首页 分享 New advances in driving mechanisms of Allee effect in plant population in coastal wetland

New advances in driving mechanisms of Allee effect in plant population in coastal wetland

来源:花匠小妙招 时间:2024-12-09 17:31
[1]

Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management. Trends in Ecology & Evolution, 2007, 22(4): 185-191.

[2]

Courchamp F, Clutton-Brock T, Grenfell B. Inverse density dependence and the Allee effect. Trends in Ecology & Evolution, 1999, 14(10): 405-410.

[3]

Gascoigne J, Berec L, Gregory S, Courchamp F. Dangerously few liaisons: a review of mate-finding Allee effects. Population Ecology, 2009, 51(3): 355-372. DOI:10.1007/s10144-009-0146-4

[4]

Bonsall M B, Dooley C A, Kasparson A, Brereton T, Roy D B, Thomas J A. Allee effects and the spatial dynamics of a locally endangered butterfly, the high brown fritillary (Argynnis adippe). Ecological Applications, 2014, 24(1): 108-120. DOI:10.1890/13-0155.1

[5]

Berec L. Allee effects under climate change. Oikos, 2019, 128(7): 972-983. DOI:10.1111/oik.05941

[6]

Blackwood J C, Berec L, Yamanaka T, Epanchin-Niell R S, Hastings A, Liebhold A M. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1739): 2807-2815. DOI:10.1098/rspb.2012.0255

[7] [8] [9]

Costanza R, De Groot R, Sutton P, Van Der Ploeg S, Anderson S J, Kubiszewski I, Farber S, Turner R K. Changes in the global value of ecosystem services. Global Environmental Change, 2014, 26: 152-158. DOI:10.1016/j.gloenvcha.2014.04.002

[10]

Kelleway J J, Cavanaugh K, Rogers K, Feller I C, Ens E, Doughty C, Saintilan N. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 2017, 23(10): 3967-3983. DOI:10.1111/gcb.13727

[11]

Van Tussenbroek B I, Soissons L M, Bouma T J, Asmus R, Auby I, Brun F G, Cardoso P G, Desroy N, Fournier J, Ganthy F, Garmendia J M, Godet L, Grilo T F, Kadel P, Ondiviela B, Peralta G, Recio M, Valle M, Van Der Heide T, Van Katwijk M M. Pollen limitation may be a common Allee effect in marine hydrophilous plants: implications for decline and recovery in seagrasses. Oecologia, 2016, 182(2): 595-609. DOI:10.1007/s00442-016-3665-7

[12]

Davis H G, Taylor C M, Lambrinos J G, Strong D R S. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13804-13807. DOI:10.1073/pnas.0405230101

[13]

McCormick M K, Kettenring K M, Baron H M, Whigham D F. Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. Journal of Ecology, 2010, 98(6): 1369-1378. DOI:10.1111/j.1365-2745.2010.01712.x

[14]

Wittmann M J, Stuis H, Metzler D. Genetic Allee effects and their interaction with ecological Allee effects. Journal of Animal Ecology, 2018, 87(1): 11-23. DOI:10.1111/1365-2656.12598

[15]

Fischer M, Matthies D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). American Journal of Botany, 1998, 85(6): 811-819. DOI:10.2307/2446416

[16]

Spielman D, Brook B W, Frankham R. Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15261-15264. DOI:10.1073/pnas.0403809101

[17]

Luque G M, Vayssade C, Facon B, Guillemaud T, Courchamp F, Fauvergue X. The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere, 2016, 7(7): e01413.

[18]

Ahlroth P, Alatalo R V, Holopainen A, Kumpulainen T, Suhonen J. Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia, 2003, 137(4): 617-620. DOI:10.1007/s00442-003-1344-y

[19]

Hufbauer R A, Rutschmann A, Serrate B, De Conchard H V, Facon B. Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. Journal of Evolutionary Biology, 2013, 26(8): 1691-1699. DOI:10.1111/jeb.12167

[20]

Moeller D A, Geber M A. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance. Evolution, 2005, 59(4): 786-799.

