臭氧胁迫对植物主要生理功能的影响
来源:
时间:2024-11-12 05:47
[1] Cao J L, Zhu J G, Zeng Q, Li C H. Research advance in the effect of elevated O3 on characteristics of photosynthesis. Journal of Biology, 2012, 29(1): 66-70.[2] Jin M H, Huang Y Z. Review of crops damaged and yield loss by ozone stress. Ecology and Environment, 2003, 12(4): 482-486.[3] Phillips D L, Johnson M G, Tingey D T, Storm M J. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms. Oecologia, 2009, 160(4): 827-837.[4] Environmental Protection Agency. Air quality criteria for ozone and related photochemical oxidants. Washington DC: US EPA, 2006.[5] Feister U, Warmbt W. Long-term measurements of surface ozone in the German Democratic Republic. Journal of Atmospheric Chemistry, 1987, 5(1): 1-21.[6] Feng Z Z, Zeng H Q, Wang X K, Zheng Q W, Feng Z W. Sensitivity of Metasequoia glyptostroboides to ozone stress. Photosynthetica, 2008, 46(3): 463-465.[7] Herman F, Smidt S, Loibl W, Bolhar-Nordenkampf H R. Evaluation of the ozone-related risk for Austrian forests // Omasa K, Nouchi I, Kok L J, eds. Plant Responses to Air Pollution and Global Change. Japan: Springer, 2005: 53-61.[8] Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2007.[9] Blasing T J. Recent Greenhouse Gas Concentrations. Oak Ridge National Laboratory: Carbon Dioxide Information Analysis Center. [2013-05-10]. http://cdiac.ornl.gov/pns/current_ghg.html.[10] Sandermann H, Wellburn A R, Heath R L. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments. Berlin: Springer Verlag, 1997.[11] Ashmore M R. Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 2005, 28(8): 949-964.[12] Löw M, Herbinger K, Nunn A J, Hberle K H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R. Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees-Structure and Function, 2006, 20(5): 539-548.[13] Ryang S Z, Woo S Y, Kwon S Y, Kim S H, Lee S H, Kim K N, Lee D K. Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica, 2009, 47(1): 19-25.[14] Wittig V E, Ainsworth E A, Long S P. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment, 2007, 30(9): 1150-1162.[15] Wittig V E, Ainsworth E A, Naidu S L, Karnosky D F, Long S P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 2009, 15(2): 396-424.[16] Zhang W W, Niu J F, Wang X K, Tian Y, Yao F F, Feng Z Z. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica, 2011, 49(1): 29-36.[17] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345.[18] Zhang W W, Zhao T H, Wang M Y, He X Y, Fu S L. Effects of elevated ozone concentration on Ginkgo biloba photosynthesis. Chinese Journal of Ecology, 2007, 26(5): 645-649.[19] Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H J, Overmyer K, Kangasjrvi J, Sandermann H, Langebartels C. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant, Cell & Environment, 2002, 25(6): 717-726.[20] Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 2003, 157(2): 213-228.[21] Wieser G, Matyssek R. Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytologist, 2007, 174(1): 7-9.