首页 分享 25个干辣椒品种色、香、味品质差异评价

25个干辣椒品种色、香、味品质差异评价

来源:花匠小妙招 时间:2024-12-15 05:36

摘要: 利用测色仪、电子鼻、电子舌等现代电子设备测定25个干鲜两用型辣椒品种辣椒粉的色泽、香气与滋味,并进行主成分分析、聚类分析与差异评价。结果表明:25个辣椒粉的L*在51.15~58.51之间,变异系数3.19%;a*在24.43~31.02之间,变异系数6.75%;b*在25.74~36.31之间,变异系数8.69%;色度角(H)在43.37~53.76之间,变异系数5.53%;饱和度(C)在36.98~45.98之间,变异系数6.39%;25个辣椒粉主要的香味差异表现在无机硫化物类(W1W)和有机硫化物类(W2W),主要的滋味差异表现在鲜味、苦味和咸味上;主成分分析将7个主要的性状综合为3个主成分,分别为气味因子、咸味因子和苦味因子,3个主成分因子包含了25个辣椒品种色、香、味性状的绝大部分信息,累计贡献率达86.31%以上;在欧式距离D=14.5处,将25份辣椒品种聚为4大类群,第Ⅰ类群的特点是a*最高,鲜味最强,香气最弱;第Ⅱ类群的特点是咸味最强,a*较高,鲜味、香气较强;第Ⅲ类群的特点是b*最高,a*最低,苦味、咸味最弱;第Ⅳ类群的特点是香气、苦味最强,而b*最低,鲜味最弱。本研究对辣椒感官品质电子评价体系的建立具有一定的指导意义。

关键词: 辣椒  /  色泽  /  电子鼻  /  电子舌  /  评价  

Abstract: The color, aroma and taste of chili pepper powder that was produced by 25 pepper varieties for both dry and fresh fruit production were measured with modern electronic equipment such as colorimeter, electronic nose, and electronic tongue. The principal component analysis, cluster analysis and difference evaluation were carried out. The results showed that: Analysis of the color of 25 peppers displayed that the L* of 25 chili powders was between 51.15~58.51, and the coefficient of variation was 3.19%. a* was between 24.43~31.02, and the coefficient of variation was 6.75%. b* was between 25.74~36.31, and the coefficient of variation was 8.69%. The chromaticity angle (H) was between 43.37~53.76, and the coefficient of variation was 5.53%. The saturation (C) was between 36.98~45.98, and the coefficient of variation was 6.39%. The main aroma difference of 25 chili powders was manifested in inorganic sulfide (W1W) and organic sulfur compounds(W2W). The main taste differences were expressed in umami, bitter and salty taste. The principal component analysis of the above evaluation indicators, the 7 main traits were combined into 3 main components-odor factor, salty factor and bitterness factor, and the 3 principal component factors contain most of the information on the color, aroma, and taste traits of 25 pepper varieties, and their cumulative contribution rate of over 86.31%. At the Euclidean distance D=14.5, 25 pepper varieties were gathered into 4 major groups, the first group’s characteristic was the highest a* and strongest umami taste, and weakest aroma. The second group featured the strongest salty taste, high a*, and strong umami and aroma. The third group was characterized by the highest b*, and the minimum a*, the weakest bitterness, and salty taste. The fourth group’s characteristic was the strongest aroma and bitterness, and the minimum b* and weakest umami. This study would have a certain guiding significance for the establishment of the electronic evaluation system of pepper sensory quality.

图  1   不同品种干辣椒粉电子鼻气味响应值雷达图

Figure  1.   Radar chart of electronic nose response value of different varieties of dried pepper powder

图  2   电子鼻10个传感器响应值的载荷分析

Figure  2.   Load analysis of response values of electronic nose’s 10 sensors

图  3   不同辣椒品种干辣椒粉味觉值雷达图

Figure  3.   Radar chart of taste value of different pepper varieties’ dried powder

