梅花不同花色品种及开花阶段类黄酮代谢物测定与分析
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】梅花(Prunus mume Sieb. et Zucc.)是蔷薇科(Rosaceae)李属(Prunus)的观赏性植物,原产我国南方,距今已有3000多年的栽培历史[1]。花色作为梅花的重要观赏性状,具有十分重要的观赏价值和商业价值[2]。梅花花色主要有白、黄、绿、粉红、深红等颜色,且伴随着梅花品种进化而逐渐丰富[3]。类黄酮是梅花花瓣中的主要色素,研究梅花类黄酮化合物可为梅花花色形成机理研究以及梅花类黄酮资源开发提供参考。【前人研究进展】在2004年以前,梅花研究多集中于梅花耐寒性引种驯化,而梅花花色相关研究几乎空白[4]。之后,赵昶灵等[4]首次报道了典型花色梅花花瓣中的色素种类及含量,其中红色梅花的红色色素为矢车菊素、芍药色素类,而白色梅花的色素则为黄色或者无色的黄酮类及其苷。梅花花色根据花青素有无分为红、白两大类。另外,梅花‘粉皮宫粉’的粉红色花色色素为花青素-3-糖苷(3-glycoside),梅花‘南京红’花瓣中的3种主要花色苷为cyanidin 3-O-(6″-O-α- rhamnopyranosyl-β-glucopyranoside)、cyanidin 3-O- (6″-O-galloyl-β-glucopyranoside)和cyanidin 3-O-(6″-O- E-feruloyl-β-glucopyranoside)[5]。张芹[6]对41个梅花品种花瓣中的花青素苷进行了定性定量分析,但并没有对其他的类黄酮化合物进行研究。郑毓珍等[7]为探究梅花的抗氧化活性用HPLC法同时测定了白梅花(绿萼梅)中芦丁、金丝桃苷、异槲皮苷、槲皮素、山柰酚、异鼠李素等成分。但在其他梅花品种中,这些类黄酮化合物目前还没有深入研究。类黄酮是苯丙素类中的一类次级代谢物,涉及颜色范围最广,从淡黄色到蓝色[8]。类黄酮代谢物包括查尔酮、二氢黄酮、黄酮、类黄酮和花青素等[9]。其中,花青素苷是使花朵呈色的重要色素之一,通过诱导植物组织中的红色到蓝色色素沉淀,帮助植物吸引传粉者和种子传播者,同时在提高植物抗逆性方面发挥着重要作用[10]。黄酮醇是一种淡黄色或无色的化合物,它不仅是花青素的共色素,还能吸收紫外线保护花瓣和吸引授粉昆虫[8]。此外,类黄酮化合物还有潜在的药用价值,调查表明,摄入类黄酮可以降低各种非传染性疾病的发病率,部分类黄酮在体内外也表现出较强的抗氧化特性,以及抗糖尿病、抗肥胖、抗炎性、抗癌和抗菌活性[11-12]。现代药理学研究揭示了梅的多种生物活性和生物活性机制,包括抗糖尿病[13-14]、抗肿瘤[15]、抗炎[16]和抗生素[17]活性。有研究表明,绿萼梅类黄酮成分具有清除自由基、抑制醛糖还原酶和抗血小板凝集的作用[18],并且总黄酮能改善大鼠抑郁行为[19-20]。梅花提取物的药用价值是近年来的研究热门,但其有效成分及作用机制有待进一步研究证实[21⇓-23]。【本研究切入点】目前,梅花花色的研究主要集中在花青素,而作为重要的辅助呈色色素,黄酮和黄酮醇化合物在梅花中还没有被系统鉴定,梅花类黄酮化合物资源还有待开发。另外,花青素与黄酮/黄酮醇化合物在梅花呈色过程中如何相互作用也尚未见研究。【拟解决的关键问题】本研究选择花色不同的4个梅花品种,包括‘白须朱砂’‘虎丘晚粉’‘变绿萼’‘三轮玉蝶’。利用高效液相色谱质谱联用技术对梅花花瓣中类黄酮化合物的成分及含量进行检测,对梅花花瓣类黄酮化合物资源进行探索;另外,以纯白色的‘三轮玉蝶’为对照,讨论类黄酮成分与不同花色表型的关系。通过表型观测确定‘白须朱砂’和‘变绿萼’开花过程中花色变化的主要阶段,比较不同开花阶段的花色表型差异以及类黄酮物质组成差异,并进一步分析主要影响梅花花色变化的类黄酮成分。
1 材料与方法
试验于2020年在华中农业大学园艺林学学院进行。
1.1 植物材料
试验所用梅花品种(
图1)来自中国梅花研究中心(武汉),包括宫粉品种群的‘虎丘晚粉’(粉红色,HQWF),绿萼品种群的‘变绿萼’(黄绿色,BLE),朱砂品种群的‘白须朱砂’(深红色,BXZS),玉蝶品种群‘三轮玉蝶’(白色,SLYD)。
Fig. 1 Flower color of P. mume
A: Flower color of four P. mume cultivars at Blooming stage. B, C: Flower color of different developmental stages of P. mume Bian Lv’e and Baixu Zhusha. S1: Flower budding stage; S2: Early flowering stage; S3: Blooming stage. BXZS: Baixu Zhusha; HQWF: Huqiu Wanfen; SLYD: Sanlun Yudie; BLE: Bian Lv’e. The same as belowFull size|PPT slide
于梅花花期的晴天早晨、露水刚干之际(上午约10:00开始),从花发育良好的中段枝条上采集‘白须朱砂’和‘变绿萼’3个花色发育阶段的梅花花瓣,立刻置液氮迅速冷冻并于-80℃保存。其中,大蕾期(S1)特征为花蕾松动但花瓣未展开;初花期(S2)特征为部分花瓣稍微展开;盛花期(S3)特征为花瓣完全展开且充盈丰满[6]。‘虎丘晚粉’和‘三轮玉蝶’仅采集S3梅花花瓣。同时采集各品种对应时期鲜花用于花色表型分析,且各品种每个阶段设置3个重复。
1.2 试剂与仪器
色谱级甲醇、甲酸和乙腈等化学药品购自Fisher Scientific(Fair Lawn,NJ)公司。内标利多卡因购自梯希爱(上海)化成工业发展有限公司。试验用超纯水由Milli-Q AdvantageA10(美国Millipore公司)超纯水系统制备,本试验所用其他试剂均为色谱纯。
KQ5200DE型数控超声波清洗器(昆山市超声仪器有限公司),超纯水系统Milli-Q AdvantageA10(美国Millipore公司),离心机HSC-2015L(宁波新芝生物科技股份有限公司),Q-TOF液相色谱-质谱联用仪(美国Agilent公司),Eclipse Plus C18色谱柱(Thermo Hypersil Gold C18,100 mm×2.1 mm,1.9 μm,美国ThermoFisher公司),冷冻干燥机(上海比朗仪器制造有限公司),SCIENTZ-48高通量组织研磨器(宁波新芝生物科技股份有限公司)。
1.3 花色表型测定
首先,在光线良好的室内、避免阳光直射,分别取4个品种梅花各个时期具典型颜色特征的新鲜花朵2—3个,重瓣花按不同层拆分平置于白纸上,将梅花重瓣的中间层花瓣中上部分与英国皇家园艺学会比色卡(Royal Horticultural Society Color Chart,RHSCC)进行对比。重复10次,以出现频率最高的结果作为该品种的花色。
同时,采用CM-5分光测色计(KonicaMinolta,日本)对以上梅花花瓣材料测色,具体如下:取梅花重瓣的中间花瓣,并将花瓣的中间部分对准色差仪的集光孔,在D65光源10°对所选花瓣进行中点测量明度L*值、色相a*值与b*值。最后取平均值。L*值衡量的是花色的明暗程度指标,从100到0的变化过程体现了明度从白到黑的变化过程。红度a*值从-a*到+a*转变中体现了绿色减退,红色增强。黄度b*值从-b*到+b*变化过程中代表了蓝色减退,黄色增加。
1.4 样品制备
配制含2%甲酸的甲醇浸提剂,向浸提剂加入内标利多卡因0.2 mg∙L-1。电子天平称0.015—0.025 g样品后磨样。加浸提剂(0.1 g样加800 μL提取液),振荡混匀。超声清洗(KQ5200D型数控超声波清洗器,功率100%,30 min,期间加入冰块降温,使温度不超过25℃)。将样品放至4℃环境,静置24 h。离心(13 000 r/min,10 min)。上清液用0.22 μm微孔滤膜过滤,装于2 mL安捷伦上样小瓶中[24]。
1.5 高效液相色谱质谱联用条件