[21] [22]

Facon B, Hufbauer R A, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren J G, Estoup A. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Current Biology, 2011, 21(5): 424-427. DOI:10.1016/j.cub.2011.01.068

[23]

Rodger J G, van Kleunen M, Johnson S D, Campbell D. Pollinators, mates and Allee effects: the importance of self-pollination for fecundity in an invasive lily. Functional Ecology, 2013, 27(4): 1023-1033. DOI:10.1111/1365-2435.12093

[24]

Levin D A. Mating system shifts on the trailing edge. Annals of Botany, 2012, 109(3): 613-620. DOI:10.1093/aob/mcr159

[25]

Hall R J. Hybridization helps colonizers become conquerors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 9963-9964. DOI:10.1073/pnas.1611222113

[26]

Bouhours J, Mesgaran M B, Cousens R D, Lewis M A. Neutral hybridization can overcome a strong Allee effect by improving pollination quality. Theoretical Ecology, 2017, 10(3): 319-339. DOI:10.1007/s12080-017-0333-4

[27]

De Waal C, Anderson B, Ellis A G, Bartomeus I. Relative density and dispersion pattern of two southern African Asteraceae affect fecundity through heterospecific interference and mate availability, not pollinator visitation rate. Journal of Ecology, 2015, 103(2): 513-525. DOI:10.1111/1365-2745.12358

[28]

Fox C W, Reed D H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution, 2011, 65(1): 246-258. DOI:10.1111/j.1558-5646.2010.01108.x

[29]

Cheptou P O, Donohue K. Environment-dependent inbreeding depression: its ecological and evolutionary significance. New Phytologist, 2011, 189(2): 395-407. DOI:10.1111/j.1469-8137.2010.03541.x

[30]

Henry P Y, Pradel R, Jarne P. Environment-dependent inbreeding depression in a hermaphroditic freshwater snail. Journal of Evolutionary Biology, 2003, 16(6): 1211-1222. DOI:10.1046/j.1420-9101.2003.00629.x

[31] [32]

Gao L X, Tang S Q, Zhuge L Q, Nie M, Zhu Z, Li B, Yang J. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLoS One, 2012, 7(8): e43334. DOI:10.1371/journal.pone.0043334

[33]

Yu J B, Wang X H, Ning K, Li Y Z, Wu H F, Fu Y Q, Zhou D, Guan B, Lin Q X. Effects of salinity and water depth on germination of Phragmites australis in coastal wetland of the Yellow River Delta. Clean-Soil, Air, Water, 2012, 40(10): 1154-1158. DOI:10.1002/clen.201100743

[34]

Ramsey M, Vaughton G. Pollen quality limits seed set in Burchardia umbellata (Colchicaceae). American Journal of Botany, 2000, 87(6): 845-852. DOI:10.2307/2656892

[35]

Feinsinger P. Effects of plant species on each other's pollination: is community structure influenced?. Trends in Ecology & Evolution, 1987, 2(5): 123-126.

[36]

Shelton A O. Skewed sex ratios, pollen limitation, and reproductive failure in the dioecious seagrass Phyllospadix. Ecology, 2008, 89(11): 3020-3029. DOI:10.1890/07-1835.1

[37]

Reusch T B H. Floral neighbourhoods in the sea: how floral density, opportunity for outcrossing and population fragmentation affect seed set in Zostera marina. Journal of Ecology, 2003, 91(4): 610-615. DOI:10.1046/j.1365-2745.2003.00787.x

[38]

Cheptou P O, Avendaño V L G. Pollination processes and the Allee effect in highly fragmented populations: consequences for the mating system in urban environments. New Phytologist, 2006, 172(4): 774-783. DOI:10.1111/j.1469-8137.2006.01880.x

[39]