图  4   25个辣椒品种色、香、味聚类分析图

Figure  4.   Cluster analysis of color, aroma and taste of 25 pepper varieties

表  1   25份辣椒品种基本信息

Table  1   Basic information of 25 pepper varieties

序号统一编号品种名称来源果实特征 1P117CG09湖南省农科院指形,果实向上,老熟果红色,散生2P3博辣红帅牛角形,果实向下,老熟果红色,散生3P7博辣8号线形,果实向下,老熟果红色,散生4P1317CG11指形,果实向上,老熟果橘红色,散生5P1717CG5指形,果实向上,老熟果红色,散生6P21博辣15号线形,果实向下,老熟果红色,散生7P22博辣新红秀线形,果实向下,老熟果红色,散生8P2717CG10指形,果实向上,老熟果红色,散生9P2817CG2羊角形,果实向上,老熟果红色,散生10P2艳椒465重庆市农科院指形,果实向上,老熟果红色,散生11P6艳椒11号线形,果实向下,老熟果红色,散生12P9艳椒506指形,果实向上,老熟果红色,散生13P11艳椒425指形,果实向上,老熟果红色,散生14P12红泰664指形,果实向上,老熟果红色,散生15P19艳椒502锥形,果实向上,老熟果红色,散生16P20艳椒435指形,果实向上,老熟果红色,散生17P26艳椒508锥形,果实向上,老熟果红色,散生18P29红泰668指形,果实向上,老熟果红色,散生19P4CT117云南省农科院长指形,果实向上,老熟果红色,散生20P515-41羊角形,果实向上,老熟果红色,散生21P10艳红CK长指形,果实向上,老熟果红色,散生22P15红天湖101CK羊角形,果实向上,老熟果红色,散生23P23辣研101贵州省农科院辣椒研究所指形,果实向上,老熟果红色,散生24P30辣研102指形,果实向上,老熟果红色,簇生25P8辣研301线形,果实向上,老熟果红色,散生

表  2   不同辣椒品种色泽统计

Table  2   Statistics of color of different peppers

编号L*a*b*HC P155.47 ± 0.04230.59 ± 0.02833.64 ± 0.02147.71 ± 0.04445.46 ± 0.003P254.36 ± 0.19829.52 ± 0.26231.97 ± 0.48147.29 ± 0.17643.51 ± 0.531P351.15 ± 0.16327.70 ± 0.01426.17 ± 0.00743.37 ± 0.02238.10 ± 0.005P453.38 ± 0.35430.48 ± 0.14131.56 ± 0.14146.00 ± 0.00543.88 ± 0.200P552.77 ± 0.03526.37 ± 0.15628.03 ± 0.02846.75 ± 0.14038.48 ± 0.127P652.29 ± 0.09928.23 ± 0.25527.76 ± 0.08544.52 ± 0.17139.59 ± 0.241P752.71 ± 0.14126.90 ± 0.26227.82 ± 0.04245.97 ± 0.23538.70 ± 0.212P852.60 ± 0.07129.50 ± 0.15029.76 ± 0.02145.25 ± 0.16541.90 ± 0.089P954.04 ± 0.02830.69 ± 0.21931.52 ± 0.01445.77 ± 0.19243.99 ± 0.163P1052.05 ± 0.05729.43 ± 0.08529.49 ± 0.09945.06 ± 0.01441.66 ± 0.130P1153.90 ± 0.29030.74 ± 0.11331.92 ± 0.14946.07 ± 0.23944.31 ± 0.028P1254.90 ± 0.58031.02 ± 0.14933.95 ± 0.55947.58 ± 0.60645.98 ± 0.312P1358.51 ± 0.58026.62 ± 0.64436.31 ± 0.12053.76 ± 0.57045.02 ± 0.477P1555.06 ± 0.10624.43 ± 0.21231.55 ± 0.08552.25 ± 0.31539.90 ± 0.063P1753.97 ± 0.58725.42 ± 0.18429.56 ± 0.99742.29 ± 0.75138.98 ± 0.876P1957.02 ± 0.37526.44 ± 0.19134.21 ± 0.43152.30 ± 0.55043.23 ± 0.225P2052.28 ± 0.79227.60 ± 0.01427.99 ± 0.96245.39 ± 0.97039.31 ± 0.695P2154.28 ± 0.37525.83 ± 0.09229.70 ± 0.38948.99 ± 0.47339.35 ± 0.233P2252.92 ± 0.09929.79 ± 0.09930.76 ± 0.19845.92 ± 0.08942.82 ± 0.211P2353.09 ± 0.2926.57 ± 0.12027.84 ± 0.41746.34 ± 0.55838.48 ± 0.219P2655.78 ± 0.16328.07 ± 0.09933.06 ± 0.41749.66 ± 0.25743.37 ± 0.382P2753.35 ± 0.07827.44 ± 0.10629.66 ± 0.12747.23 ± 0.23340.40 ± 0.021P2852.67 ± 0.33929.13 ± 0.07829.73 ± 0.33245.58 ± 0.39741.62 ± 0.183P2955.03 ± 0.10629.68 ± 0.16332.85 ± 0.21947.90 ± 0.34644.27 ± 0.054P3051.48 ± 0.04226.55 ± 0.03525.74 ± 0.04244.12 ± 0.08536.98 ± 0.004平均值53.8028.1930.5047.241.57标准差1.721.902.652.612.65变异系数V(%)3.196.758.695.536.39