[22] Watanabe M, Umemoto-Yamaguchi M, Koike T, Izuta T. Growth and photosynthetic response of Fagus crenata seedlings to ozone and/or elevated carbon dioxide. Landscape and Ecological Engineering, 2010, 6(2): 181-190.[23] Manninen S, Siivonen N, Timonen U, Huttunen S. Differences in ozone response between two Finnish wild strawberry populations. Environmental and Experimental Botany, 2003, 49(1): 29-39.[24] Paoletti E. Impact of ozone on Mediterranean forests: a review. Environmental Pollution, 2006, 144(2): 463-474.[25] Reiner S, Wiltshire J J J, Wright C J, Colls J J. The impact of ozone and drought on the water relations of ash trees (Fraxinus excelsior L.). Journal of Plant Physiology, 1996, 148(1/2): 166-171.[26] Silfver T, Häikiö E, Rousi M, Holopainen T, Oksanen E. Interactive effects of elevated ozone and springtime frost on growth and physiology of birch (Betula pendula) in field conditions. Trees - Structure and Function, 2008, 22(3): 291-301.[27] Kivimenp M, Selldén G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics. Environmental Pollution, 2005, 137(3): 466-475.[28] Huang S, Zhao T H, Jin D Y, Xu S. Photosynthetic physio-response of urban Quercus mongolica leaves to surface elevated ozone concentration. Journal of Liaoning Forestry Science & Technology, 2009, (5): 1-4, 34.[29] Einig W, Lauxmann U, Hauch B, Hampp R, Landolt W, Maurer S, Matyssek R. Ozone-induced accumulation of carbohydrates changes enzyme activities of carbohydrate metabolism in birch leaves. New Phytologist, 1997, 137(4): 673-680.[30] Zheng Y F, Hu C D, Wu R J, Zhao Z, Liu H J, Shi C H. Experiment with effects of increased surface ozone concentration upon winter wheat photosynthesis. Acta Ecologica Sinica, 2010, 30(4): 847-856.[31] Guidi L, Bongi G, Ciompi S, Soldatini G F. In Vicia faba leaves photoinhibition from ozone fumigation in light precedes a decrease in quantum yield of functional PSII centres. Journal of Plant Physiology, 1999, 154(2): 167-172.[32] Fiscus E L, Booker F L, Burkey K O. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant, Cell & Environment, 2005, 28(8): 997-1011.[33] Inclán R, Gimeno B S, Dizengremel P, Sanchez M. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environmental Pollution, 2005, 137(3): 517-524.[34] Ribas À, Peñuelas J, Elvira S, Gimeno B S. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution, 2005, 134(2): 291-300.[35] Bender J, Weigel H J, Wegner U, Jäger H J. Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development. Environmental Pollution, 1994, 84(1): 15-21.[36] Guo J P, Wang C Y, Bai Y M, Wen M, Huo Z G, Liu J G, Li L. Effects of ozone concentration changes in the atmosphere on physiological process and grain quality of winter wheat. Quarterly Journal of Applied Meteorology, 2001, 12(2): 255-256.[37] Jiang G M. Plant Ecophysiology. Beijing: Higher Education Press, 2004: 1-316.[38] Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. The Plant Cell, 2002, 14(Supplement): 185-205.[39] Adaros G, Weigel H J, Jäger H J. Growth and yield of spring rape and spring barley as affected by chronic ozone stress. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz, 1991, 98(5): 513-525.