液相色谱质谱联用仪型号为快速高效色谱系统(1200 series Rapid Resolution HPLC system)连接QTOF 6520质谱仪(Agilent Technologies)。采用Eclipse Plus C18色谱柱(Thermo Hypersil Gold C18色谱柱,100 mm×2.1 mm,1.9 μm)分离样品中的代谢物。流动相A为含0.1%(v/v)甲酸的超纯水,流动相B为含0.1%甲酸的纯乙腈(色谱级,Thermofisher)。梯度洗脱程序如下:0 min,5% B;20 min,95% B;22.1 min,5% B;28 min,5% B。柱温为35℃,保持恒定。流速0.3 mL∙min-1。质谱分析条件如下:离子模式为全扫描电喷雾电离(either an electrospray ionization,ESI),采用正离子模式(ESI+)进行;干燥气体(drying gas nitrogen)为10 L∙min-1;气体温度(gas temperature)为350℃;雾化气压力(nebulizer pressure)为40 psi;毛细管电压(capillary voltage)为3.5 kV。破裂电压(fragmentor)为135 V;撇渣器(skimmer)为65 V;紫外DVD选用520、350和320 nm。采用MS/MS模式分析代谢物质的结构,碰撞能量(the collision energy)为10、20和30 ev[24]。
1.6 代谢物定性和定量分析
根据高效液相色谱质谱得到代谢物的m/z值和离子碎片模式与常用质谱数据库或已发表文献中的代谢物进行比对鉴定代谢物。质谱库有Mass Bank(http://www.massbank.jp/)和HMDB(https://hmdb.ca/metabolites/)[25]。以化合物矢车菊素3-O-葡萄糖苷(Cyanidin 3-O-glucoside)为例,具体说明通过质谱信息与质谱数据库对比鉴定代谢物过程。在‘白须朱砂’样品正离子模式扫描下的QTOF-MS/MS数据中提取一级碎片质谱图如
图2-B显示,主要碎片离子质荷比(m/z)为163.0392与287.0554。该物质可能是具有一个糖基(163.0392)修饰、母核为矢车菊素(287.0554)的类黄酮,因此推断该物质为矢车菊素-O-葡萄糖苷。另外由前人研究证明[26],梅花花瓣中含大量的矢车菊素3-O葡萄糖苷。同时,对比在HMDB数据库中矢车菊素3-O-葡萄糖苷在Positive下的二级碎片质谱图(
图2-C),发现本试验所得物质结构及碎片荷质比与网站的二级碎片荷质比高度吻合,因此鉴别该物质为矢车菊素3-O-葡萄糖苷。
Fig. 2 Cyanidin 3-O-glucoside LCMS chromatography mass spectrometry infographic in petals of P. mume
A: Total ion flow chromatogram of Cyanidin 3-O-glucoside in petals. B: Primary mass spectrum of Cyanidin 3-O-glucoside in petals. C-E: LC-MS/MS Spectrum of Cyanidin 3-O-glucoside in petals at collision energies of 10 ev, 20 ev and 30 evFull size|PPT slide
利用内标法计算代谢物的相对含量。浸提剂中加入0.2 mg∙L-1的利多卡因作为内标物混入样品中,然后对含有内标物的样品进行色谱分析,提取并测定利多卡因的峰面积和各个代谢物的峰面积,利用利多卡因和各个代谢物的峰面积比计算各代谢物的相对含量。
1.7 多元统计分析
使用IBM SPSS统计软件(版本22.0,芝加哥,IL,美国)对数据进行分析。所有试验均为3个重复。采用方差分析(One-Way ANOVA)结合Duncan多元方差分析(P<0.05)进行差异显著性分析,对4个梅花品种同一时期,以及‘白须朱砂’和‘变绿萼’3个开花时期颜色参数和花瓣色素含量进行比较。在R 4.0.4中采用皮尔逊相关性分析方法分析颜色参数与色素含量的关系。
代谢物数据采用log10变换进行统计分析,改善正态性,并进行归一化处理。利用Simca 14.1软件对样品的代谢物进行正交偏最小二乘判别分析(OPLS- DA),研究代谢物的积累特点。P值设为0.05并结合VIP≥1筛选差异代谢物。
2 结果
2.1 梅花花色表型观测
根据与英国皇家园艺学会比色卡比对结果,4个梅花品种S3时期花色可分为4个色系,‘白须朱砂’为红色系,‘虎丘晚粉’为紫红色系,‘三轮玉蝶’为白色系,‘变绿萼’为黄色系(
表1、
图1-A)。为了更加准确地评价梅花颜色,本研究利用色差仪测定了4个梅花品种S3时期花瓣的颜色参数L*、a*、b*值。如
表1所示,‘白须朱砂’和‘虎丘晚粉’的a*值较高且均为正,b*值较低且基本为负。‘变绿萼’和‘三轮玉蝶’的b*值较高且均为正,a*值较低且均为负。
表1 4个梅花品种的花色数据Table 1 Flower color parameters (L*, a*, b*) in four cultivars of P. mume
品种 Cultivar 时期 Period RHSCC L* a* b* 变绿萼Bian Lv’e S1 Yellow group 4B 62.37±2.20c -4.40±0.47f 16.59±0.79a S2 Yellow group 4D 67.35±3.14b -2.33±0.65e 11.71±2.96b S3 Yellow group 4D 67.63±3.06b -2.89±0.23ef 7.40±0.67c 白须朱砂
Baixu Zhusha S1 Red group 53A 13.77±2.39g 36.64±1.83a 3.89±0.71d S2 Red group 53C 37.38±4.88e 33.62±1.79b -3.71±0.66e S3 Red group 54A 26.67±4.30f 31.61±2.76c -3.92±0.93e 虎丘晚粉 Huqiu Wanfen S3 Red-purple group 62B 51.70±1.09d 20.48±0.60d -5.96±0.10f 三轮玉蝶 Sanlun Yudie S3 White group nn155C 74.86±1.51a -3.04±0.31ef 7.25±0.54c不同小写字母表示多重比较Duncan检验在P=0.05显著性水平下的差异显著。S1:大蕾期;S2:初花期;S3:盛花期。下同Different lowercase letters represent the different significant differences at P=0.05 level in Duncan’s test. S1: Flower budding stage; S2: Early flowering stage; S3: Blooming stage. The same as below
通过长期观察,本研究发现开花过程中梅花花色逐渐变浅且在大蕾期、初花期、盛花期花色变化较为明显,同时考虑梅花红色花色育种与黄绿色育种目标,因此选择深红色‘白须朱砂’与浅黄绿色的‘变绿萼’进行开花时期花色变化的研究。同样地,根据与英国皇家园艺学会比色卡比对结果,S1—S3时期,‘白须朱砂’花色分别为红色系的53A、53C和54A(
表1)。‘变绿萼’开花过程中,S1到S2时期花色从黄色系的4B变浅4D,S2到S3时期均为黄色系4D(
表1)。利用色差仪对‘白须朱砂’和‘变绿萼’S1—S3时期花瓣的颜色参数进行测定后发现,S1—S3时期,‘白须朱砂’a*值均为正且逐渐变小,‘变绿萼’b*值均为正且逐渐变小(
表1)。
2.2 梅花花瓣中类黄酮代谢物定性定量分析
色素分子的种类和含量是决定植物颜色的主要因素。黄酮类化合物属于酚类化合物,是在梅花中发现的主要色素分子。本研究基于LC-MS/MS对梅花花瓣中的黄酮类化合物进行了广泛的非靶向代谢物分析,利用离子峰精确的分子质量和碎片离子信息与质谱数据库比对,在梅花花瓣中共鉴定出25种黄酮类化合物(
表2),其中花青素类包括矢车菊素及其衍生物3种,芍药花素及其衍生物1种,黄酮醇类有槲皮素及其衍生物10种,山奈酚及其衍生物5种,此外还有芹菜苷、查尔酮、黄烷酮、苯丙素和反式肉桂酸(
表2)。
表2 4个梅花品种花瓣中主要黄酮类化合物的HPLC-ESI-MS分析Table 2 HPLC-ESI-MS analysis of main flavonoids in petals of four P. mume cultivars
化合物名称Compound name 正模式质荷比
[M+H]+(m/z) 正模式离子碎片质荷比
MS/MS (m/z) 保留时间
Rt (min) 矢车菊素3-O-葡萄糖苷
Cyanidin 3-O-glucoside 449.1071 10 ev: 287.0536 6.0 20 ev: 287.0537 30 ev: 287.0538 矢车菊素3-芸香糖苷
Cyanidin-3-rutinoside 595.1629 10 ev: 287.0551 6.2 20 ev: 287.0549 30 ev: 287.0550 矢车菊素3-芸香糖苷5-葡萄糖苷