Lamont B B, Klinkhamer P G L, Witkowski E T F. Population fragmentation may reduce fertility to zero in Banksia goodii-a demonstration of the Allee effect. Oecologia, 1993, 94(3): 446-450. DOI:10.1007/BF00317122

[40]

Groom M J. Allee effects limit population viability of an annual plant. The American Naturalist, 1998, 151(6): 487-496. DOI:10.1086/286135

[41]

Thomsen M A, D'Antonio C M, Suttle K B, Sousa W P. Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecology Letters, 2006, 9(2): 160-170. DOI:10.1111/j.1461-0248.2005.00857.x

[42]

Eschtruth A K, Battles J J. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecological Monographs, 2009, 79(2): 265-280. DOI:10.1890/08-0221.1

[43]

Gray D K, Arnott S E. The interplay between environmental conditions and Allee effects during the recovery of stressed zooplankton communities. Ecological Applications, 2011, 21(7): 2652-2663. DOI:10.1890/10-2067.1

[44]

Cunningham S A. Depressed pollination in habitat fragments causes low fruit set. Proceedings of the Royal Society B: Biological Sciences, 2000, 267(1448): 1149-1152. DOI:10.1098/rspb.2000.1121

[45]

Balvanera P, Kremen C, Martínez-Ramos M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecological Applications, 2005, 15(1): 360-375. DOI:10.1890/03-5192

[46]

Harder L D, Aizen M A, Richards S A. The population ecology of male gametophytes: the link between pollination and seed production. Ecology Letters, 2016, 19(5): 497-509. DOI:10.1111/ele.12596

[47]

Totland Ø. Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Canadian Journal of Botany, 1993, 71(8): 1072-1079. DOI:10.1139/b93-124

[48]

Moeller D A. Facilitative interactions among plants via shared pollinators. Ecology, 2004, 85(12): 3289-3301. DOI:10.1890/03-0810

[49]

Bergamo P J, Streher N S, Traveset A, Wolowski M, Sazima M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecology Letters, 2020, 23(1): 129-139. DOI:10.1111/ele.13415

[50]

Mitchell R J, Flanagan R J, Brown B J, Waser N M, Karron J D. New frontiers in competition for pollination. Annals of Botany, 2009, 103(9): 1403-1413. DOI:10.1093/aob/mcp062

[51]

Ghazoul J. Pollen and seed dispersal among dispersed plants. Biological Reviews, 2005, 80(3): 413-443. DOI:10.1017/S1464793105006731

[52]

Feldman T S, Morris W F, Wilson W G. When can two plant species facilitate each other's pollination?. Oikos, 2004, 105(1): 197-207. DOI:10.1111/j.0030-1299.2004.12845.x

[53]

Schemske D W. Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology, 1981, 62(4): 946-954. DOI:10.2307/1936993

[54]

Johnson S D, Peter C I, Nilsson L A, Ågren J. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology, 2003, 84(11): 2919-2927. DOI:10.1890/02-0471

[55]

Laverty T M. Plant interactions for pollinator visits: a test of the magnet species effect. Oecologia, 1992, 89(4): 502-508. DOI:10.1007/BF00317156

[56] [57]

Gross C L, Mackay D A, Whalen M A. Aggregated flowering phenologies among three sympatric legumes-The degree of non-randomness and the effect of overlap on fruit set. Plant Ecology, 2000, 148(1): 13-21. DOI:10.1023/A:1009844303932

[58]

Smith-Ramírez C, Armesto J J, Figueroa J. Flowering, fruiting and seed germination in Chilean rain forest myrtaceae: ecological and phylogenetic constraints. Plant Ecology, 1998, 136(2): 119-131. DOI:10.1023/A:1009730810655

[59]

Callaway R M. Positive interactions among plants. The Botanical Review, 1995, 61(4): 306-349. DOI:10.1007/BF02912621

[60]

Tur C, Sáez A, Traveset A, Aizen M A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecology Letters, 2016, 19(5): 576-586. DOI:10.1111/ele.12594