[40] Xu Y, Wang X L, An L Z. Effects of combined fumigation of ozone and hydrogen fluoride on morphology and physiology of wheat leaves. Acta Botanica Boreali-Occidentalia Sinica, 1994, 14(6): 64-69.[41] Zhuang M H, Chen S L, Li Y C, Guo Z W, Li Y, Yang Q P. Physiological responses of Oligostachyum lubricumto the elevated atmospheric ozone concentration. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1360-1366.[42] Yamaguchi M, Watanabe M, Matsuo N, Naba J, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T. Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of japanese beech (Fagus crenata) seedlings. Water, Air, & Soil Pollution: Focus, 2007, 7(1/3): 131-136.[43] Zhuang M H, Li Y C, Chen S L. Differences in O3 stress tolerance between Phyllostachys edulis and Oligostachyum lubricum. Chinese Journal of Ecology, 2011, 30(10): 2191-2196.[44] Wang X L, Guo Q X. The effects of ozone on respiration of the plants Fuchsia hybrida Voss. and Vicia faba L.. Chinese Journal of Environmental Science, 1990, 11(2): 31-33.[45] Liang J, Zeng Q, Zhu J G, Xie Z B, Liu G, Zhu C W, Cao J L, Tang H Y. Effects of O3- FACE (Ozone-free air control enrichment) on respiration enzymes of rice leaf. Chinese Agricultural Science Bulletin, 2010, 26(6): 260-264.[46] Wahid A, Ghazanfar A. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 2006, 163(7): 723-730.[47] Wilson D J, Patton S, Florova G, Hale V, Reynolds K A. The shikimic acid pathway and polyketide biosynthesis. Journal of Industrial Microbiology & Biotechnology, 1998, 20(5): 299-303.[48] Zhao T H, Jin D Y, Wang Y, Cao Y. Effects of phenolic compounds and antioxidant ability in soybean leaves under O3 stress. Scientia Agricultura Sinica, 2011, 44(4): 708-715.[49] Doubnerová V, Ryšlavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 2011, 180(4): 575-583.[50] Hatch M D, Slack C R, Bull T A. Light-induced changes in the content of some enzymes of the C4-dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis. Phytochemistry, 1969, 8(4): 697-706.[51] Gérant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P. Carbon metabolism enzyme activities and carbon partitioning in Pinus halepensis Mill, exposed to mild drought and ozone. Journal of Plant Physiology, 1996, 148(1/2): 142-147.[52] Fontaine V, Cabané M, Dizengremel P. Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress. Physiologia Plantarum, 2003, 117(4): 445-452.[53] Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C. Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Science, 1994, 99(2): 111-124.[54] Shi Y C, Liu W Q. Ascorbate oxidase in plants. Plant Physiology Communications, 2008, 44(1): 151-154.[55] Guo Y, Zhu J, Xu Z C, Zhang S C. Progress of ascorbic acid oxidase in plant science. Chinese Agricultural Science Bulletin, 2008, 24(3): 196-199.[56] Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45(1): 633-662.[57] Zhan Y L. Studies on glycolate oxidase activity in mulberry leaves from different varieties. Science of Sericulture, 2007, 33(1): 98-101.[58] Dong W X, Chen Z M. The effect of elevated ozone concentration on plants and insects. Acta Ecologica Sinica, 2006, 26(11): 3878-3884.