Cyanidin 3-rutinoside 5-glucoside 757.2196 10 ev: 303.0409,755.2402 7.8 20 ev: 303.0416,755.2425 30 ev: 303.0430,755.2341 山奈素
Kaempferide; Kaempferol 4'-methyl ether 301.0524 30 ev: 72.0798,202.0611,286.0480 7.6 山奈酚-3-O葡萄糖苷
Kaempferol-3-O-glucoside 449.1071 10 ev: 287.0559 8.3 20 ev: 287.0559 30 ev: 287.0557 山奈酚
Kaempferol 287.0545 10 ev: 149.0202, 287.0547 5.3 20 ev: 137.0215, 231.0650, 287.0544 30 ev: 69.0002, 213.0538, 287.0542 山奈酚-3-O-芸香糖苷
Kaempferol-3-O-rutinoside 593.1539 30 ev: 285.0431 8.9 芍药花素-3-O-葡萄糖苷
Peonidin-3-O- glucoside 463.1195 10 ev: 301.0711 6.6 槲皮素
Quercetin 303.0499 10 ev: 153.01 8.5 20 ev: 229.05, 153.01 槲皮素异构体
Quercetin isomer 303.0486 10 ev: 303.0434 7.8 20 ev: 303.043, 301.0641, 286.0394 30 ev: 303.0454, 258.0450 槲皮素-3,7-双葡萄糖苷
Quercetin-3,7-diglucoside 627.1858 10 ev: 151.0314, 319.0741, 481.1279, 625.3231 7.5 20 ev: 151.0334, 319.0736, 463.1130, 625.3202 30 ev: 71.0443, 151.0331, 303.0426, 437.1963, 648.3270 槲皮素-3-O-芸香糖苷
Quercetin-3-O-rutinoside 611.1534 10 ev: 94.1824, 301.0704, 463.1231, 609.1819 6.3 20 ev: 205.3925, 301.0708, 463.1223, 609.1810 30 ev: 141.9134, 301.0709, 463.1199, 609.1809 异鼠李素
Isorhamnetin; Quercetin 3'-methyl ether 317.0656 10 ev: 301.03, 285.03, 153.01 8.9 20 ev: 301.03, 153.01 槲皮素-3-芸香糖苷-5-葡萄糖苷
Quercetin-3-rutinoside 5-glucoside 757.2196 10 ev: 85.0219, 303.0416, 465.1002, 611.1565 7.8 20 ev: 129.0483, 303.0445, 465.0944 30 ev: 85.0244, 303.0469 槲皮素3-O-葡萄糖苷-7-O鼠李糖苷
Quercetin 3-O-glucoside-7-O-rhamnoside 611.1606 10 ev: 303.0483, 465.1007 8.3 30 ev: 85.0625, 303.0484 槲皮素3-O-葡萄糖-2′-O-鼠李糖苷
Quercetin 3-O-glucosyl-2′-O-rhamnoside 611.1546 10 ev: 609.1796, 303.0475, 465.1001 7.8 20eV: 463.1212, 303.0477 30ev: 303.0678, 301.0678 槲皮素7-O-葡萄糖苷
Quercetin 7-O-glucoside 465.1087 10ev: 465.1363, 303.0662 14.5 20ev: 303.0560 30ev: 303.0497, 169.0475 槲皮素-3-O-半乳糖苷
Quercetin-3-O-galactoside 465.1025 10ev: 303.05, 85.02; 8.5 20ev: 303.05, 85.02 L-苯丙氨酸
L-Phenylalanine 166.0869 10ev: 120.0806 1.6 20ev: 120.0806 30ev: 103.0541 柚皮苷查尔酮
Naringenin chalcone 273.0756 10ev: 147.04; 11.0 20ev: 147.04, 119.04 柚皮素
Naringenin 273.0759 10ev: 273.0750, 147.0436 13.2 20ev: 147.0434, 67.0178 30ev: 147.0427 表儿茶素
(-)-Epicatechin 291.0853 10ev: 139.0390, 207.0639 5.5 20ev: 139.0386, 207.0621 30ev: 139.0389, 207.0641 反式肉桂酸
Trans-Cinnamic acid 149.0247 10ev: 121.02; 18.3 20ev: 65.03, 93.03 芹菜素 7-O-葡萄糖苷
Apigenin 7-O-glucoside 433.1135 10ev: 72.0768, 271.0599, 433.1102 6.1 20ev: 82.6298, 202.0812, 271.0597,334.1545, 433.1174 30ev: 70.0605, 213.1108, 271.0592, 381.7757 山奈酚-3-O-鼠李糖苷
Kaempferol-3-O-rhamnoside 609.1741 10ev: 145.4769, 301.0702, 463.1191, 609.1807 7.7 20ev: 92.4395, 203.3603, 301.0692, 463.1283, 609.1791 30ev: 186.6128, 301.0693, 411.0933, 514.2045, 609.1769
为探究不同花色梅花中色素含量分布特点,本研究采用内标法计算梅花花瓣中黄酮类物质的含量。由
表3可以发现,‘白须朱砂’和‘虎丘晚粉’花瓣中主要的类黄酮成分是矢车菊素及其衍生物,‘变绿萼’和‘三轮玉蝶’花瓣中主要的类黄酮成分是槲皮素及其衍生物。另外,矢车菊素及其衍生物总量在‘白须朱砂’中所占比例显著高于‘虎丘晚粉’,而芍药花素及其衍生物总量在‘白须朱砂’中所占比例低于‘虎丘晚粉’(
表3)。S3时期,‘变绿萼’中槲皮素及其衍生物所占比例高于‘三轮玉蝶’(
表3)。
表3 4个梅花品种花瓣中主要黄酮类化合物含量Table 3 Contents of flavonoids in the four P. mume cultivars (μg·g-1 DW)
化合物Compound 变绿萼 BLE 白须朱砂 BXZS 虎丘晚粉 HQWF 三轮玉蝶 SLYD S1 S2 S3 S1 S2 S3 S3 S3 矢车菊素及其衍生物
Cyanidin & der 23.19433±6.9111d 25.09807±6.8230d 24.49049±7.3049d 321.5764±29.0342a 269.4438±18.2802b 253.556±30.1520b 160.8748±31.0443c 13.17457±0.1746d 矢车菊素3-O-葡萄糖苷
Cyanidin 3-O-glucoside 0.249347±0.0548d 0.139457±0.0678d 0.274866±0.1378d 93.93701±12.6386a 74.49009±4.3347b 60.89043±6.2950b 46.79961±23.4663bc 0.521509±0.1627d 矢车菊素3-芸香糖苷
Cyanidin-3-rutinoside 0.642434±0.2695d 0.558807±0.1495d 0.910013±0.3881d 211.0013±15.3996a 179.0807±13.4858b 178.6813±22.4044b 96.79291±13.8961c 0.62395±0.1091d 矢车菊素3-芸香糖苷
5-葡萄糖苷
Cyanidin 3-rutinoside
5-glucoside 22.30255±6.5177ab 24.3998±6.6175a 23.30561±6.8268ab 16.63812±0.9968abc 15.87305±0.7590bc 13.98424±1.9486c 17.28227±3.0547abc 12.02911±0.6131c 山奈酚及其衍生物