[61]

Larson B M H, Barrett S C H. The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). Journal of Ecology, 1999, 87(3): 371-381. DOI:10.1046/j.1365-2745.1999.00362.x

[62]

Baker A M, Barrett S C H, Thompson J D. Variation of pollen limitation in the early flowering Mediterranean geophyte Narcissus assoanus (Amaryllidaceae). Oecologia, 2000, 124(4): 529-535. DOI:10.1007/s004420000417

[63]

Fritz A L, Nilsson L A. How pollinator-mediated mating varies with population size in plants. Oecologia, 1994, 100(4): 451-462. DOI:10.1007/BF00317867

[64]

Ward M, Johnson S D, Zalucki M P. When bigger is not better: intraspecific competition for pollination increases with population size in invasive milkweeds. Oecologia, 2013, 171(4): 883-891. DOI:10.1007/s00442-012-2463-0

[65]

Essenberg C J. Explaining variation in the effect of floral density on pollinator visitation. The American Naturalist, 2012, 180(2): 153-166. DOI:10.1086/666610

[66]

Wirth L R, Waser N M, Graf R, Gugerli F, Landergott U, Erhardt A, Linder H P, Holderegger R. Effects of floral neighborhood on seed set and degree of outbreeding in a high-alpine cushion plant. Oecologia, 2011, 167(2): 427-434. DOI:10.1007/s00442-011-1985-1

[67]

Palladini J D, Maron J L. Indirect competition for pollinators is weak compared to direct resource competition: pollination and performance in the face of an invader. Oecologia, 2013, 172(4): 1061-1069. DOI:10.1007/s00442-012-2556-9

[68]

Larson D L, Royer R A, Royer M R. Insect visitation and pollen deposition in an invaded prairie plant community. Biological Conservation, 2006, 130(1): 148-159. DOI:10.1016/j.biocon.2005.12.009

[69]

Davidson K E, Fowler M S, Skov M W, Forman D, Alison J, Botham M, Beaumont N, Griffin J N. Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species. Agriculture, Ecosystems & Environment, 2020, 291: 106760.

[70]

Fuentes J D, Chamecki M, Roulston T, Chen B C, Pratt K R. Air pollutants degrade floral scents and increase insect foraging times. Atmospheric Environment, 2016, 141: 361-374. DOI:10.1016/j.atmosenv.2016.07.002

[71]

Lu Q Q, Bai J H, Zhang G L, Zhao Q Q, Wu J J. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China. Physics and Chemistry of the Earth, Parts A/B/C, 2018, 104: 9-17. DOI:10.1016/j.pce.2018.04.001

[72]

Qi M, Sun T, Zhang H Y, Zhu M S, Yang W, Shao D D, Voinov A. Maintenance of salt barrens inhibited landward invasion of Spartina species in salt marshes. Ecosphere, 2017, 8(10): e01982. DOI:10.1002/ecs2.1982

[73] [74] [75] [76]

Yuan M L, Jiang C L, Weng X, Zhang M X. Influence of salinity gradient changes on phytoplankton growth caused by sluice construction in Yongjiang River estuary area. Water, 2020, 12(9): 2492. DOI:10.3390/w12092492

[77]

Herbert E R, Boon P, Burgin A J, Neubauer S C, Franklin R B, Ardón M, Hopfensperger K N, Lamers L P M, Gell P. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 2015, 6(10): 1-43.