[59] Booker F L, Miller J E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L.) Merr.] leaves following exposure to ozone. Journal of Experimental Botany, 1998, 49(324): 1191-1202.[60] Kangasjrvi J, Talvinen J, Utriainen M, Karjalainen R. Plant defence systems induced by ozone. Plant, Cell & Environment, 1994, 17(7): 783-794.[61] Jordan D N, Green T H, Chappelka A H, Lockaby B G, Meldahl R S, Gjerstad D H. Response of total tannins and phenolics in loblolly pine foliage exposed to ozone and acid rain. Journal of Chemical Ecology, 1991, 17(3): 505-513.[62] Booker F L, Anttonen S, Heagle A S. Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. New Phytologist, 1996, 132(3): 483-492.[63] Lavola A, Julkunen-Tiitto R, Pääkkönen E. Does ozone stress change the primary or secondary metabolites of birch (Betula pendula Roth.)? New Phytologist, 1994, 126(4): 637-642.[64] Lindroth R L, Kopper B J, Parsons W F J, Bockheim J G, Karnosky D F, Hendrey G R, Pregitzer K S, Isebrands J G, Sober J. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution, 2001, 115(3): 395-404.[65] Booker F L. Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant, Cell & Environment, 2000, 23(6): 573-583.[66] Rao M V, Lee H, Creelman R A, Mullet J E, Davis K R. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. The Plant Cell, 2000, 12(9): 1633-1646.[67] Sun J W, Zhao T H, Fu Y, Hu Y Y, Xu L, Zhao Y X, Shi Y. Effects of elevated O3 concentration on maize active oxygen species metabolism and antioxidative enzymes activities. Journal of Agro-Environment Science, 2008, 27(5): 1929-1934.[68] Zheng Y F, Hu C D, Wu R J, Liu R N, Zhao Z, Zhang J E. Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems. Environmental Science, 2010, 31(7): 1643-1651.[69] Jin M H, Feng Z W, Zhang F Z. Effects of ozone on membrane lipid peroxidation and antioxidant system of rice leaves. Chinese Journal of Environmental Science, 2000, 21(3): 1-5.[70] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 601-639.[71] Pasqualini S, Batini P, Ederli L, Porceddu A, Piccioni C, De Marchis F, Antonielli M. Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant, Cell & Environment, 2001, 24(2): 245-252.[72] Wu F F, Zheng Y F, Wu R J, Wang J Q. Concentration of O3 at the atmospheric surface affects the changes characters of antioxidant enzyme activities in Triticum aestivum. Acta Ecologica Sinica, 2011, 31(14): 4019-4026.[73] Kim Y H, Lim S, Han S H, Lee J C, Song W K, Bang J W, Kwon S Y, Lee H S, Kwak S S. Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiology and Biochemistry, 2007, 45(12): 908-914.[74] Gressel J, Galun E. Genetic controls of photooxidative tolerance // Foyer C H, Mullineaux P M, eds. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Boca Raton: CRC Press Inc., 1994.[75] Zhang W W, Zheng F X, Wang X K, Feng Z Z, Ouyang Z Y, Feng Z W. Effects of elevated ozone on rice (Oryza sativa L.) leaf lipid peroxidation and antioxidant system. Chinese Journal of Applied Ecology, 2008, 19(11): 2485-2489.