Kaempferol & der 12.039843±3.536734c 16.111499±5.237862abc 21.224891±6.160233ab 22.048986±1.369479a 15.385608±0.495482bc 17.051458±2.376146abc 10.810202±3.056987c 1.908766±0.399028d 山奈素
Kaempferide; Kaempferol
4'-methyl ether 0.016243±0.0048d 0.009454±0.0056d 0.02076±0.0055d 1.855746±0.0448a 1.146767±0.0355b 1.052439±0.2283b 0.693246±0.3230c 0.173516±0.1425d 山奈酚-3-O-葡萄糖苷
Kaempferol-3-O-glucoside 0.015771±0.0070d 0.01793±0.0065d 0.012593±0.0076d 1.253472±0.2721a 0.708758±0.0147b 0.573263±0.0665b 0.315604±0.0796c 0.018661±0.0050d 山奈酚-3-O-鼠李糖苷
Kaempferol-3-O-
rhamnoside 0.009559±0.004562d 0.019423±0.020323d 0.038939±0.030278d 0.987042±0.022245a 0.702135±0.118513b 0.487248±0.036127c 0.427012±0.077698c 0.036522±0.010289d 山奈酚-3-O-芸香苷
Kaempferol-3-O-
rutinoside 11.89954±3.481270 15.97536±5.185996 21.04374±6.104958 11.07224±0.700547 7.56201±0.302161 10.45844±1.243375 6.361733±2.840426 1.613098±0.428618 山奈酚 Kaempferol 0.098726±0.0431e 0.089327±0.0345e 0.108864±0.0826e 6.88048±0.6611a 5.265938±0.1937b 4.480064±0.8063c 3.012608±0.4844d 0.066971±0.0427e 芍药花素-3-O-葡萄糖苷
Peonidin-3-O- glucoside 0.420124±0.2741d 0.366318±0.1059d 0.517428±0.1684d 63.40979±1.9240a 44.75599±2.0250c 41.2506±5.9861c 49.74721±1.4274b 2.352412±0.2994d 槲皮素及其衍生物
Quercetin & der 200.374354±
57.008561ab 242.845297±
74.146893a 222.257814±
65.306397ab 228.546233±
7.007537a 200.196038±
10.677757ab 170.253340±
13.654091ab 193.904286±
11.710335ab 141.676222±
25.143431b 槲皮素 Quercetin 42.20025±12.2538ab 58.65711±17.8150a 47.3339±13.6162ab 42.06114±2.0141ab 31.96046±7.9260b 30.28114±4.9902b 35.11689±6.5489b 30.17527±9.7758b 槲皮素异构体
Quercetin isomer 6.555547±1.8943b 7.493562±2.2430b 7.033184±2.0142b 7.453166±0.3934b 7.634126±0.2950b 7.077829±0.7544b 15.66637±0.9024a 6.985342±0.8417b 槲皮素-3,7-双葡萄糖苷
Quercetin-3,7-
diglucoside 0.060759±0.041564c 0.251933±0.186512b 0.146210±0.067174bc 0.651130±0.016990a 0.629594±0.161718a 0.482118±0.144907a 0.053750±0.002803c 0.003918±0.002702c 槲皮素-3-O-芸香糖苷
Quercetin-3-O-rutinoside 0.212903±0.022909d 0.222162±0.097577d 0.356247±0.112679d 33.537172±1.631710a 23.542008±0.842671b 15.288866±3.932766c 16.317309±1.942946c 0.245465±0.009894d 异鼠李素
Isorhamnetin;Quercetin 3′-methyl ether 7.371176±2.2000b 8.068227±2.6434b 8.024497±2.2624b 15.14279±0.9453a 13.55353±0.3221a 10.07927±1.0379b 8.748217±1.1888b 15.68826±1.5345a 槲皮素-3-芸香糖苷-5-
葡萄糖苷
Quercetin-3-rutinoside 5-
glucoside 22.30255a±6.5177b 24.3998±6.6175a 23.30561±6.8268ab 16.63812±0.9968abc 15.87305±0.7590bc 13.98424±1.9486c 17.28227±3.0547abc 12.02911±0.6131c 槲皮素3-O-葡萄糖苷-
7-O-鼠李糖苷
Quercetin 3-O-glucoside-
7-O-rhamnoside 64.97899±17.4415ab 72.9125±23.7989ab 73.97492±21.8967a 57.18113±5.5179abc 57.79963±2.5607abc 46.23906±12.2725bcd 36.60222±7.8126cd 26.77078±6.4454d 槲皮素3-O-葡萄糖-
2′-O-鼠李糖苷
Quercetin 3-O-glucosyl-
2′-O-rhamnoside 14.02704±4.0676abc 15.54876±4.6518ab 14.55381±4.3332abc 10.90494±0.3330bcd 9.897494±0.5319cd 9.431123±1.2302cd 16.62659±1.1178a 7.637097±2.2670d 槲皮素7-O-葡萄糖苷
Quercetin 7-O-glucoside 0.042835±0.0132ab ab 0.111345±0.1015a 0.042843±0.0156ab 0.054035±0.0176ab 0.033442±0.0079b 0.027085±0.0049b 0.021169±0.0035b 0.029225±0.0052b 槲皮素-3-O-半乳糖苷
Quercetin-3-O-galactoside 42.62231±12.8750 55.17989±16.5587 47.48659±14.2470 44.92262±2.1676 39.27272±1.6622 37.3626±4.6147 47.4695±9.0405 42.11175±4.0862 L-苯丙氨酸
L-Phenylalanine 24.77084±7.4279a 16.19404±5.3306b 17.89174±6.1028ab 9.427442±0.5934b 11.22424±0.7072b 11.53852±1.9330b 17.87086±2.0441ab 11.51065±4.6518b 柚皮苷查尔酮
Naringenin chalcone 11.21684±3.4274a 6.953229±2.4991bc 7.454445±2.1761b 7.338072±0.2187bc 4.580403±1.1159bc 5.911066±1.9611bc 0.279398±0.0346d 3.375202±2.6888cd 柚皮素 Naringenin 12.65308±4.7083ab 14.15428±5.8258a 9.227665±2.7799abc 7.578553±0.4136bc 6.651657±0.2251c 5.794245±0.9580c 0.549027±0.1002d 0.236822±0.0358d 表儿茶素
