五种加工方式对黄瓜中10种农药残留的去除效果
摘要:
在实验室模拟沉积农药条件下,通过液相色谱-串联质谱 (LC-MS/MS) 和气相色谱-串联质谱 (GC-MS/MS) 检测技术,研究了经水洗、水煮、炒制、去皮和腌制5种加工方式后,多菌灵、吡虫啉、啶虫脒、乙霉威、霜霉威、丙溴磷、氯氰菊酯、三唑磷、敌敌畏和嘧霉胺10种农药在黄瓜中的残留量变化情况。结果表明:在5种加工方式中,以去皮处理对农药的去除效果最明显,其中丙溴磷和氯氰菊酯的加工因子 (PF) 均为0.04,其他4种加工方式对农药去除效果的强弱顺序为水煮>炒制、水洗、腌制;农药的log Kow(辛醇水分配系数) 值跟农药的去除效果直接相关,经水洗和水煮2种加工方式处理后,农药的log Kow值越小,越易被去除。另外,水洗、水煮和炒制处理,在0~10 min内随处理时间延长农药残留量呈减小的趋势,10种农药的PF变化范围为:水洗时PF在1.00~0.62之间,水煮时PF在0.86~0.37之间,炒制时PF在1.13~0.52之间。
Abstract:
The removal efficiencies of ten pesticide residues (carbendazim, imidacloprid, acetamiprid, diethofencarb, propamocarb, profenofos, cypermethrin, triazophos, dichlorvos and pyrimethanil) from cucumber by five different processing methods (washing, boiling, stir-frying, peeling and salting) were investigated under laboratory simulation using LC-MS/MS and GC-MS/MS. The results showed that peeling was the most effective pesticide removal method among these processing methods. Especially, in the cases of profenofos and cypermethrin, the processing factors by peeling were both 0.04. The pesticide removal abilities of other investigated processing methods were in the following order: boiling > stir-frying, washing, and salting. Meanwhile, it was found that the effects of processing methods were directly related to the log Kow of each pesticide. The smaller the log Kow of pesticides, the easier to remove them by washing and boiling. Moreover, we also investigated the time effect of pesticide residue removal with washing, boiling and stir-frying within 10 min. The results showed a decreasing trend of pesticide residue amounts with the increase of treatment time. For all investigated pesticide residues, the processing factors for washing, boiling and stir-frying varied in the region of 1.00-0.62, 0.86-0.37 and 1.13-0.52, respectively, after 10 min treatments.
图式 1 十种待测农药的化学结构式
Scheme 1. Structural formula of 10 pesticides
图 1 黄瓜中10种农药加工因子随水洗时间的变化
Figure 1. PF trends of 10 pesticide residues after washing with different durations
图 2 黄瓜中10种农药加工因子随水煮时间的变化
Figure 2. PF trends of 10 pesticide residues after boiling with different durations
图 3 黄瓜中10种农药加工因子随炒制时间的变化
Figure 3. PF trends of 10 pesticide residues after stir-frying with different durations
表 1 十种待测农药的理化性质参数
Table 1 The physico-chemical properties of 10 pesticides
农药Pesticide 相对分子质量
Relative molecular mass 沸点
Boiling point/℃ 熔点
Melting point/℃ 饱和蒸汽压
Vapour pressure/Pa 水溶解性
Water solubility/(g/L) log Kow 吡虫啉 imidacloprid 255.66 93.5 136~144 2 × 10–6a 0.51a 0.57 啶虫脒 acetamiprid 222.68 352.4 101.0~103.3 5.9 × 10–3b 4.2a 0.80 霜霉威 propamocarb 188.27 139~141 45~55 1.66 × 10–3a 900a 0.84 敌敌畏 dichlorvos 220.98 140 –60 2.10b 10b 1.43 多菌灵 carbendazim 191.19 326.92 302~307 1.0 × 10–8a 1 × 10–3a 1.52 嘧霉胺 pyrimethanil 199.25 NA 96.3 2.2 × 10–3b 0.121b 2.48 乙霉威 diethofencarb 267.32 100 39.5~41.5 2.9 × 10–3b 0.242b 3.01 三唑磷 phentriazophos 313.31 260 2~5 3.9 × 10–2c 0.03~0.04a 3.55 丙溴磷 profenofos 373.63 110 NA 1.24 × 10–4a 0.028b 4.68 氯氰菊酯 cypermethrin 416.30 170~195 60~80 1.9 × 10–4a 1 × 10–5a 6.30注:a表示在20 ℃条件下,b表示在25 ℃条件下,c表示在30 ℃条件下;NA:不详。Note: The value marked with 'a' was obtained at 20 ℃, the value marked with 'b' was obtained at 25 ℃ and the value marked with 'c' was obtained at 30 ℃; NA: Not available.