[76] Zhang W W, Zheng F X, Wang X K, Feng Z Z, Ouyang Z Y. Effects of ozone on root activity, soluble protein content and antioxidant system in Oryza sativa roots. Chinese Journal of Plant Ecology, 2009, 33(3): 425-432.[77] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1): 83-116.[78] Calatayud A, Ramirez J W, Iglesias D J, Barreno E. Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum, 2002, 116(3): 308-316.[79] Yan K, Chen W, Zhang G Y, He X Y, Li X, Xu S. Effects of elevated CO2 and O3 on active oxygen metabolism of Quercus mongolica leaves. Chinese Journal of Applied Ecology, 2010, 21(3): 557-562.[80] Wang J L, Wang Y, Zhao T H, Cao Y, Liu Y L, Duan M. Effects of ozone on AsA-GSH cycle in soybean leaves. Acta Ecologica Sinica, 2011, 31(8): 2068-2075.[81] Tanaka K, Machida T, Sugimoto T. Ozone tolerance and glutathione reductase in tobacco cultivars. Agricultural and Biological Chemistry, 1990, 54(4): 1061-1062.[82] Calatayud A, Iglesias D J, Talón M, Barreno E. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry, 2003, 41(9): 839-845.[83] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, 53(372): 1331-1341.[84] Zheng Q W, Wang X K, Feng Z Z, Song W Z, Feng Z W. Ozone Effects on chlorophyll content and lipid peroxidation in the in situ leaves of winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(11): 2240-2244.[85] Ruan Y N, He X Y, Chen W, Xu S, Sun Y. Effects of elevated ozone on anti-oxidative system in plants. Chinese Journal of Ecology, 2008, 27(5): 829-834.[86] Zheng Q W, Wang X K, Xie J Q, Feng Z Z, Feng Z W, Ni X W, Ouyang Z Y. Effects of exogenous ascorbate acid on membrane protective system of in situ rice leaves under O3 stress. Acta Ecologica Sinica, 2006, 26(4): 1131-1137.[87] Ruan Y N, He X Y, Chen W, Chen Z J, Sun Y. Effects of elevated O3 concentration on anti-oxidative enzyme activities in Pinus tabulaeformis. Chinese Journal of Applied Ecology, 2009, 20(5): 1032-1037.[88] Bassin S, Volk M, Fuhrer J. Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environmental Pollution, 2007, 146(3): 678-691.[89] Huang Y Z, Zhong M, Sui L H, Wang W, Geng C M, Yin B H. Effects of ozone stress on visible injury symptom, nitrogen metabolism, and the contents of proline and glutathione in winter wheat leaves. Journal of Agro-Environment Science, 2012, 31(8): 1461-1466.[90] Gao J X, Zhang L B, Shu J M, Cao H F. Effects of ozone on plant metabolism. Rural Eco-Environment, 1996, 12(4): 42-46.[91] Heath R L. The biochemistry of ozone attack on the plasma membrane of plant cells // Saunders J, Kosak-Channing L, Conn E, eds. Recent Advances in Phytochemistry. Phytochemical Effects of Environmental Compounds. New York: Plenum Press, 1987: 29-54.[92] Lie G W, Xue L. Progress of cold-tolerance physiological study of Eucalyptus. Guangdong Agricultural Sciences, 2012, 39(5): 56-58, 64.[93] Li W B, Wang Y L, Li F, Liu J, Li X. Relationship between active oxygen and protective enzymes in Tamarix ramosissima under water stress. Journal of Xinjiang Agricultural University, 2007, 30(1): 30-34.[94] Redondo F J, de la Pea T C, Morcillo C N, Lucas M M, Pueyo J J. Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiology, 2009, 149(2): 1166-1178.