表  3   干辣椒粉滋味的主成分分析

Table  3   Main component analysis of the taste of dried chili powder

性状第一主成分第二主成分第三主成分第四主成分 苦味0.5305040.6070280.5605050.189517涩味−0.026713−0.4361250.2011770.876704鲜味−0.6134060.654169−0.2510870.364350咸味−0.584453−0.1156480.763097−0.250446特征值1.5200691.3424640.3807900.088302贡献率(%)45.6340.2911.432.65累计贡献率(%)45.6385.9297.35100.00

表  4   干辣椒粉主要感官品质的主成分分析

Table  4   Principal component analysis of main sensory quality of dried pepper powder

性状第一主成分第二主成分第三主成分第四主成分第五主成分第六主成分第七主成分 a*0.416960.024220.40458−0.549560.59774−0.043060.02642b*0.35198−0.47012−0.288170.303310.290230.626870.05344R7−0.518930.073020.073120.22380.48549−0.009490.65891R9−0.520450.017790.231490.071290.322610.28739−0.69533苦味−0.10978−0.442420.70951−0.04691−0.419890.254970.21282鲜味0.375940.22970.428850.737220.10362−0.23723−0.10713咸味0.093360.724060.08378−0.07154−0.177870.633410.14847特征值3.245681.688131.107790.433090.342210.163080.02001贡献率(%)46.3724.1215.836.194.892.330.29累计贡献率(%)46.3770.4886.3192.5097.3899.71100.00

表  5   不同类型色、香、味差异统计

Table  5   Statistics of different types of color, fragrance and taste

类型材料数量a*b*R7R9苦味鲜味咸味 第Ⅰ类型110.8340.5790.1790.2140.5520.8130.463第Ⅱ类型100.4140.2540.5940.5020.3500.6670.621第Ⅲ类型30.2120.7840.4670.3640.2840.4070.119第Ⅳ类型10.3210.0001.0001.0001.0000.0000.243

表  6   干辣椒粉色、香、味品质性状综合评价

Table  6   Comprehensive evaluation of color, aroma and taste quality of dried pepper powder

编号主成分因子分值综合得分F排名F1F2F3 P33.310.870.581.841P72.930.651.061.682P122.950.310.981.63P92.750.230.921.474P222.570.131.341.435P42.480.190.861.336P22.540.210.581.327P282.350.191.131.318P62.120.610.861.279P52.140.690.631.2610 [1] 龙章榆. 第5届贵州·遵义国际辣椒博览会开幕[EB/OL].http://gz.people.com.cn/n2/2020/0818/c222152-34234711.html, 2020-08-18/2020-10-8. [2] 巩雪峰, 陈鑫, 赵黎明, 等. 109份辣椒种质资源果实品质的分析与评估[J]. 长江蔬菜,2019,18:54−58. [3] 蓬桂华, 张爱民, 苏丹, 等. 93份贵州地方辣椒资源品质性状分析[J]. 植物遗传资源学报,2017,18(3):429−435. [4] 王雪雅, 陆宽, 孙小静, 等. 贵州不同辣椒品种的品质及挥发性成分分析[J]. 食品科学,2018,39(4):212−218. doi: 10.7506/spkx1002-6630-201804032 [5]

Gruber R, Fontil L, Bergmame L, et al. Bioactive characteristics and antioxidant activities of nine peppers[J]. Journal of Functional Foods,2012,4(1):331−338. doi: 10.1016/j.jff.2012.01.001

[6] 张建, 杨瑞东, 陈蓉, 等. 贵州遵义辣椒矿质元素含量与其品质相关性分析[J]. 食品科学,2018,39(10):215−221. doi: 10.7506/spkx1002-6630-201810033 [7] 贡慧, 杨震, 刘梦, 等. 秋刀鱼热加工后挥发性风味成分变化的分析[J]. 肉类研究,2017,31(1):25−31. doi: 10.7506/rlyj1001-8123-201701005 [8]

Hayashi N, Chen R, Ikezaki H, et al. Evaluation of the umami taste intensity of green tea by a taste sensor[J]. Journal of Agricultural & Food Chemistry,2008,56(16):7384−7387.

[9]

Wang L, Niu Q, Hui Y, et al. Discrimination of rice with different pretreatment methods by using a voltammetric electronic tongue[J]. Sensors,2015,15(7):17787−17785.

[10]

Apetrei I M, Apetrei C. Application of voltammetric E-tongue for the detection of ammonia and putrescine in beef products[J]. Sensorsand Actuators B: Chemical,2016,234:371−379. doi: 10.1016/j.snb.2016.05.005

[11]

Benjamin O, Gamrashi D. Electronic tongue as an objective Evaluation method for taste profile of pomegranate juice in comparison with sensory panel and chemical analysis[J]. Food analytical methods,2015,9(6):1726−1735.