表 2 九种农药的液相色谱-三重四极杆 (LC-MS/MS) 多反应监测 (MRM) 质谱参数
Table 2 Liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) parameters of 9 pesticides in multiple reaction monitoring (MRM) mode
农药Pesticide 母离子
Parents, m/z 子离子
Daughter, m/z 锥孔电压
Cone/V 碰撞能量
Collision/V 保留时间
Retention time/min 吡虫啉 imidacloprid 256.00 175.00 18 19 2.44209.0017 啶虫脒 acetamiprid 223.00 90.00 23 32 2.66126.0020 霜霉威 propamocarb 189.20 102.00 22 18 1.57144.0014 敌敌畏 dichlorvos 221.00 79.00 26 25 1.41109.0017 多菌灵 carbendazim 192.00 132.00 23 28 1.93160.0018 嘧霉胺 pyrimethanil 200.00 107.00 32 25 3.95168.0029 乙霉威 diethofencarb 268.20 152.00 12 23 4.19180.0018 三唑磷 triazophos 314.00 119.00 23 33 5.97162.0018 丙溴磷 profenofos 373.00 303.00 20 18 6.73345.0013
表 3 氯氰菊酯的气相色谱-三重四极杆 (GC-MS/MS) 选择离子反应监测 (SRM) 质谱参数
Table 3 Gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) parameters of cypermethrin in selected reaction monitoring (SRM) mode
农药Pesticide 母离子/子离子
Parents/Daughter, m/z 碰撞能量 1
Collision 1/eV 碰撞能量 2
Collision 2/eV 保留时间
Retention time/min 氯氰菊酯 cypermethrin 163/127,180.9/151.9 6 18 20.89
表 4 黄瓜中10种农药在不同加工方式下随时间变化的PF值
Table 4 PF values of 10 pesticide residues with different treatments and different durations
log Kow 农药Pesticide 水洗
Washing 水煮
Boiling 炒制
Stir-frying 去皮
Peeling 腌制
Salting 3 min 5 min 10 min 3 min 5 min 10 min 3 min 5 min 7 min 0.2~2 吡虫啉 imidacloprid 0.96 0.80 0.70 0.59 0.42 0.41 0.81 0.89 0.77 0.16 0.91 啶虫脒 acetamiprid 0.95 0.81 0.70 0.56 0.40 0.38 0.82 0.87 0.75 0.18 0.89 霜霉威 propamocarb 0.95 0.85 0.77 0.53 0.41 0.38 0.92 0.83 0.85 0.07 0.88 敌敌畏 dichlorvos 0.96 0.88 0.78 0.63 0.47 0.37 0.76 0.67 0.52 0.60 0.94 多菌灵 carbendazim 0.86 0.72 0.62 0.52 0.4 0.4 0.69 0.67 0.52 0.29 0.94 2~4 嘧霉胺 pyrimethanil 0.99 0.91 0.87 0.71 0.59 0.59 0.84 0.82 0.73 0.53 0.98 乙霉威 diethofencarb 1.00 0.91 0.83 0.73 0.57 0.59 0.85 0.90 0.81 0.41 1.11 三唑磷 phentriazophos 0.99 0.98 0.97 0.65 0.54 0.54 1.13 1.12 0.95 0.20 1.09 > 4 丙溴磷 profenofos 1.00 0.99 0.99 0.86 0.69 0.69 0.89 0.92 0.84 0.04 0.92 氯氰菊酯 cypermethrin 1.00 0.99 0.99 0.84 0.70 0.65 0.92 0.81 0.56 0.04 0.68 [1]
IKEURA H, HAMASAKI S, TAMAKI M. Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves[J]. Food Chem, 2013, 138(1): 366-371. doi: 10.1016/j.foodchem.2012.09.139
[2]ZHAO L W, GE J, LIU F M, et al. Effects of storage and processing on residue levels of chlorpyrifos in soybeans[J]. Food Chem, 2014, 150: 182-186. doi: 10.1016/j.foodchem.2013.10.124
[3]BONNECHERE A, HANOT V, JOLIE R, et al. Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach[J]. Food Control, 2012, 25(1): 397-406. doi: 10.1016/j.foodcont.2011.11.010
