【VGG】简单应用
来源:
时间:2024-08-26 00:37
好的,以下是基于VGG的CIFAR-10图像分类代码,resize=32: ```python import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils import numpy as np # 超参数定义 batch_size = 128 num_classes = 10 epochs = 100 data_augmentation = True num_predictions = 20 # 数据加载和预处理 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) # VGG网络定义 model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) # 模型编译和训练 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) if not data_augmentation: print('Not using data augmentation.') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) else: print('Using real-time data augmentation.') datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=False) datagen.fit(x_train) model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=epochs, validation_data=(x_test, y_test), workers=4) # 模型评估 scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ``` 希望可以帮到你!
相关知识
深度学习简单网络VGG鲜花分类
基于深度学习和迁移学习的识花实践
基于深度学习的花卉识别研究
【深度学习图像识别课程】tensorflow迁移学习系列:VGG16花朵分类
flower花朵识别数据集
深度学习花朵识别系统的设计与实现
小型花架的应用
科技应用
论文:园林花境设计应用浅析
园林景观设计中生态技术应用
网址: 【VGG】简单应用 https://www.huajiangbk.com/newsview61599.html
上一篇: 花木分类榜 |
下一篇: 温室观花类盆花,依照花卉生活型分 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名