(-)-Epicatechin 2.025451±0.9418bc 1.727742±0.6128ab 2.010675±0.5011a 2.570646±0.2547bc 1.810294±0.1534bc 0.971233±0.3021bc 4.634156±1.3968bc 1.918482±0.3843bc 反式肉桂酸
Trans-Cinnamic acid 3.480043±1.2166bc 4.841706±1.8355bc 6.098765±1.6982bc 3.544063±0.3825b 2.527856±0.1313bc 2.87155±1.2722c 3.778505±0.5008a 2.775261±0.1719bc 芹菜素 7-O-葡萄糖苷
Apigenin 7-O-glucoside 0.062301±0.010509d 0.118913±0.050070d 0.171347±0.097035d 0.964745±0.102368a 0.635227±0.035925b 0.500521±0.051291bc 0.356049±0.250628c 0.044238±0.018730d
S1—S3时期,‘白须朱砂’花瓣中类黄酮化合物含量整体下降(
表3)。‘白须朱砂’花瓣中矢车菊素及其衍生物总量、芍药花素及其衍生物总量、飞燕草素及其衍生物总量在S1—S3时期逐渐降低,但S2—S3时期降低不显著。在‘变绿萼’的S1—S3时期,花瓣中类黄酮化合物含量整体从S1—S2时期增加,S2—S3时期略有下降,但3个时期含量变化差异不显著。同样地,‘变绿萼’花瓣中槲皮素及其衍生物总量从S1—S2时期增加,S2—S3时期略有下降,但3个时期含量变化差异不显著(
表3)。
2.3 梅花4个花色代表品种及花色发育过程中差异代谢物分析
为进一步分析梅花花色差异与类黄酮代谢物的关系,本研究首先通过Duncan检验(P<0.05)和预测差异代谢物中重要的变量VIP值(VIP值≥1)对25种类黄酮进行差异代谢物筛选;然后对代谢物与花色参数进行相关性分析(
图3)。在S3时期,‘白须朱砂’和‘变绿萼’间有3个差异代谢物,为矢车菊素-3-O-葡萄糖苷(Cyanidin 3-O-glucoside)、矢车菊素-3-芸香糖苷(Cyanidin-3-rutinoside)、芍药花素-3-O-葡萄糖苷(Peonidin-3-O-glucoside)。3个差异代谢物在‘白须朱砂’与‘变绿萼’间的含量差异同S3时期‘白须朱砂’与‘变绿萼’间a*值差异情况一致,且与a*值呈正相关关系(
表1、
图3)。在‘白须朱砂’开花过程中,S1和S2时期筛选到2个差异代谢物(矢车菊素-3-O-葡萄糖苷和芍药花素-3-O-葡萄糖苷);S1和S3时期筛选到3个差异代谢物(矢车菊素-3-O-葡萄糖苷、芍药花素-3-O-葡萄糖苷、槲皮素)。结合
表1和
图3发现,S1—S3时期,这些差异代谢物含量与a*值呈正相关关系,含量变化与
表1中a*值逐渐变小的趋势一致(
表1、
图3)。此外,在S3时期,‘白须朱砂’和‘虎丘晚粉’间筛选到2个差异代谢物,为槲皮素异构体(Quercetin isomer)和槲皮素3-O-葡萄糖基-2′-O-鼠李糖苷(Quercetin 3-O-glucosyl-2′-O- rhamnoside)。然而,由
表3可以看出,2个差异代谢物在‘虎丘晚粉’与‘白须朱砂’间的含量差异,与
表1中S3时期a*值的差异情况相反。同时,根据
图3的相关性分析结果,槲皮素异构体与a*相关性不强,槲皮素 3-O-葡萄糖基-2′-O-鼠李糖苷与a*呈负相关。
Fig. 3 A heat map of correlation matrix of color parameters and 25 compounds from petals of P. mume
Each square indicates Pearson’s correlation coefficient for a pair of data, and the intensity of blue and red colors in the heat map indicates the level of positive and negative correlation, respectively. * indicate significant correlation level (*: P<0.05; **: P<0.01)Full size|PPT slide
‘变绿萼’和‘三轮玉蝶’的S3时期花瓣中筛选出5个差异代谢物,为异鼠李素(Quercetin 3'-methyl ether)、矢车菊素-3-芸香糖苷-5-葡萄糖苷(Cyanidin 3-rutinoside 5-glucoside)、槲皮素-3-芸香糖苷-5-葡萄糖苷(Quercetin-3-rutinoside 5-glucoside)、槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷(Quercetin 3-O-glucoside- 7-O-rhamnoside)、柚皮素(Naringenin)。结合
图3和
表3发现,除异鼠李素外,其他4个差异代谢物在‘三轮玉蝶’与‘变绿萼’间的含量差异同
表1中S3时期的b*值差异情况一致,且与b*值呈正相关关系(
表1、
图3)。在‘变绿萼’开花3个时期,根据VIP值≥1和P<0.05,25种代谢物中没有筛选出在‘变绿萼’3个开花时期间存在显著差异的代谢物。
3 讨论
3.1 首次在不同花色梅花品种中鉴定类黄酮化合物
花色是梅花极其重要的观赏性状。类黄酮化合物是影响梅花呈色的主要色素,前人对梅花花瓣中花青素苷进行了鉴定,初步探究了花青素苷对梅花红色花色形成的影响。但梅花花色丰富,除了红、白花色,还有黄绿色,且梅花花瓣中其他类黄酮化合物尚无系统鉴定。本研究首次用LCMS法对不同花色梅花花瓣中类黄酮代谢物进行鉴定。共鉴定出花青素类包括矢车菊素及其衍生物3种,芍药花素衍生物1种,包括了张芹[6]在红色系梅花中鉴定出的花青素成分。另外,本研究首次鉴定出了槲皮素-3-芸香糖苷-5-葡萄糖苷、槲皮素3-O-葡萄糖苷-7-O鼠李糖苷、芹菜素7-O-葡萄糖苷。
另外,前人研究表明,作为药食同用药材绿萼梅花瓣中含有多种化学成分,其中绿原酸类和黄酮类是其主要活性成分[18]。植物中黄酮类衍生物提取物有促进动物淋巴血液循环的作用,具有镇静、安抚的效果,可舒缓、收敛、抗菌。其中,芦丁、金丝桃苷、异槲皮苷、槲皮素、山柰酚、异鼠李素具有抗氧化、抗菌、抗病毒、抗抑郁、抗炎等作用[19-20]。本研究通过对来自不同梅花品种群不同花色的梅花类黄酮化合物进行定性定量分析,发现除了‘变绿萼’,在花色较深的‘白须朱砂’与‘虎丘晚粉’中上述功能化合物的含量也较高,为梅花资源开发提供了参考。
3.2 矢车菊苷和芍药花苷影响梅花红色花色的形成
矢车菊素与芍药花素一般使植物呈现红色,飞燕草素衍生物一般使植物呈现蓝色到紫色[27]。本研究中红色的‘白须朱砂’和紫红色的‘虎丘晚粉’都以矢车菊素及其衍生物、芍药花素及其衍生物为主要成分,矢车菊素及其衍生物、芍药花素及其衍生物在纯白的‘三轮玉蝶’和黄绿色的‘变绿萼’中含量极少。与前人研究报道梅花花色色素属于黄酮类化合物,花青素苷是梅花花色形成的重要色素,梅花的红色花色源于花色素和其苷,且红色程度与其花色苷含量成正相关的结论一致[28]。通过两两对比差异代谢物,‘白须朱砂’和‘变绿萼’在S3时期的差异代谢物矢车菊素-3-O-葡萄糖苷、矢车菊素-3-O-芸香糖苷、芍药花素-3-O-葡萄糖苷在‘白须朱砂’中含量显著高于‘变绿萼’与‘三轮玉蝶’(P<0.05),这也说明矢车菊素衍生物、芍药花素衍生物是影响梅花红、白花色差异的主要因素。同时,S3时期,‘白须朱砂’中花青素总含量、矢车菊素及其衍生物总含量、芍药花素及其衍生物总含量显著高于‘虎丘晚粉’(
表3)。另外,S1—S3时期,‘白须朱砂’红色变浅,矢车菊素及其衍生物和芍药花素及其衍生物作为主要成分从S1—S3时期含量显著下降(P<0.05,
表3),但S2—S3时期差异变化不明显。同时,差异代谢物矢车菊素-3-O-葡萄糖苷、芍药花素-3-O-葡萄糖苷从S1—S3含量显著下降,根据相关性分析发现,矢车菊素-3-O-葡萄糖苷和芍药花素-3-O-葡萄糖苷与a*值呈显著正相关(
图3)。因此,芍药花苷和矢车菊苷可能是影响‘白须朱砂’红色变化的主要代谢物质,且在‘白须朱砂’开花过程中,芍药花苷和矢车菊苷含量的下降,使‘白须朱砂’花瓣中主要色素占比变化,从而导致红色变浅。
3.3 槲皮素及其衍生物可能是形成梅花黄绿色花色的重要色素