[78] [79]

Forrest J R K, Chisholm S P M. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee. Ecology, 2017, 98(2): 359-369. DOI:10.1002/ecy.1655

[80]

Hegland S J, Nielsen A, Lázaro A, Bjerknes A L, Totland Ø. How does climate warming affect plant-pollinator interactions?. Ecology Letters, 2009, 12(2): 184-195. DOI:10.1111/j.1461-0248.2008.01269.x

[81]

Potts S G, Imperatriz-Fonseca V, Ngo H T, Aizen M A, Biesmeijer J C, Breeze T D, Dicks L V, Garibaldi L A, Hill R, Settele J, Vanbergen A J. Safeguarding pollinators and their values to human well-being. Nature, 2016, 540(7632): 220-229. DOI:10.1038/nature20588

[82]

Mu J P, Peng Y H, Xi X Q, Wu X W, Li G Y, Niklas K J, Sun S C. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 2015, 116(6): 899-906. DOI:10.1093/aob/mcv042

[83]

Takkis K, Tscheulin T, Tsalkatis P, Petanidou T. Climate change reduces nectar secretion in two common Mediterranean plants. AoB Plants, 2015, 7: plv111. DOI:10.1093/aobpla/plv111

[84]

Burkle L A, Runyon J B. The smell of environmental change: using floral scent to explain shifts in pollinator attraction. Applications in Plant Sciences, 2017, 5(6): 1600123. DOI:10.3732/apps.1600123

[85]

Schiestl F P. Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytologist, 2015, 206(2): 571-577. DOI:10.1111/nph.13243

[86] [87]

Koksal N, Kafkas E, Sadighazadi S, Kulahlioglu I. Floral fragrances of daffodil under salinity stress. Romanian Biotechnological Letters, 2015, 20(4): 10600-10610.

[88]

Gallagher M K, Campbell D R. Shifts in water availability mediate plant-pollinator interactions. New Phytologist, 2017, 215(2): 792-802. DOI:10.1111/nph.14602

[89]

Burkle L A, Runyon J B. Drought and leaf herbivory influence floral volatiles and pollinator attraction. Global Change Biology, 2016, 22(4): 1644-1654. DOI:10.1111/gcb.13149

[90]

Takkis K, Tscheulin T, Petanidou T. Differential effects of climate warming on the nectar secretion of early- and late-flowering mediterranean plants. Frontiers in Plant Science, 2018, 9: 874. DOI:10.3389/fpls.2018.00874

[91]

Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, De Groot S, Soole K, Langridge P. Early flowering as a drought escape mechanism in plants: how can it aid wheat production?. Frontiers in Plant Science, 2017, 8: 1950. DOI:10.3389/fpls.2017.01950

[92]

Biesmeijer J C, Roberts S P M, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers A P, Potts S G, Kleukers R, Thomas C D, Settele J, Kunin W E. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 2006, 313(5785): 351-354. DOI:10.1126/science.1127863

[93]

Kiers E T, Palmer T M, Ives A R, Bruno J F, Bronstein J L. Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 2010, 13(12): 1459-1474. DOI:10.1111/j.1461-0248.2010.01538.x

[94]

Lawson C R, Vindenes Y, Bailey L, Van De Pol M. Environmental variation and population responses to global change. Ecology Letters, 2015, 18(7): 724-736. DOI:10.1111/ele.12437

[95]

Sentis A, Binzer A, Boukal D S, Vasseur D. Temperature-size responses alter food chain persistence across environmental gradients. Ecology Letters, 2017, 20(7): 852-862. DOI:10.1111/ele.12779

[96]

Sentis A, Morisson J, Boukal D S. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics. Global Change Biology, 2015, 21(9): 3290-3298. DOI:10.1111/gcb.12931

[97]

Arnaud-Haond S, Teixeira S, Massa S I, Billot C, Saenger P, Coupland G, Duarte C M, Serrão E A. Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Molecular ecology, 2006, 15(12): 3515-3525. DOI:10.1111/j.1365-294X.2006.02997.x

[98]

Friess D A, Krauss K W, Horstman E M, Balke T, Bouma T J, Galli D, Webb E L. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 2012, 87(2): 346-366. DOI:10.1111/j.1469-185X.2011.00198.x

[99]

Feng Y, Sun T, Zhu M S, Qi M, Yang W, Shao D D. Salt marsh vegetation distribution patterns along groundwater table and salinity gradients in yellow river estuary under the influence of land reclamation. Ecological Indicators, 2018, 92: 82-90. DOI:10.1016/j.ecolind.2017.09.027

