国农学通报, 2016, 32(15): 93-97.LI X N, DONG S K, LIU L J, XU Y H, GAO X Y, WANG L B. Effect of drought stress on SOD activity and MDA content of spring soybean. Chinese Agricultural Science Bulletin, 2016, 32(15): 93-97.
[19]FU J J, ROGER N G, XU Y F, HU T M. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb. Journal of Photochemistry & Photobiology B: Biology, 2016, 163: 30-39.
[20] 李唯. 植物生理学. 北京: 高等教育出版社, 2012.LI W. Plant Physiology. Beijing: Higher Education Press, 2012.
[21] 许大全. 光合作用学. 北京: 科学出版社, 2013.XU D Q. The Science of Photosynthesis. Beijing: Science Press, 2013.
[22]LIU A, HU Z, BI A, FAN J, GITAU M M, AMOMBO E, CHEN L, FU J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology, 2016, 25(8): 1445-1457. doi: 10.1007/s10646-016-1696-9
[23] 黄鸿, 屈燕, 侯祯丹, 严朋飞, 刘建. 低温胁迫对3种绿绒蒿幼苗叶绿素荧光特性的影响. 西南农业学报, 2020, 33(7): 1474-1479.HUANG H, QU Y, HOU Z D, YAN P F, LIU J. Effects of low temperature stress on chlorophyll fluorescence characteristics of three Meconopsis seedlings. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1474-1479.
[24] 高源, 王霞, 高树仁, 翟弘杨, 吴思雨, 孙鹏, 张雪莲, 刘海英. 基于隶属函数法分析80份玉米自交系萌芽期的抗旱性. (2021-09-28) [2022-08-05]. http://kns.cnki.net/kcms/detail/46.1068.S.20210927.2137.006.html.GAO Y, WANG X, GAO S R, ZHAI H Y, WU S Y, SUN P, ZHANG X L, LIU H Y. Analysis of drought resistance of 80 maize inbred lines based on membership function at germination stage. (2021-09-28) [2022-08-05]. http://kns.cnki.net/kcms/detail/46.1068.S.20210927.2137.006.html.
[25] 周福平, 史红梅, 张海燕, 杨彬, 闫凤霞. 应用模糊隶属函数法对高粱种质资源的农艺性状和品质性状进行综合评价. 种子, 2022, 41(1): 94-98.ZHOU F P, SHI H M, ZHANG H Y, YANG B, YAN F X. Comprehensive evaluation of agronomic and qualitative traits of sorghum germplasm resources based on fuzzy membership function method. Seed, 2022, 41(1): 94-98.
相关知识
8份披碱草属牧草苗期抗旱性综合评价
青海省6种禾本科牧草的抗寒性研究及综合评价
披碱草Elymus dahuricus Turcz.
16个地被菊品种的苗期抗寒性评价
垂穗披碱草Elymus nutans Griseb.
披碱草属真菌病害研究进展
披碱草属种质资源苗期耐盐性研究
光照强度和肥力变化对垂穗披碱草生长的影响
杜鹃花品种的抗寒性评价及外源ABA对其抗寒性的影响
北方地区牧草种子
网址: 披碱草属4个牧草品种苗期抗寒性综合评价 https://www.huajiangbk.com/newsview1834108.html
上一篇: 鸭子的饲料是什么做的 |
下一篇: 禾本科牧草是什么品种 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039