月季花瓣数量遗传分析
摘要: 以‘窄叶藤本月季花’(Rosa chinensis ‘Zhaiye Tengben Yuejihua’)ב月月粉’(R.chinensis ‘Old Blush’)杂交群体为材料,分析其花瓣数量的分离特点,对单瓣花与重瓣花的花芽分化过程进行观察,并对花瓣、雄蕊及瓣化雄蕊进行表皮细胞超微结构的观察。结果显示:杂交群体的花瓣数量分离明显,出现从5~54片的连续变异;花瓣数量、瓣化雄蕊数量、雌蕊数量的遗传模型为2MG-AD(2对加性-显性-上位性主基因控制),雄蕊数量的遗传模型为0MG(无主基因控制);月季重瓣花形成的原因为雄蕊瓣化,重瓣花形成的关键时期为雄蕊原基形成后期,可见到雄蕊瓣化为花瓣的现象;月季瓣化雄蕊的表皮细胞形态、褶皱程度介于单瓣花花瓣和重瓣花外轮花瓣之间。
关键词: 月季 / 重瓣性 / 雄蕊瓣化 / 遗传规律 / 形态解剖Abstract: The hybrid offspring of Rosa chinensis ‘Zhaiye Tengben Yuejihua’×R. chinensis ‘Old Blush’ were used as materials to elucidate the genetic basis of double-petaled flowers in roses. The segregation characteristics of petal number were analyzed. The anatomical observation of flower bud differentiation process of single flower and double flower were performed and the ultrastructure of epidermal cells in petal, stamen and petalized stamen of single flower and double flower were observed. Results showed that the number of petals in the hybrid population was significantly separated and ranged from five to 54. The genetic model of the number of petals, petalized stamens, and pistils was 2MG-AD (two pairs of additive-dominant-epistatic major gene control) and the genetic model of stamen number was 0MG (no major gene control). Double flowers in roses originated as stamens converting into petals. The key period of double flower formation was the late stage of stamen primordium when the stamens changed into petals. Epidermal cell morphology and fold degree of petalized stamens were between the petals of single flowers and the outer-wheel petals of double flowers.
[1]François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Sci Rep, 2018, 8(1):12912.
[2]Debener T, Mattiesch L. Construction of a genetic linkage map for roses using RAPD and AFLP markers[J]. Theor Appl Genet, 1999, 99(5):891-899.
[3]Crespel L, Chirollet M, Durel C, Zhang D, Meynet J, Gudin S. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers[J]. Theor Appl Genet, 2002, 105(8):1207-1214.
[4]Zhang L. Genetic linkage map in tetraploid and diploid rose[D]. Clemson:Clemson University, 2003.
[5]Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits[J]. Nat Plants, 2018, 4(7):473-484.
[6]Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, et al. In the name of the rose:a roadmap for rose research in the genome era[J]. Hortic Res-England, 2019, 6(1):65.
[7]Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, et al. Tinkering with the C-function:a molecular frame for the selection of double flowers in cultivated roses[J]. PLoS One, 2010, 5(2):e9288.
[8] 范天刚, 张钢, 田亚然, 李永红. 低温诱导切花月季过度重瓣化的形态学观察[J]. 东北林业大学学报, 2014(9):116-121.Fan TG, Zhang G, Tian YR, Li YH. Morphological observation of excessive petal Rosa hybrida induced by low temperature[J]. Journal of Northeast Forestry University, 2014(9):116-121.
[9]Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, et al. Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators[J]. Plant J, 2005, 43(5):724-744.
[10]Theißen G. Development of floral organ identity:stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1):75-85.
[11]Theißen G, Saedler H. Floral quartets[J]. Nature, 2001, 409(6819):469-471.
[12]Ma N, Chen W, Fan TG, Tian YR, Zhang S, et al. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)[J]. BMC Plant Biol, 2015, 15(1):237.
[13]Gattolin S, Cirilli M, Pacheco I,Ciacciulli A. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. Plant J, 2018, 96(2):358-371.
[14]Han Y, Tang AY, Wan HH, Zhang TX, Cheng TR, et al. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to tempe-rature fluctuations[J]. Front Plant Sci, 2018, 9:481.
[15]Rusanov K, Kovacheva N, Rusanova M, Linde M, Debeber T, Atanassov I. Genetic control of flower petal number in Rosa×damascena Mill f. trigintipetala[J]. Biotechnol Biotechnol Equip, 2019, 33(1):597-604.
[16]Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.
[17] 车代弟, 张晓莹, 张金柱, 杨涛, 张微微, 等. 蔷薇属植物数量性状位点定位的研究进展[J]. 园艺学报, 2016, 43(9):1765-1775.Cheng DD, Zhang XY, Zhang JZ, Yang T, Zhang WW, et al. A review of the quantitative trait loci in Rosa[J]. Acta Horticulturae Sinica, 2016, 43(9):1765-1775.