[100] [101] [102]

Traveset A, Castro-Urgal R, Rotllàn-Puig X, Lázaro A. Effects of habitat loss on the plant-flower visitor network structure of a dune community. Oikos, 2018, 127(1): 45-55. DOI:10.1111/oik.04154

[103]

Ferreira P A, Boscolo D, Viana B F. What do we know about the effects of landscape changes on plant-pollinator interaction networks?. Ecological Indicators, 2013, 31: 35-40. DOI:10.1016/j.ecolind.2012.07.025

[104]

Jauker F, Diekötter T, Schwarzbach F, Wolters V. Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 2009, 24(4): 547-555. DOI:10.1007/s10980-009-9331-2

[105] [106] [107]

Grosholz E. Ecological and evolutionary consequences of coastal invasions. Trends in Ecology & Evolution, 2002, 17(1): 22-27.

[108]

Fedriani J M, Wiegand T, Calvo G, Suárez-Esteban A, Jácome M, ywiec M, Delibes M. Unravelling conflicting density- and distance-dependent effects on plant reproduction using a spatially explicit approach. Journal of Ecology, 2015, 103(5): 1344-1353. DOI:10.1111/1365-2745.12454

[109]

Aizen M A, Harder L D. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology, 2007, 88(2): 271-281. DOI:10.1890/06-1017

[110]

Knight T M. Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia, 2003, 137(4): 557-563. DOI:10.1007/s00442-003-1371-8

[111]

Gascoigne J C, Lipcius R N. Allee effects driven by predation. Journal of Applied Ecology, 2004, 41(5): 801-810. DOI:10.1111/j.0021-8901.2004.00944.x

[112]

Aizen M A, Sabatino M, Tylianakis J M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 2012, 335(6075): 1486-1489. DOI:10.1126/science.1215320

[113]

Duncan D H, Nicotra A B, Wood J T, Cunningham S A. Plant isolation reduces outcross pollen receipt in a partially self-compatible herb. Journal of Ecology, 2004, 92(6): 977-985. DOI:10.1111/j.1365-2745.2004.00933.x

[114]

Sih A, Baltus M-S. Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology, 1987, 68(6): 1679-1690. DOI:10.2307/1939860

[115]

Sowig P. Effects of flowering plant's patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia, 1989, 78(4): 550-558. DOI:10.1007/BF00378747

[116]

Montero-Castaño A, Vilà M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. Journal of Ecology, 2012, 100(4): 884-893. DOI:10.1111/j.1365-2745.2012.01968.x

[117]

Wang J F, Shi J P, Wei J J. Predator-prey system with strong Allee effect in prey. Journal of Mathematical Biology, 2011, 62(3): 291-331. DOI:10.1007/s00285-010-0332-1

[118]

Wang M H, Kot M. Speeds of invasion in a model with strong or weak Allee effects. Mathematical Biosciences, 2001, 171(1): 83-97. DOI:10.1016/S0025-5564(01)00048-7

[119]

相关知识

Impact of Allee effects on metapopulations with habitat restoration
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
Interspecific pattern and competitive relationship of plant community in Yancheng coastal wetland
Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem
Research advances in plant community assembly mechanisms
Effects and mechanisms of biochar
Enhancement of Coastal Blue Carbon: Concepts, Techniques, and Future Suggestions
Effect, mechanisms and application of arbuscular mycorrhizal fungi for biological control of Fusarium oxysporum
Advances in coastal landscape ecology and its role in the construction of marine ecological civilization
Control of invasive plant Spartina alterniflora: Concept, technology and practice

网址: New advances in driving mechanisms of Allee effect in plant population in coastal wetland https://www.huajiangbk.com/newsview998156.html

所属分类:花卉
上一篇: 水蜜桃花与毛桃花图片对比:外观、
下一篇: 白兰花的盆栽种植方法

推荐分享