[12]

Escriche I, Kadar M, Domenech E, et al. A potentiometric electronic tongue por the discrimination of honey according to the botanical origin. Comparison with traditional methodologies: Physicochemical parameters and volatile profile[J]. Journal of Food Engineering,2012,109(3):449−456. doi: 10.1016/j.jfoodeng.2011.10.036

[13]

Souayah F, Rodrigues N, Veloso A C A, et al. Discrimination of olive oil by cultivar, geographical origin and quality using potentiometric electronic tongue fingerprints[J]. Journal of the American Oil Chemists’ Society,2017,94(12):1417−1429. doi: 10.1007/s11746-017-3051-6

[14]

Rudnitskaya A, Rocha S M, Legin A, et al. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of madeira wine[J]. Analytica Chimica Acta,2010,662(1):82−89. doi: 10.1016/j.aca.2009.12.042

[15]

Rudnitskaya A, Schmidtke L, Reis A, et al. Measurements of the effects of wine maceration with oak chips using an electronic tongue[J]. Food Chemistry,2017,229:20−27. doi: 10.1016/j.foodchem.2017.02.013

[16]

Apetrei I M, Apetrei C D. Detection of virgin oil adulteration using avoltammetric E-tongue[J]. Computers and Electronics in Agriculture,2014,108:148−154. doi: 10.1016/j.compag.2014.08.002

[17]

Liu D, Li S, Wang N, et al. Evolution of taste compounds of Dwzhou-braised chicken during cooking evaluated by Chemical analysis and an electronic tongue sytem[J]. Journal of Food Science,2017,82(5):1076−1082. doi: 10.1111/1750-3841.13693

[18] 黎量, 杨诗龙, 胥敏, 等. 基于电子鼻、电子舌技术的山楂气、味鉴别[J]. 中国实验方剂学杂志,2015,21(5):99−102. [19] 王利群, 戴雄泽. 色差计在辣椒果实色泽变化检测中的应用[J]. 辣椒杂志,2009(3):23−26. doi: 10.3969/j.issn.1672-4542.2009.03.009 [20] 蓬桂华, 张爱民, 殷勇, 等. 应用电子鼻分析60Co-γ辐照对干辣椒整体气味的影响[J]. 辣椒杂志,2019(4):6−10. doi: 10.3969/j.issn.1672-4542.2019.04.002 [21] 苏美玲, 周之珞, 林林, 等. 不同套袋对三红蜜柚果皮色泽及果实品质的影响试验[J]. 农业研究与应用,2019,32(2):9−12. [22] 汪琳, 应铁进. 番茄果实采后贮藏过程中的颜色动力学模型及其应用[J]. 农业工程学报,2001,17(3):118−121. doi: 10.3321/j.issn:1002-6819.2001.03.028 [23] 李锡香, 张宝玺. 辣椒种质资源描述规范和数据标准.[M]北京: 中国农业出版社, 2006: 20-21. [24] 崔桂娟, 亢灵涛, 侯宇豪, 等. 基于主成分与聚类分析的辣椒品质综合评价[J]. 食品工业科技,2019,40(14):49−55. [25] 李全辉, 邵登魁, 李江, 等. 辣椒果实类胡萝卜素生物合成研究进展[J]. 植物遗传资源学报,2019,20(2):239−248. [26] 李智, 初众, 姚晶, 等. 海南产不同等级香草兰豆挥发性成分分析[J]. 食品科学,2015,38(18):97−102. doi: 10.7506/spkx1002-6630-201518018 [27] 李颖慧, 王辉, 杨延杰, 等. 应用电子鼻评价加工型辣椒果实辣度的方法[J]. 中国调味品,2018,43(12):146−150. doi: 10.3969/j.issn.1000-9973.2018.12.028 [28] 张玉玉, 黄明泉, 陈海涛. 7种面酱的电子鼻和电子舌辨别分析[J]. 中国食品学报,2012,12(1):198−205. doi: 10.3969/j.issn.1009-7848.2012.01.030 [29] 刘辉. 石柱主栽辣椒品种的干制及油制加工适性研究[D]. 重庆: 西南大学, 2011.

相关知识

最新品质好的草莓品种介绍
切花月季品种综合评价筛选及其配套栽培技术研究
用于制备香辣木棉花花蕊的加工方法
无公害干辣椒栽培技术
惠州市丰香草莓苗种植示范基地
不同地区铁皮石斛的品质差异研究
食用菊品种的筛选评价.doc
食用花卉色,香,味俱全 吃出营养和健康
求助什么品种的桂花最香
茶树花茯砖茶品质研究

网址: 25个干辣椒品种色、香、味品质差异评价 https://www.huajiangbk.com/newsview1104079.html

所属分类:花卉
上一篇: 辣椒为雌雄同株的真相(解读辣椒花
下一篇: 辣椒

推荐分享