[18] 王国良. 中国古老月季[M]. 北京:科学出版社, 2015. [19]Tan JR, Wang J, Luo L, Yu C, Xu TL, et al. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity[J]. Sci Rep, 2017, 7(1):15437.
[20] 张佐双, 朱秀珍. 中国月季[M]. 北京:中国林业出版社, 2006. [21]Roberts AV. Encyclopeadia of Rose Science[M]. London:Elsevier, 2003.
[22]Li BL, Wu R. Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites[J]. Can J For Res, 1997, 73(10):3671-3675.
[23] 马杰, 徐婷婷, 苏江硕, 杨信程, 房伟民, 等. 菊花F1代舌状花耐寒性遗传变异与QTL定位[J]. 园艺学报, 2018, 45(4):717-724.Ma J, Xu TT, Su JS, Yang XC, Fang WM, et al. Genetic variation and QTL mapping for cold tolerance of ray florets in an F1 population of Chrysanthemum morifolium[J]. Acta Horticulturae Sinica, 2018, 45(4):717-724.
[24] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系[M]. 北京:科学出版社, 2003. [25] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6.Cao XW, Liu B, Zhang YM. SEA:a software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University, 2013, 36(6):1-6.
[26] 郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006. [27] 周利君, 于超, 常笑, 万会花, 罗乐, 等. 月季F1代群体表型性状变异分析[J]. 植物研究, 2019, 39(1):133-140.Zhou LJ, Yu C, Chang X, Wan HH, Luo L, et al. Variation analysis of phenotypic traits in F1 population of Rosa spp.[J]. Plant Research, 2019, 39(1):133-140.
[28] 周长军. 大豆有性杂交F2代产量性状的遗传力分析与遗传相关研究[J]. 黑龙江农业科学, 2006(6):14-16.Zhou CJ. Heritability analysis and genetic correlation of yield traits of sexual hybridization F2 generation in soybean[J]. Heilongjiang Agricultural Science, 2006(6):14-16.
[29] 张中伟, 杨海龙, 付俊, 谢文锦, 丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019(5):37-40.Zhang ZW, Yang HL, Fu J, Xie WJ, Feng G. Genetic analysis of main gene + polygene of maize kernel long character[J]. Crops, 2019(5):37-40.
[30] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3):365-384.Xie SF, Ji WQ, Zhang YY, Zhang JJ, Hu WG, et al. Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat[J]. Journal of Crops, 2020, 46(3):365-384.
[31]Debener T, Malek BV, Mattiesch L, Kaufmann H. Genetic and molecular analysis of important characters in roses[J]. Acta Hortic, 2001(547):45-49.
[32]Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genet Genomes, 2008, 4(1):11-23.
[33] 黄秀, 田代科, 张微微, 曾宋君, 莫海波. 荷花"重瓣化"的花器官形态发育比较观察[J]. 植物分类与资源学报, 2014, 36(3):303-309.Huang X, Tian DK, Zhang WW, Zeng SJ, Mo HB. Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera[J]. Plant Classification and Resources, 2014, 36(3):303-309.
[34]Zhang JJ, Zhu W. Comprehensive application of different methods of observation provides new insight into flower bud differentiation of double-flowered Paeonia lactiflora ‘Dafugui’[J]. HortScience, 2019, 54(1):28-37.
[35] 罗敏蓉. 蓝堇草属(毛茛科)花形态发生的扫描电子显微镜观察[J]. 广西植物, 2020, 40(11):1645-1652.Luo MR. Floral organogenesis in Leptopyrum (Ranunculaceae) with scanning electron microscopy[J]. Guangxi Plants, 2020, 40(11):1645-1652.
[36] 张丹丹, 王莹, 荀志丽, 李丽红, 陆海, 刘頔. 单、重瓣玉簪花器官分化和花形态学比较研究[J]. 电子显微学报, 2014, 33(3):271-277.Zhang DD, Wang Y, Xun ZL, Li LH, Lu H, Liu D. Comparative study on organ differentiation and flower morpho-logy of single and double Hosta[J]. Journal of Electron Microscopy, 2014, 33(3):271-277.
期刊类型引用(2)
其他类型引用(0)
相关知识
粉色系月季杂交后代花色性状遗传分析
牡丹花器官数量变异遗传调控网络方面取得进展
蝴蝶兰不同品种表型性状遗传多样性分析
大丽花花朵数量性状遗传变异及相关性分析
植物所在牡丹花器官数量变异遗传调控网络方面取得进展
单倍型解析中国月季基因组揭示重要观赏性状的遗传基础
牡丹花器官数量变异遗传调控网络研究取得新进展—论文—科学网
月季抗病资源及抗病遗传
牡丹花器官数量变异遗传调控网络研究取得新进展—新闻—科学网
植物所科研人员在牡丹花器官数量变异遗传调控网络方面取得新进展
网址: 月季花瓣数量遗传分析 https://www.huajiangbk.com/newsview728023.html
上一篇: 三国杀手游排位讲解 排位五问:花 |
下一篇: 蝴蝶兰绽放“美丽经济”(新春走基 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039