花青素苷是主要的着色物质,黄酮醇是不同颜色的辅助色素[29-30]。黄绿色‘变绿萼’和纯白色‘三轮玉蝶’花瓣中主要类黄酮物质为槲皮素,且‘变绿萼’花瓣中槲皮素-3-芸香糖苷-5-葡萄糖苷、槲皮素-3-O-葡萄糖苷-7-O-鼠李糖苷的含量显著高于‘三轮玉蝶’花瓣中的含量(
表3)。前人在对金花茶花瓣的研究中发现槲皮素-3-芸香糖苷-5-葡萄糖苷、槲皮素-3-O-葡萄糖苷-7-O-鼠李糖苷是花瓣黄色的主要成分,这两种成分含量的积累导致花色变黄[31]。因此,槲皮素-3-芸香糖苷-5-葡萄糖苷、槲皮素-3-O-葡萄糖苷-7-O-鼠李糖苷可能是黄绿色梅花育种值得关注的化合物。另外,花青素上游的类黄酮代谢物的组成和含量也与植物着色有关[32],本研究中柚皮素、异鼠李素在‘三轮玉蝶’与‘变绿萼’S3时期花瓣中存在显著差异(P<0.05;VIP≥1)。
此外,从S1—S3时期,‘变绿萼’黄绿色变浅,与黄色相关的颜色参数b*值显著下降,但没有筛选出差异物质,同时与‘变绿萼’花色相关的槲皮素衍生物在S1—S3时期含量无显著变化。前人研究发现黄绿色的绿萼梅不含叶绿素,并推测绿白花色可能与人的视觉习惯有关,花色事实上为黄白甚至纯白[33]。另外,本研究只对‘变绿萼’的类黄酮化合物进行了定性分析,并没有对与植物黄色相关的类胡萝卜素进行定性分析,因此,S1—S3时期观察到‘变绿萼’黄绿色变浅也可能与类胡萝卜素含量变化有关。
4 结论
本研究选择了4个梅花代表花色品种与3个不同开花阶段,利用LCMS首次同时检测了梅花花青素苷和类黄酮苷,共检测到25种类黄酮化合物。通过与‘变绿萼’梅中类黄酮化合物种类与含量比对,发现花色较深的‘白须朱砂’梅与‘虎丘晚粉’梅也含具有抗氧化活性等价值的类黄酮化合物且含量较高。另外,通过探究类黄酮化合物种类及含量与梅花花色的关系,发现矢车菊素及其衍生物和芍药花素及其衍生物是影响梅花花色形成的主要色素;而槲皮素及其衍生物可能是影响黄绿色‘变绿萼’形成的主要色素。
{{custom_sec.title}}
=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_sec.title}}{{custom_sec.content}}[1]陈俊愉. 中国梅花. 海口: 海南出版社, 1996: 12-58.
CHEN J Y. Chinese Mei flowers. Haikou: Hainan Publishing House, 1996: 12-58. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[2]JIANG L B,
ZHANG M,
MA K F. Whole-genome DNA methylation associated with differentially expressed genes regulated anthocyanin biosynthesis within flower color Chimera of ornamental tree Prunus mume. Forests, 2020, 11(1): 90.
DNA methylation is one of the best-studied epigenetic modifications involved in many biological processes. However, little is known about the epigenetic mechanism for flower color chimera of Prunus mume (Japanese apricot, mei). Using bisulfate sequencing and RNA sequencing, we analyzed the white (FBW) and red (FBR) petals collected from an individual tree of Japanese apricot cv. ‘Fuban Tiaozhi’ mei to reveal the different changes in methylation patterns associated with gene expression leading to significant difference in anthocyanins accumulation of FBW (0.012 ± 0.005 mg/g) and FBR (0.078 ± 0.013 mg/g). It was found that gene expression levels were positively correlated with DNA methylation levels within gene-bodies of FBW and FBR genomes; however, negative correlations between gene expression and DNA methylation levels were detected within promoter domains. In general, the methylation level within methylome of FBW was higher; and in total, 4,618 differentially methylated regions (DMRs) and 1,212 differentially expressed genes (DEGs) were detected from FBW vs. FBR. We also identified 82 DMR-associated DEGs, and 13 of them, including PmBAHD, PmCYP450, and PmABC, were playing critical roles in phenylalanine metabolism pathway, glycosyltransferase activity, and ABC transporter. The evidence exhibited DNA methylation may regulate gene expression resulting in flower color chimera of Japanese apricot.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[3]陈俊愉. 中国梅花品种图志. 北京: 中国林业出版社, 2010.
CHEN J Y. Atlas of plum blossom varieties in China. Beijing: China Forestry Publishing House, 2010. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[4]赵昶灵, 陈俊愉, 刘雪兰, 赵兴发, 刘全龙. 理化因素对梅花‘南京红须’花色色素颜色呈现的效应. 南京林业大学学报(自然科学版), 2004, 28(2): 27-32.
ZHAO C L,
CHEN J Y,
LIU X L,
ZHAO X F,
LIU Q L. Effects of physical and chemical factors on the color expression of the flower color pigment of Prunus mume sieb.et zucc. ‘Nanjing hongxu’ (Nanjing Red-bearded). Journal of Nanjing Forestry University, 2004, 28(2): 27-32. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[5]赵昶灵, 郭维明, 陈俊愉. 梅花‘南京红须’花色色素花色苷的分离与结构鉴定. 林业科学, 2006, 42(1): 29-36.
ZHAO C L,
GUO W M,
CHEN J Y. Isolation and structural identification of the anthocyanins from the flower color pigment of Prunus mume ‘Nanjing hongxu’ (Nanjing red-bearded). Scientia Silvae Sinicae, 2006, 42(1): 29-36. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[6]张芹. 梅花花青苷合成调控基因R2R3-MYB的鉴定及功能分析[D]. 北京: 北京林业大学, 2017.