[95] Pleijel H, Eriksen A B, Danielsson H, Bondesson N, Selldén G. Differential ozone sensitivity in an old and a modern Swedish wheat cultivar-grain yield and quality, leaf chlorophyll and stomatal conductance. Environmental and Experimental Botany, 2006, 56(1): 63-71.[96] Le Thiec D, Manninen S. Ozone and water deficit reduced growth of Aleppo pine seedlings. Plant Physiology and Biochemistry, 2003, 41(1): 55-63.[97] Thomas V F D, Braun S, Fluckiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies). Environmental Pollution, 2005, 137(3): 507-516.[98] Piikki K, Vorne V, Ojanperä K, Pleijel H. Impact of elevated O3 and CO2 exposure on potato (Solanum tuberosum L. cv. Bintje) tuber macronutrients (N, P, K, Mg, Ca). Agriculture, Ecosystems and Environment, 2007, 118(1/4): 55-64.[99] Fangmeier A, Grüters U, Hertstein U, Sandhage-Hofmann A, Vermehren B, Jäger H J. Effects of elevated CO2 nitrogen supply and tropospheric ozone on spring wheat. I. Growth and yield. Environmental Pollution, 1996, 91(3): 381-390.[100] Fangmeier A, De Temmerman L, Black C, Persson K, Vorne V. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy, 2002, 17(4): 353-368.[101] Inclán R, Gimeno B S, Peñuelas J, Gerant D, Quejido A. Carbon isotope composition, macronutrient concentrations, and carboxylating enzymes in relation to the growth of Pinus halepensis Mill. when subject to ozone stress. Water, Air, & Soil Pollution, 2011, 214(1/4): 587-598.[102] Zheng F X, Wang X K, Hou P Q, Zhang W W, Lu F, Ouyang Z Y. Influences of elevated ozone on growth and C, N, S allocations of rice. Acta Ecologica Sinica, 2011, 31(6): 1479-1486.[103] Drogoudi P D, Ashmore M R. 14C-allocation of flowering and deblossomed strawberry in response to elevated ozone. New Phytologist, 2001, 152(3): 455-461.[104] Chen J, Zeng Q, Zhu J G, Liu G, Xie Z B, Tang H Y, Kazhuhiko K. Interactive effects of elevated ozone and nitrogen on dry matter production, concentration and accumulation of nitrogen, phosphorus and potassium in winter wheat. Ecology and Environmental Sciences, 2011, 20(4): 616-622.[105] Temple P J, Riechers G H. Nitrogen allocation in ponderosa pine seedlings exposed to interacting ozone and drought stresses. New Phytologist, 1995, 130(1): 97-104.[106] Yonekura T, Yoshidome M, Watanabe M, Honda Y, Ogiwara I, Izuta T. Carry-over effects of ozone and water stress on leaf phenological characteristics and bud frost hardiness of Fagus crenata seedlings. Trees-Structure and Function, 2004, 18(5): 581-588.[107] Paoletti E, Ranieri A, Lauteri M. Moving toward effective ozone flux assessment. Environmental Pollution, 2008, 156(1): 16-19.[108] Miyazaki S, Fredricksen M, Hollis K C, Poroyko V, Shepley D, Galbraith D W, Long S P, Bohnert H J. Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Research, 2004, 90(1): 47-59.[109] Cho K, Shibato J, Kubo A, Kohno Y, Satoh K, Kikuchi S, Agrawal G K, Sarkar A, Rakwal R. Genome-wide mapping of the ozone-responsive transcriptomes in rice panicle and seed tissues reveals novel insight into their regulatory events. Biotechnology Letters, 2013, 35(4): 647-656.