Recent advances in microbial catabolism of persistent organic pollutants
王婷, 尹华, 彭辉, 叶锦韶, 何宝燕, 秦华明, 张娜. 低浓度重金属对蜡状芽孢杆菌复合菌降解BDE209性能的影响. 环境科学, 2008, 29(7): 1967-1972. [46] Seigle-Murandi FM, Krivobok SMA, Steiman RL, Benoit-Guyod JLA, Thiault GA. Biphenyl oxide hydroxylation by cunninghamella echinulata. Journal of Agricultural and Food Chemistry, 1991, 39(2): 428-430. DOI:10.1021/jf00002a041 [47] Stapleton HM, Letcher RJ, Li J, Baker JE. Dietary accumulation and metabolism of polybrominated diphenyl ethers by juvenile carp (Cyprinus carpio). Environmental Toxicology and Chemistry, 2004, 23(8): 1939-1946. DOI:10.1897/03-462 [48] Robrock KR, Korytár P, Alvarez-Cohen L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environmental Science & Technology, 2008, 42(8): 2845-2852. DOI:10.1021/es0720917 [49] Shih YH, Chou HL, Peng YH. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge. Journal of Hazardous Materials, 2012, 213-214: 341-346. DOI:10.1016/j.jhazmat.2012.02.009 [50] Zlámalíková J, Stiborová H, Demnerová K, Macková M, Hajšlová J, Pulkrabová J. PBDEs bioremediation by microorganisms in wastewater sludges and sediments and monitoring of the toxicity. Journal of Biotechnology, 2007, 131(S2): S246-S247. DOI:10.1016/j.jbiotec.2007.07.446 [51] Nie HF, Cheng HX, Zhao CD, Liu YH, Yang K, Li K, Peng M, Liu F. Analysis of ecological risk and the content situation of polybrominated diphenyl ethers in sediments from northeast China River basin. Environmental Science, 2013, 34(10): 3825-3831. (in Chinese)
聂海峰, 成杭新, 赵传冬, 刘应汉, 杨柯, 李括, 彭敏, 刘飞. 中国东北主要河流沉积物中多溴二苯醚的含量状况及生态风险分析. 环境科学, 2013, 34(10): 3825-3831. [52] Nzila A. Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution, 2013, 178: 474-482. DOI:10.1016/j.envpol.2013.03.042 [53] Aislabie J, Davison AD, Boul HL, Franzmann PD, Jardine DR, Karuso P. Isolation of Terrabacter sp. strain DDE-1, which metabolizes 1, 1-dichloro-2, 2-bis(4-chlorophenyl) ethylene when induced with biphenyl. Applied and Environmental Microbiology, 1999, 65(12): 5607-5611. DOI:10.1128/AEM.65.12.5607-5611.1999 [54] Commandeur LCM, May RJ, Mokross H, Bedard DL, Reineke W, Govers HAJ, Parsons JR. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1:metabolites and enzymes. Biodegradation, 2004, 7(6): 435-443. DOI:10.1007/bf00115290 [55] Tillmann S, Strömpl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiology Ecology, 2005, 52(2): 207-217. DOI:10.1016/j.femsec.2004.11.014 [56] Rojas-Avelizapa NG, Rodríguez-Vázquez R, Enríquez-Villanueva F, Martínez-Cruz J, Poggi-Varaldo HM. Transformer oil degradation by an indigenous microflora isolated from a contaminated soil. Resources, Conservation and Recycling, 1999, 27(1/3): 15-26. DOI:10.1016/S0921-3449(98)00082-2 [57] Mizukami-Murata S, Sakakibara F, Fujita K, Fukuda M, Kuramata M, Takagi K. Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil. Chemosphere, 2016, 165: 173-182. DOI:10.1016/j.chemosphere.2016.08.127 [58] Yang XQ, Xue R, Shen C, Li SR, Gao C, Wang Q, Zhao XX. Genome sequence of Rhodococcus sp. strain R04, a polychlorinated-biphenyl biodegrader. Journal of Bacteriology, 2011, 193(18): 5032-5033. DOI:10.1128/JB.05635-11 [59] Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated dioxins. Chemosphere, 2008, 71(6): 1005-1018. DOI:10.1016/j.chemosphere.2007.10.039 [60] Field JA, Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 2008, 155(1): 1-12. DOI:10.1016/j.envpol.2007.10.016 [61] Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated benzenes. Biodegradation, 2008, 19(4): 463-480. DOI:10.1007/s10532-007-9155-1 [62] Grostern A, Edwards EA. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Applied and Environmental Microbiology, 2006, 72(1): 428-436. DOI:10.1128/AEM.72.1.428-436.2006 [63] Gao B, Liu WB, Jia LY, Xu L, Xie J. Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. Journal of Environmental Science and Health, Part B, 2011, 46(3): 257-263. DOI:10.1080/03601234.2011.540534 [64] Lou JL, Liu M, Gu JL, Liu QH, Zhao L, Ma YS, Wei DZ. Metagenomic sequencing reveals microbial gene catalogue of phosphinothricin-utilized soils in South China. Gene, 2019, 711: 143942. DOI:10.1016/j.gene.2019.143942 [65] Pu XC, Cutright TJ. Degradation of pentachlorophenol by pure and mixed cultures in two different soils. Environmental Science and Pollution Research-International, 2007, 14(4): 244-250. DOI:10.1065/espr2006.07.321 [66] Kamanavalli CM, Ninnekar HZ. Biodegradation of DDT by a Pseudomonas species. Current Microbiology, 2004, 48(1): 10-13. DOI:10.1007/s00284-003-4053-1 [67] Okeke BC, Siddique T, Arbestain MC, Frankenberger WT. Biodegradation of γ-hexachlorocyclohexane (Lindane) and α-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2548-2555. DOI:10.1021/jf011422a [68] Bashir S, Fischer A, Nijenhuis I, Richnow HH. Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp.. Environmental Science & Technology, 2013, 47(20): 11432-11439. DOI:10.1021/es402197s [69] Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M, Damborský J. Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology, 2005, 71(4): 2183-2185. DOI:10.1128/AEM.71.4.2183-2185.2005 [70] Kumar D, Kumar A, Sharma J. Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresources and Bioprocessing, 2016, 3(1): 53. DOI:10.1186/s40643-016-0130-8 [71] Kumar D. Biodegradation of γ-Hexachlorocyclohexane by Burkholderia sp. IPL04. Biocatalysis and Agricultural Biotechnology, 2018, 16: 331-339. DOI:10.1016/j.bcab.2018.09.001 [72] Mudziwapasi R, Mlambo SS, Chigu NL, Kuipa PK, Sanyika WT. Isolation and molecular characterization of bacteria from the gut of Eisenia fetida for biodegradation of 4, 4 DDT. Journal of Applied Biology & Biotechnology, 2016, 4(5): 41-47. DOI:10.7324/jabb.2016.40507 [73] Noguera-Solís CE, Huete-Pérez JA. Potencial de biodegradación de DDT y sus metabolitos en suelos agrícolas de Chinandega. Encuentro, 2008(81): 48-69. DOI:10.5377/encuentro.v0i81.3627 [74] Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, Holliger C, Van Der Meer JR, Lal R. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis:evidence for horizontal gene transfer. Journal of Bacteriology, 2004, 186(8): 2225-2235. DOI:10.1128/JB.186.8.2225-2235.2004 [75] Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E, Mussali-Galante P, Sánchez-Meza JC, Castrejón-Godínez ML, Dantán-González E, Trujillo-Vera MÁ, Ortiz-Hernández ML. Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. SpringerPlus, 2014, 3: 536, doi: 10.1186/2193-1801-3-536. [76] Gu LF, He J, Zhang MX, Wang Z, Wang R, Li SP. Identification and characterization of Brevunmdimonas sp. strain W-1 for degradation of DDT. Journal of Agro-Environment Science, 2007, 26(2): 568-571. (in Chinese)
顾立锋, 何健, 张明星, 王哲, 王融, 李顺鹏. DDT降解细菌W-1的分离鉴定及其降解特性研究. 农业环境科学学报, 2007, 26(2): 568-571. [77] Pan SY, Ma GH, Chang Y, Xu HZ, Ma YH. Study of microbes degradation of DDT in soil. Journal of Anhui Agricultural Sciences, 2013, 41(3): 1058-1060. (in Chinese)
潘淑颖, 马光辉, 常勇, 胥慧真, 马玉洪. 土壤中DDT的微生物修复研究. 安徽农业科学, 2013, 41(3): 1058-1060. [78] Manickam N, Mau M, Schlömann M. Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Applied Microbiology and Biotechnology, 2006, 69(5): 580-588. DOI:10.1007/s00253-005-0162-z [79] Gasc C, Richard JY, Peyret P. Genome sequence of Staphylococcus aureus strain HUK16, isolated from hexachlorocyclohexane-contaminated soil. Genome Announcements, 2016, 4(2): e00274-16. DOI:10.1128/genomeA.00274-16 [80] Pan X, Xu TH, Xu HY, Fang H, Yu YL. Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Science of the Total Environment, 2017, 592: 593-599. DOI:10.1016/j.scitotenv.2017.03.052 [81] Pan X, Lin DL, Zheng Y, Zhang Q, Yin YM, Cai L, Fang H, Yu YL. Biodegradation of DDT by Stenotrophomonas sp. DDT-1:characterization and genome functional analysis. Scientific Reports, 2016, 6: 21332. DOI:10.1038/srep21332 [82] Qu J, Xu Y, Ai GM, Liu Y, Liu ZP. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Journal of Environmental Management, 2015, 161: 350-357. DOI:10.1016/j.jenvman.2015.07.025 [83] Zhang ZZ, Hou ZW, Yang CY, Ma CQ, Tao F, Xu P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 2011, 102(5): 4111-4116. DOI:10.1016/j.biortech.2010.12.064 [84] Höckenreiner M, Neugebauer H, Elango L. Ex situ bioremediation method for the treatment of groundwater contaminated with PAHs. International Journal of Environmental Science and Technology, 2015, 12(1): 285-296. DOI:10.1007/s13762-013-0427-5 [85] Guo CL, Dang Z, Wong Y, Tam NF. Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. International Biodeterioration & Biodegradation, 2010, 64(6): 419-426. DOI:10.1016/j.ibiod.2010.04.008 [86] Bezza FA, Nkhalambayausi Chirwa EM. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 2016, 144: 635-644. DOI:10.1016/j.chemosphere.2015.08.027 [87] Trzesicka-Mlynarz D, Ward OP. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Canadian Journal of Microbiology, 1995, 41(6): 470-476. DOI:10.1139/m95-063 [88] Zhang J, Lin XG, Liu WW, Wang YM, Zeng J, Chen H. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. Journal of Environmental Sciences, 2012, 24(8): 1476-1482. DOI:10.1016/S1001-0742(11)60951-0 [89] Kim TJ, Lee EY, Kim YJ, Cho KS, Ryu HW. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World Journal of Microbiology and Biotechnology, 2003, 19(4): 411-417. DOI:10.1023/A:1023998719787 [90] Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G. Burkholderia fungorum DBT1:a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiology Letters, 2011, 319(1): 11-18. DOI:10.1111/j.1574-6968.2011.02259.x [91] Revathy T, Jayasri MA, Suthindhiran K. Biodegradation of PAHs by Burkholderia sp. VITRSB1 isolated from marine sediments. Scientifica, 2015, 2015: 867586. DOI:10.1155/2015/867586 [92] Brito EMS, De La Cruz Barrón M, Caretta CA, Goñi-Urriza M, Andrade LH, Cuevas-Rodríguez G, Malm O, Torres JPM, Simon M, Guyoneaud R. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Science of the Total Environment, 2015, 521-522: 1-10, doi: 10.1016/j.scitotenv.2015.02.098. [93] Thion C, Cébron A, Beguiristain T, Leyval C. PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. International Biodeterioration & Biodegradation, 2012, 68: 28-35. DOI:10.1016/j.ibiod.2011.10.012 [94] John RC, Okpokwasili GC. Crude oil-degradation and plasmid profile of nitrifying bacteria isolated from oil-impacted mangrove sediment in the Niger Delta of Nigeria. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6): 1020-1026. DOI:10.1007/s00128-012-0609-8 [95] Zafra G, Absalón ÁE, Cuevas MDC, Cortés-Espinosa DV. Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, & Soil Pollution, 2014, 225(2): 1826. DOI:10.1007/s11270-013-1826-4 [96] Chen QG, Li JJ, Liu M, Sun HL, Bao MT. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS One, 2017, 12(3): e0174445. DOI:10.1371/journal.pone.0174445 [97] Li XB, Sun YJ, Wang HQ, Ding AZ. Analysis of PAHs-degrading bacteria from contaminated soil at a coking plant. CIESC Journal, 2010, 61(2): 477-483. (in Chinese)
李晓斌, 孙寓姣, 王红旗, 丁爱中. 焦化厂污染土壤中多环芳烃降解菌群解析. 化工学报, 2010, 61(2): 477-483. [98] Yu SH, Ke L, Wong YS, Tam NFY. Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment International, 2005, 31(2): 149-154. DOI:10.1016/j.envint.2004.09.008 [99] Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technology, 2008, 99(7): 2637-2643. DOI:10.1016/j.biortech.2007.04.047 [100] Wang FK, Li C, Wang HJ, Chen WL, Huang QY. Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. International Biodeterioration & Biodegradation, 2016, 115: 286-292. DOI:10.1016/j.ibiod.2016.08.028 [101] Tiwari B, Manickam N, Kumari S, Tiwari A. Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp.. Bioresource Technology, 2016, 216: 1102-1105. DOI:10.1016/j.biortech.2016.06.047 [102] Dave BP, Ghevariya CM, Bhatt JK, Dudhagara DR, Rajpara RK. Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin - A microcosm approach. Marine Pollution Bulletin, 2014, 79(1/2): 123-129. DOI:10.1016/j.marpolbul.2013.12.027 [103] Cui ZS, Xu GS, Gao W, Li Q, Yang BJ, Yang GP, Zheng L. Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. International Biodeterioration & Biodegradation, 2014, 91: 45-51. DOI:10.1016/j.ibiod.2014.03.005 [104] Wang YF, Wu Y, Wu ZB, Tam NFY. Genotypic responses of bacterial community structure to a mixture of wastewater-borne PAHs and PBDEs in constructed mangrove microcosms. Journal of Hazardous Materials, 2015, 298: 91-101. DOI:10.1016/j.jhazmat.2015.05.003 [105] Marcos MS, Lozada M, Dionisi HM. Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic marine sediments. Letters in Applied Microbiology, 2009, 49(5): 602-608. DOI:10.1111/j.1472-765X.2009.02711.x [106] Vila J, Nieto JM, Mertens J, Springael D, Grifoll M. Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiology Ecology, 2010, 73(2): 349-362. DOI:10.1111/j.1574-6941.2010.00902.x [107] Master ER, Mohn WW. Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400. Applied and Environmental Microbiology, 2001, 67(6): 2669-2676. DOI:10.1128/AEM.67.6.2669-2676.2001 [108] Masai E, Sugiyama K, Iwashita N, Shimizu S, Hauschild JE, Hatta T, Kimbara K, Yano K, Fukuda M. The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1. Gene, 1997, 187(1): 141-149. DOI:10.1016/S0378-1119(96)00748-2 [109] Bedard DL, Haberl ML, May RJ, Brennan MJ. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Applied and Environmental Microbiology, 1987, 53(5): 1103-1112. DOI:10.1128/AEM.53.5.1103-1112.1987 [110] Bedard DL, Wagner RE, Brennan MJ, Haberl ML, Brown Jr JF. Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Applied and Environmental Microbiology, 1987, 53(5): 1094-1102. DOI:10.1128/AEM.53.5.1094-1102.1987 [111] Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 2003, 22(1/2): 161-187. DOI:10.1016/j.biotechadv.2003.08.011 [112] Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2/3): 175-185. DOI:10.1006/fgbi.1999.1150 [113] Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. Journal of Hazardous Materials, 2016, 318: 702-710. DOI:10.1016/j.jhazmat.2016.07.060 [114] Zhang SF, Hu Z, Wang H. Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. Environment International, 2019, 129: 308-319. DOI:10.1016/j.envint.2019.05.028 [115] Xu XH, Liu XM, Zhang L, Mu Y, Zhu XY, Fang JY, Li SP, Jiang JD. Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community. Journal of Hazardous Materials, 2018, 351: 240-249. DOI:10.1016/j.jhazmat.2018.03.002 [116] Yu K, Yi S, Li B, Guo F, Peng XX, Wang ZP, Wu Y, Alvarez-Cohen L, Zhang T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome, 2019, 7(1): 16. DOI:10.1186/s40168-019-0634-5 [117] Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW. Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2018, 2(6): 936-943. DOI:10.1038/s41559-018-0519-1 [118] Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nature Communications, 2018, 9(1): 4999. DOI:10.1038/s41467-018-07418-0 [119] Xu XH, Zarecki R, Medina S, Ofaim S, Liu XW, Chen C, Hu SL, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang JD, Freilich S. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. The ISME Journal, 2019, 13(2): 494-508. DOI:10.1038/s41396-018-0288-5 [120] O'Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell, 2015, 161(5): 971-987. DOI:10.1016/j.cell.2015.05.019 [121] Muller EEL, Faust K, Widder S, Herold M, Martínez Arbas S, Wilmes P. Using metabolic networks to resolve ecological properties of microbiomes. Current Opinion in Systems Biology, 2018, 8: 73-80. DOI:10.1016/j.coisb.2017.12.004 [122] Zomorrodi AR, Segrè D. Synthetic ecology of microbes: mathematical models and applications. Journal of Molecular Biology, 2016, 428(5): 837-861. DOI:10.1016/j.jmb.2015.10.019 [123] Veiga M, Kennes C. Parameters affecting performance and modeling of biofilters treating alkylbenzene-polluted air. Applied Microbiology and Biotechnology, 2001, 55(2): 254-258. DOI:10.1007/s002530000491 [124] Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. The ISME Journal, 2011, 5(2): 305-316. DOI:10.1038/ismej.2010.117 [125] Boschker HTS, Nold SC, Wellsbury P, Bos D, De Graaf W, Pel R, Parkes RJ, Cappenberg TE. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 1998, 392(6678): 801-805. DOI:10.1038/33900 [126] Chang KF, Fang GC, Chen JC, Wu YS. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environmental Pollution, 2006, 142(3): 388-396. DOI:10.1016/j.envpol.2005.09.025 [127] Rochman FF, Sheremet A, Tamas I, Saidi-Mehrabad A, Kim JJ, Dong XL, Sensen CW, Gieg LM, Dunfield PF. Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond. Frontiers in Microbiology, 2017, 8: 1845. DOI:10.3389/fmicb.2017.01845 [128] Leigh MB, Pellizari VH, Uhlík O, Sutka R, Rodrigues J, Ostrom NE, Zhou JZ, Tiedje JM. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). The ISME Journal, 2007, 1(2): 134-148. DOI:10.1038/ismej.2007.26 [129] Li JB, Luo CL, Zhang DY, Song MK, Cai XX, Jiang LF, Zhang G. Autochthonous bioaugmentation-modified bacterial diversity of phenanthrene degraders in PAH-contaminated wastewater as revealed by DNA-stable isotope probing. Environmental Science & Technology, 2018, 52(5): 2934-2944. DOI:10.1021/acs.est.7b05646 [130] Jiao S, Li QP, Zai XY, Gao XE, Wei GH, Chen WM. Complexity of bacterial communities within the rhizospheres of legumes drives phenanthrene degradation. Geoderma, 2019, 353: 1-10. DOI:10.1016/j.geoderma.2019.06.019 [131] Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome, 2018, 6(1): 53. DOI:10.1186/s40168-018-0432-5 [132] van den Berg H, Manuweera G, Konradsen F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria Journal, 2017, 16(1): 401. DOI:10.1186/s12936-017-2050-2 [133] UN Environment. Global mercury assessment 2018. UN Environment Programme, 2018. [134] Carravieri A, Bustamante P, Labadie P, Budzinski H, Chastel O, Cherel Y. Trace elements and persistent organic pollutants in chicks of 13 seabird species from Antarctica to the subtropics. Environment International, 2020, 134: 105225. DOI:10.1016/j.envint.2019.105225 [135] Fromant A, Carravieri A, Bustamante P, Labadie P, Budzinski H, Peluhet L, Churlaud C, Chastel O, Cherel Y. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Science of the Total Environment, 2016, 544: 754-764. DOI:10.1016/j.scitotenv.2015.11.114 [136] Eqani SAMAS, Cincinelli A, Mehmood A, Malik RN, Zhang G. Occurrence, bioaccumulation and risk assessment of dioxin-like PCBs along the Chenab river, Pakistan. Environmental Pollution, 2015, 206: 688-695. DOI:10.1016/j.envpol.2015.08.045 [137] Sharma BM, Bharat GK, Tayal S, Nizzetto L, Čupr P, Larssen T. Environment and human exposure to persistent organic pollutants (POPs) in India: a systematic review of recent and historical data. Environment International, 2014, 66: 48-64. DOI:10.1016/j.envint.2014.01.022 [138] Iqbal M, Breivik K, Syed JH, Malik RN, Li J, Zhang G, Jones KC. Emerging issue of e-waste in Pakistan: a review of status, research needs and data gaps. Environmental Pollution, 2015, 207: 308-318. DOI:10.1016/j.envpol.2015.09.002
相关知识
土壤修复与改良利用的生物技术研究进展.pdf 文档全文免费预览
土壤中微塑料对陆生植物的毒性及其降解机制研究进展
Research progress on remediation of pollutants in soil using plant
Recent Advances in Synthetic Chemical Inducers of Plant Immunity.,Frontiers in Plant Science
Application of aquatic plant
有机肥与化肥配施对果园土壤及果树影响的研究进展 Advances in Research on Effects of Combined Application of Organic Fertilizers and Chemical Fertilizers on Soil and Fruit Trees
Advances in the bioaugmentation
Effects of farmland management measures on soil organic carbon turnover and microorganisms
Prospect of microbial fertilizer in saline soil
Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid
网址: Recent advances in microbial catabolism of persistent organic pollutants https://www.huajiangbk.com/newsview533756.html
上一篇: 简单让你了解什么是生物降解 |
下一篇: 淀粉生物降解生产葡萄糖的研究 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039