ZHANG Q. Identification and functional analysis of the regulation gene R2R3-MYB for anthocyanin synthesis in Prunus mume[D]. Beijing: Beijing Forestry University, 2017. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[7]郑毓珍, 卢静华, 孙玉琦. HPLC法同时测定白梅花中6种黄酮类成分. 中成药, 2018, 40(9): 2007-2010.
ZHENG Y Z,
LU J H,
SUN Y Q. Simultaneous determination of six flavonoids in Prunus mume flowers by HPLC. Chinese Traditional Patent Medicine, 2018, 40(9): 2007-2010. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[8]TANAKA Y,
SASAKI N,
OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal: for Cell and Molecular Biology, 2008, 54(4): 733-749.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[9]HARBORNE J B,
WILLIAMS C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6): 481-504.
Some of the recent advances in flavonoid research are reviewed. The role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined. The contribution of leaf flavonoids to UV-B protection in plants is critically discussed. Advances in understanding the part played by flavonoids in warding off microbial infection and protecting plants from herbivory are described. The biological properties of flavonoids are considered in an evaluation of the medicinal and nutritional values of these compounds.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]CROZIER A,
JAGANATH I B,
CLIFFORD M N. Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 2009, 26(8): 1001-1043.
There is much epidemiological evidence that diets rich in fruit and vegetables can reduce the incidence of non-communicable diseases such as cardiovascular diseases, diabetes, cancer and stroke. These protective effects are attributed, in part, to phenolic secondary metabolites. This review summarizes the chemistry, biosynthesis and occurrence of the compounds involved, namely the C6-C3-C6 flavonoids-anthocyanins, dihydrochalcones, flavan-3-ols, flavanones, flavones, flavonols and isoflavones. It also includes tannins, phenolic acids, hydroxycinnamates and stilbenes and the transformation of plant phenols associated with food processing (for example, production of black tea, roasted coffee and matured wines), these latter often being the major dietary sources. Events that occur following ingestion are discussed, in particular, the deglycosylation, glucuronidation, sulfation and methylation steps that occur at various points during passage through the wall of the small intestine into the circulatory system and subsequent transport to the liver in the portal vein.We also summarise the fate of compounds that are not absorbed in the small intestine, but which pass into the large intestine where they are degraded by the colonic microflora to phenolic acids, which can be absorbed into the circulatory system and subjected to phase II metabolism prior to excretion. Initially, the protective effect of dietary phenolics was thought to be due to their antioxidant properties which resulted in a lowering of the levels of free radicals within the body.However, there is now emerging evidence that themetabolites of dietary phenolics,which appear in the circulatory systemin nmol/L to low mmol/L concentrations, exertmodulatory effects in cells through selective actions on different components of the intracellular signalling cascades vital for cellular functions such as growth, proliferation and apoptosis. In addition, the intracellular concentrations required to affect cell signalling pathways are considerably lower than those required to impact on antioxidant capacity. The mechanisms underlying these processes are discussed.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]SUN C D,
LIU Y L,
ZHAN L H,
RAYAT G R,
XIAO J B,
JIANG H M,
LI X,
CHEN K S. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology, 2021, 117: 3-14.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]BAILLY C. Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). Journal of Ethnopharmacology, 2020, 246: 112215.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]KO B S,
KIM D S,
KANG S N,
RYUK J A,
PARK S. Prunus mume and Lithospermum erythrorhizon extracts synergistically prevent visceral adiposity by improving energy metabolism through potentiating hypothalamic leptin and insulin signalling in ovariectomized rats. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 750986.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]HATTORI M,
KAWAKAMI K,
AKIMOTO M,
TAKENAGA K,
SUZUMIYA J,
HONMA Y. Antitumor effect of Japanese apricot extract (MK615) on human cancer cells in vitro and in vivo through a reactive oxygen species-dependent mechanism. Tumori, 2013, 99(2): 239-248.
MK615 is produced from Japanese apricot and contains several cyclic triterpenes, such as oleanolic and ursolic acids. MK615 was shown to strongly suppress cutaneous in-transit metastasis in a patient with malignant melanoma. The present investigation was undertaken to clarify the antitumor effects of MK615 in vitro and in vivo.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]MITANI T,
OTA K,
INABA N,
KISHIDA K,
KOYAMA H A. Antimicrobial activity of the phenolic compounds of Prunus mume against enterobacteria. Biological & Pharmaceutical Bulletin, 2018, 41(2): 208-212.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]SENEVIRATNE C J,
WONG R W K,
HÄGG U,
CHEN Y,
HERATH T D K,
SAMARANAYAKE P L,
KAO R. Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria. International Journal of Paediatric Dentistry, 2011, 21(4): 299-305.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]张清华, 张玲, 尚立霞, 邵成雷, 吴永霞. 白梅花的化学成分研究. 中药材, 2008, 31(11): 1666-1668.
ZHANG Q H,
ZHANG L,
SHANG L X,
SHAO C L,
WU Y X. Studies on the chemical constituents of flowers of Prunus mume. Journal of Chinese Medicinal Materials, 2008, 31(11): 1666-1668. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]陈明珠, 陈静, 黄幼霞, 程晶, 廖婉婷. 绿萼梅总黄酮对慢性应激抑郁模型大鼠抑郁行为的影响及机制研究. 中国药房, 2017, 28(13): 1758-1762.
CHEN M Z,
CHEN J,
HUANG Y X,
CHENG J,
LIAO W T. Study on the effects and mechanism of total flavonoids from Armeniaca mume on depression in chronic stress depression model rats. China Pharmacy, 2017, 28(13): 1758-1762. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]陈静, 陈明珠, 黄玉香, 程晶, 黄雅平. 绿萼梅总黄酮对慢性温和刺激所致抑郁大鼠神经内分泌和氧化应激的影响. 药学实践杂志, 2019, 37(3): 226-230.
CHEN J,
CHEN M Z,
HUANG Y X,
CHENG J,
HUANG Y P. Effects of total flavonoids from Armeniaca mume on neuroendocrine and oxidative stress of rats with depression induced by chronic mild stress. Journal of Pharmaceutical Practice, 2019, 37(3): 226-230. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]UTSUNOMIYA H,
TAKEKOSHI S,
GATO N,
UTATSU H,
MOTLEY E D,
EGUCHI K,
FITZGERALD T G,
MIFUNE M,
FRANK G D,
EGUCHI S. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sciences, 2002, 72(6): 659-667.
Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]JO C,
KIM B,
LEE S,
HAM I,
LEE K,
CHOI H Y. Vasorelaxant effect of Prunus mume (siebold) siebold & zucc. branch through the endothelium-dependent pathway. Molecules, 2019, 24(18): 3340.
Korean plum (Prunus mume (Siebold) Siebold & Zucc.) has long been used as a health food or herbal medicine in Asia. Previous studies have shown that several plants of the genus Prunus have vasodilatory and antihypertensive effects; we hypothesized that P. mume branches may have a vasorelaxant effect. In this study, we evaluated the effects and action mechanism of 70% ethanol extract of P. mume branch (PMB) on isolated rat aortic rings. Inhibitors such as NG-nitro-l-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, methylene blue, indomethacin, atropine, tetraethylammonium chloride, glibenclamide, 4-aminopyridine and BaCl2 were used to investigate the mechanism of vasodilation responsible for the vascular relaxation. PMB (2–30 μg/mL) induced vasorelaxation in the presence of vascular endothelium, and all inhibitors used in this study affected the degree of relaxation. These results suggest that the vasorelaxant effect of PMB is endothelium-dependent and affects the nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin pathway, muscarinic receptor pathway, and potassium channels. Our study explains that PMB may be another approach to hypertension treatment to reduce the burden of cardiovascular disease.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]GONG X P,
TANG Y,
SONG Y Y,
DU G,
LI J. Comprehensive review of phytochemical constituents, pharmacological properties, and clinical applications of Prunus mume. Frontiers in Pharmacology, 2021, 12: 679378.