[110] Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P. Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant, Cell & Environment, 2001, 24(1): 123-131.[111] Dizengremel P, Le Thiec D, Hasenfratz-Sauder M P, Vaultier M N, Bagard M, Jolivet Y. Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biology, 2009, 11(Supplement 1): 35-42.[112] Short E F, North K A, Roberts M R, Hetherington A M, Shirras A D, McAinsh M R. A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis. The Plant Journal, 2012, 71(6): 948-961.[113] Yang L X, Wang Y L, Shi G Y, Wang Y X, Zhu J G, Kobayashi K, Lai S K. Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: A review. Chinese Journal of Applied Ecology, 2008, 19(4): 901-910.[114] Yao F F, Wang X K, Feng Z W, Ouyang Z Y. Research advances in simulation models of ozone impact on crops. Chinese Journal of Ecology, 2007, 26(4): 571-576.[115] Mathy P. The European open-top chambers programme: objectives and implementation // Assessment of Crop Loss from Air Pollutants. New York: Elsevier Applied Science, 1988: 505-513.[116] Massman W J, Musselman R C, Lefohn A S. A conceptual ozone dose-response model to develop a standard to protect vegetation. Atmospheric Environment, 2000, 34(5): 745-759.[117] Tong L, Feng Z W, Sudebilige, Wang Q, Geng C M, Lu F, Wang W, Yin B H, Wang X K. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat. Acta Ecologica Sinica, 2012, 32(9): 2890-2899.[118] Kobayashi K. Modeling and assessing the impact of ozone on rice growth and yield // Berglund R, ed. Tropospheric Ozone and the Environment. Pittsburgh: Air & Waste Management Association, 1992: 537-551.[119] Martin M J, Farage P K, Humphries S W, Long S P. Can the stomatal changes caused by acute ozone exposure be predicted by changes occurring in the mesophyll? A simplification for models of vegetation response to the global increase in tropospheric elevated ozone episodes. Functional Plant Biology, 2000, 27(3): 211-219.[120] Ewert F, Porter J R. Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration. Global Change Biology, 2000, 6(7): 735-750.[121] Woodbury P B, Beloin R M, Swaney D P, Gollands B E, Weinstein D A. Using the ECLPSS software environment to build a spatially explicit component-based model of ozone effects on forest ecosystems. Ecological Modelling, 2002, 150(3): 211-238.[122] Nussbaum S, Remund J, Rihm B, Mieglitz K, Gurtz J, Fuhrer J. High-resolution spatial analysis of stomatal ozone uptake in arable crops and pastures. Environment International, 2003, 29(2/3): 385-392.[123] Emberson L D, Ashmore M R, Cambridge H M, Simpson D, Tuovinen J P. Modelling stomatal ozone flux across Europe. Environmental Pollution, 2000, 109(3): 403-413.[1]曹际玲, 朱建国, 曾青, 李春华. 对流层臭氧浓度升高对植物光合特性影响的研究进展. 生物学杂志, 2012, 29(1): 66-70.[2] 金明红, 黄益宗. 臭氧污染胁迫对农作物生长与产量的影响. 生态环境, 2003, 12(4): 482-486.[18] 张巍巍, 赵天宏, 王美玉, 何兴元, 付士磊. 臭氧浓度升高对银杏光合作用的影响. 生态学杂志, 2007, 26(5): 645-649.[28] 黄爽, 赵天宏, 金东艳, 徐胜. 城市蒙古栎对近地层臭氧浓度升高的光合生理响应. 辽宁林业科技, 2009, (5): 1-4, 34.[30] 郑有飞, 胡程达, 吴荣军, 赵泽, 刘宏举, 石春红. 地表臭氧浓度增加对冬小麦光合作用的影响. 生态学报, 2010, 30(4): 847-856.