[4]HOLLAND P, HAMILTON D, OHLIN B, et al. Effects of storage and processing on pesticide residues in plant products[J]. Pure Appl Chem, 1994, 66(2): 335-356. doi: 10.1351/pac199466020335
[5]KAUSHIK G, SATYA S, NAIK S. Food processing a tool to pesticide residue dissipation: a review[J]. Food Res Int, 2009, 42(1): 26-40. doi: 10.1016/j.foodres.2008.09.009
[6]TIMME G, WALZ-TYLLA B. Effects of food preparation and processing on pesticide residues in commodities of plant origin[J]. Pestic Res Food Drink Water, 2004: 121-148.
[7]BERRADA H, FERNáNDEZ M, RUIZ M, et al. Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/05)[J]. Food Control, 2010, 21(1): 36-44. doi: 10.1016/j.foodcont.2009.03.011
[8]BOULAID M, AGUILERA A, CAMACHO F, et al. Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben, and tralomethrin residues in tomatoes[J]. J Agric Food Chem, 2005, 53(10): 4054-4058. doi: 10.1021/jf040455y
[9]BURCHAT C S, RIPLEY B D, LEISHMAN P D, et al. The distribution of nine pesticides between the juice and pulp of carrots and tomatoes after home processing[J]. Food Addit Contam, 1998, 15(1): 61-71. doi: 10.1080/02652039809374599
[10]RASMUSSSEN R R, POULSEN M E, HANSEN H C, et al. Distribution of multiple pesticide residues in apple segments after home processing[J]. Food Addit Contam, 2003, 20(11): 1044-1063. doi: 10.1080/02652030310001615221
[11]HUAN Z, XU Z, JIANG W, et al. Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing[J]. Food Chem, 2015, 170: 118-22. doi: 10.1016/j.foodchem.2014.08.052
[12]XU X M, CHEN J Y, LI B R, et al. Carbendazim residues in vegetables in China between 2014 and 2016 and a chronic carbendazim exposure risk assessment[J]. Food Control, 2018, 91: 20-25. doi: 10.1016/j.foodcont.2018.03.016
[13]LIANG Y, WANG W, SHEN Y, et al. Effects of home preparation on organophosphorus pesticide residues in raw cucumber[J]. Food Chem, 2012, 133(3): 636-640. doi: 10.1016/j.foodchem.2012.01.016
[14]BIAN Y, LIU F, CHEN F, et al. Storage stability of three organophosphorus pesticides on cucumber samples for analysis[J]. Food Chem, 2018, 250: 230-235. doi: 10.1016/j.foodchem.2018.01.008
[15] 农作物中农药残留试验准则: NY/T 788—2018[S]. 北京: 中华人民共和国农业农村部, 2018.Guideline for the testing of pesticide residues in crops: NY/T 788—2018[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2018.
相关知识
如何有效去除食物中的农药残留
加工贮藏方式对蔬菜中有机磷农药残留量的影响
如何去除蔬菜中的残留农药
农药残留的去除与预防
如何去除农药残留?
去除农药残留最好的方法
如何有效去除蔬菜中的农药残留
中药材上农药应用现状及其炮制加工过程对农药残留的影响
怎样去除果蔬农药残留
果蔬农药残留严重 5招去除农药残留
网址: 五种加工方式对黄瓜中10种农药残留的去除效果 https://www.huajiangbk.com/newsview1247838.html
上一篇: 带花的黄瓜用了激素?笔直的黄瓜打 |
下一篇: 一种腌制黄瓜的生产工艺的制作方法 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039