[36] 郭建平, 王春乙, 白月明, 温民, 霍治国, 刘江歌, 李雷. 大气中臭氧浓度变化对冬小麦生理过程和籽粒品质的影响. 应用气象学报, 2001, 12(2): 255-256.[37] 蒋高明. 植物生理生态学. 北京市: 高等教育出版社, 2004: 1-316.[40] 徐云, 王勋陵, 安黎哲. 臭氧和氟化氢复合熏气对小麦叶片形态和生理机能的影响. 西北植物学报, 1994, 14(6): 64-69.[41] 庄明浩, 陈双林, 李迎春, 郭子武, 李应, 杨清平. 四季竹对大气臭氧浓度升高的生理响应. 西北植物学报, 2011, 31(7): 1360-1366.[43] 庄明浩, 李迎春, 陈双林. 毛竹和四季竹对臭氧胁迫的耐受力差异. 生态学杂志, 2011, 30(10): 2191-2196.[44] 王勋陵, 郭清霞. 臭氧对倒挂金钟和蚕豆呼吸作用的影响. 环境科学, 1990, 11(2): 31-33.[45] 梁晶, 曾青, 朱建国, 谢祖彬, 刘钢, 朱春梧, 曹际铃, 唐昊冶. 开放式臭氧浓度升高对水稻叶片呼吸作用相关酶的影响. 中国农学通报, 2010, 26(6): 260-264.[48] 赵天宏, 金东艳, 王岩, 曹莹. 臭氧胁迫对大豆酚类化合物含量和抗氧化能力的影响. 中国农业科学, 2011, 44(4): 708-715.[54] 石永春, 刘卫群. 植物中的抗坏血酸氧化酶. 植物生理学通讯, 2008, 44(1): 151-154.[55] 郭燕, 朱杰, 许自成, 张水成. 植物抗坏血酸氧化酶的研究进展. 中国农学通报, 2008, 24(3): 196-199.[57] 詹永乐. 桑叶中乙醇酸氧化酶活性的研究. 蚕业科学, 2007, 33(1): 98-101.[58] 董文霞, 陈宗懋. 大气臭氧浓度升高对植物及其昆虫的影响. 生态学报, 2006, 26(11): 3878-3884.[67] 孙加伟, 赵天宏, 付宇, 胡莹莹, 徐玲, 赵艺欣, 史奕. 臭氧浓度升高对玉米活性氧代谢及抗氧化酶活性的影响. 农业环境科学学报, 2008, 27(5): 1929-1934.[68] 郑有飞, 胡程达, 吴荣军, 刘瑞娜, 赵泽, 张金恩. 臭氧胁迫对冬小麦光合作用、膜脂过氧化和抗氧化系统的影响. 环境科学, 2010, 31(7): 1643-1651.[69] 金明红, 冯宗炜, 张福珠. 臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响. 环境科学, 2000, 21(3): 1-5.[72] 吴芳芳, 郑有飞, 吴荣军, 王锦旗. 近地层臭氧对小麦抗氧化酶活性变化动态的影响. 生态学报, 2011, 31(14): 4019-4026.[75] 张巍巍, 郑飞翔, 王效科, 冯兆忠, 欧阳志云, 冯宗炜. 大气臭氧浓度升高对水稻叶片膜脂过氧化及保护酶活性的影响. 应用生态学报, 2008, 19(11): 2485-2489.[76] 张巍巍, 郑飞翔, 王效科, 冯兆忠, 欧阳志云. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响. 植物生态学报, 2009, 33(3): 425-432.[79] 颜坤, 陈玮, 张国友, 何兴元, 李响, 徐胜. 高浓度二氧化碳和臭氧对蒙古栎叶片活性氧代谢的影响. 应用生态学报, 2010, 21(3): 557-562.[80] 王俊力, 王岩, 赵天宏, 曹莹, 刘玉莲, 段萌. 臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响. 生态学报, 2011, 31(8): 2068-2075.[84] 郑启伟, 王效科, 冯兆忠, 宋文质, 冯宗炜. 臭氧对原位条件下冬小麦叶片光合色素、脂质过氧化的影响. 西北植物学报, 2005, 25(11): 2240-2244.[85] 阮亚男, 何兴元, 陈玮, 徐胜, 孙雨. 臭氧浓度升高对植物抗氧化系统的影响. 生态学杂志, 2008, 27(5): 829-834.[86] 郑启伟, 王效科, 谢居清, 冯兆忠, 冯宗炜, 倪雄伟, 欧阳志云. 外源抗坏血酸对臭氧胁迫下水稻叶片膜保护系统的影响. 生态学报, 2006, 26(4): 1131-1137.[87] 阮亚男, 何兴元, 陈玮, 陈振举, 孙雨. 臭氧浓度升高对油松抗氧化系统活性的影响. 应用生态学报, 2009, 20(5): 1032-1037.[89] 黄益宗, 钟敏, 隋立华, 王玮, 耿春梅, 殷宝辉. O3污染胁迫下冬小麦的伤害症状及其对叶片氮代谢脯氨酸和谷胱甘肽含量的影响. 农业环境科学学报, 2012, 31(8): 1461-1466.[90] 高吉喜, 张林波, 舒俭民, 曹洪法. 臭氧对植物新陈代谢的影响. 农村生态环境, 1996, 12(4): 42-46.[92] 列淦文, 薛立. 桉树抗寒生理研究进展. 广东农业科学, 2012, 39(5): 56-58, 64.[93] 李文兵, 王燕凌, 李芳, 刘君, 李霞. 水分胁迫下多枝柽柳体内活性氧与保护酶的关系. 新疆农业大学学报, 2007, 30(1): 30-34.[102]郑飞翔, 王效科, 侯培强, 张巍巍, 逯非, 欧阳志云. 臭氧胁迫对水稻生长以及C、N、S元素分配的影响. 生态学报, 2011, 31(6): 1479-1486.[104] 陈娟, 曾青, 朱建国, 刘钢, 谢祖彬, 唐昊冶, 小林和彦. 臭氧和氮肥交互对小麦干物质生产、N、P、K含量及累积量的影响. 生态环境学报, 2011, 20(4): 616-622.[113] 杨连新, 王余龙, 石广跃, 王云霞, 朱建国, Kobayashi K, 赖上坤. 近地层高臭氧浓度对水稻生长发育影响研究进展. 应用生态学报, 2008, 19(4): 901-910.[114] 姚芳芳, 王效科, 冯宗炜, 欧阳志云. 臭氧对农作物影响的模型. 生态学杂志, 2007, 26(4): 571-576.[117] 佟磊, 冯宗炜, 苏德·毕力格, 王琼, 耿春梅, 逯非, 王玮, 殷宝辉, 王效科. 冬小麦气孔臭氧通量拟合及通量产量关系的比较分析. 生态学报, 2012, 32(9): 2890-2899.
相关知识
环境污染胁迫对植物的影响
盐胁迫对不同盐敏感性向日葵幼苗生长和生理特性的影响
花对植物主要起美化作用。 (判断对错)
植物中硫化氢的生理功能及其分子机理
人类的语言可以对植物产生的影响
Current Biology | 花色素沉积快速响应全球臭氧和温度变化
土壤消毒技术臭氧消毒
[花卉保鲜]20110225花卉保鲜学水份平衡生理.pdf 全文免费在线看
高温胁迫对植物生长的影响
花铃期干旱胁迫影响棉花花粉育性的生理机制研究
网址: 臭氧胁迫对植物主要生理功能的影响 https://www.huajiangbk.com/newsview503627.html
上一篇: 家里不要种花了,要种就种这些果树 |
下一篇: 2013年12月04日寅时出海打 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名