Prunus mumeis one of the most ancient medicinal herbs and health foods commonly used in Asian countries. It is widely used as a constituent of many medicinal preparations and as a food ingredient for its beneficial health effects. In this review, we retrieved reports from PubMed, embase, Scopus, and SciFinder databases, to collect extensive scientific evidence on the phytochemical constituents, pharmacological properties, and clinical applications ofPrunus mume. The literature review revealed that approximately 192 compounds have been isolated from different parts of the plant, and their molecular structures have been identified. The pharmacological properties of the plant, including anti-diabetic, liver-protective, antitumor, antimicrobial, antioxidant, and anti-inflammatory activities, as well as their underlying mechanisms, have been clarified byin vitroandin vivostudies. Clinical studies, although very limited, have been highlighted in this review to provide a reference for further exploration on therapeutic applications of the plant.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]YUN Z,
GAO H J,
LIU P,
LIU S Z,
LUO T,
JIN S,
XU Q,
XU J,
CHENG Y J,
DENG X X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 2013, 13: 44.
Background: From field harvest to the consumer's table, fresh citrus fruit spends a considerable amount of time in shipment and storage. During these processes, physiological disorders and pathological diseases are the main causes of fruit loss. Heat treatment (HT) has been widely used to maintain fruit quality during postharvest storage; however, limited molecular information related to this treatment is currently available at a systemic biological level.;Results: Mature 'Kamei' Satsuma mandarin (Citrus unshiu Marc.) fruits were selected for exploring the disease resistance mechanisms induced by HT during postharvest storage. Proteomic analyses based on two-dimensional gel electrophoresis (2-DE), and metabolomic research based on gas chromatography coupled to mass spectrometry (GC-MS), and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) were conducted. The results show resistance associated proteins were up-regulated in heat treated pericarp, such as beta-1, 3-glucanase, Class III chitinase, 17.7 kDa heat shock protein and low molecular weight heat-shock protein. Also, redox metabolism enzymes were down-regulated in heat treated pericarp, including isoflavone reductase, oxidoreductase and superoxide dismutase. Primary metabolic profiling revealed organic acids and amino acids were down-regulated in heat treated pericarp; but significant accumulation of metabolites, including tetradecanoic acid, oleic acid, ornithine, 2-keto-d-gluconic acid, succinic acid, turanose, sucrose, galactose, myo-inositol, glucose and fructose were detected. Noticeably, H2O2 content decreased, while, lignin content increased in heat treated pericarp compared to the control, which might increase fruit resistibility in response to external stress. Also, flavonoids, substances which are well-known to be effective in reducing external stress, were up-regulated in heat treated pericarp.;Conclusions: This study provides a broad picture of differential accumulation of proteins and metabolites in postharvest citrus fruit, and gives new insights into HT improved fruit disease resistance during subsequent storage of 'Kamei' Satsuma mandarin. Interpretation of the data for the proteins and metabolites revealed reactive oxygen species (ROS) and lignin play important roles in heat treatment induced fruit resistance to pathogens and physiological disorders.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]WISHART D S,
FEUNANG Y D,
MARCU A,
GUO A C,
LIANG K,
VÁZQUEZ-FRESNO R,
SAJED T,
JOHNSON D,
LI C,
KARU N,
SAYEEDA Z,
LO E,
ASSEMPOUR N,
BERJANSKII M,
SINGHAL S,
ARNDT D,
LIANG Y,
BADRAN H,
GRANT J,
SERRA- CAYUELA A,
LIU Y F,
MANDAL R,
NEVEU V,
PON A,
KNOX C,
WILSON M,
MANACH C,
SCALBERT A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research, 2018, 46(D1): D608-D617.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]张芹, 徐宗大, 赵凯, 李晓伟, 张罗沙, 张启翔. 梅花花青素苷调控基因PmMYB1的分离及功能分析. 林业科学, 2018, 54(10): 64-72.
ZHANG Q,
XU Z D,
ZHAO K,
LI X W,
ZHANG L S,
ZHANG Q X. Isolation and biological function analysis of anthocyanin regulatory gene PmMYB1 from Prunus mume. Scientia Silvae Sinicae, 2018, 54(10): 64-72. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]DIRETTO G,
JIN X,
CAPELL T,
ZHU C F,
GOMEZ-GOMEZ L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS ONE, 2019, 14(2): e0212062.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]赵昶灵, 郭维明, 陈俊愉. 梅花花色色素种类和含量的初步研究. 北京林业大学学报, 2004, 26(2): 68-73.
ZHAO C L,
GUO W M,
CHEN J Y. Preliminary study on the categories and contents of the flower color pigments of Prunus mume Sieb. et Zucc. Journal of Beijing Forestry University, 2004, 26(2): 68-73. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]孟晗, 付灯祥, 吴艳梅, 金雪花. 花毛茛和银莲花花瓣中花青素苷组成及含量与其花色的关系. 园艺学报, 2020, 47(12): 2362-2372.
MENG H,
FU D X,
WU Y M,
JIN X H. Relationship between the composition and content of anthocyanin in petals of Ranunculus asiaticus and Anemone cathayensis and their flower color. Acta Horticulturae Sinica, 2020, 47(12): 2362-2372. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]摘要
花色是观赏植物最重要的品质性状之一,是植物自然进化过程中最具适应意义的表型性状,也是表观遗传学研究的重要内容。花青素苷是使花朵呈色的重要色素之一,被子植物中约有80%的科的花朵颜色由花青素苷决定;迄今从自然界分离和鉴定出的花青素苷多达600种,主要由6种花青素苷元衍生而来。花青素苷合成途径是迄今为止研究得最为清楚的植物次生代谢途径之一,它的合成首先取决于类黄酮代谢途径的生成,花青素苷种类的多样性则源于其不同分支途径的形成,在花青素苷元基本骨架上不同位置取代基的差异形成了多种多样的花青素苷。在花青素苷生物合成过程中,分支点酶的竞争机制和关键酶的底物特异性使花青素苷的种类及相应的花色表型具有种属特异性。花青素苷合成后需要转运到液泡中被包裹成色素体,植物细胞中的液泡积累和贮存色素体的能力是影响花青素苷呈色的重要因素,因此,花青素苷在花瓣中的最终呈色还受液泡pH、助色素含量以及金属离子的络合作用等多种细胞内因素的影响。目前,已经在多种植物中获得了与花青素苷合成及呈色相关的结构基因和调节基因,并解析了其功能,成功获得了一些转基因花卉,但是这些基因调控表达的机制,包括转录水平和转录后水平的调控、DNA序列本身的差异和DNA甲基化修饰的调控机制等仍不清楚,转基因植株花色改良的程度也很有限,对于如何将这些机制应用于花色改良的转基因育种也是一个前沿的课题。花青素苷对园艺作物器官呈色机制的解析有助于对花朵呈色机制的理解,观赏植物中花色形成机理的研究对于园艺作物器官呈色机制的解析同样具有重要的参考价值。因此,本文以观赏植物为例,从花青素苷合成分支途径形成的机理、花青素苷生物合成途径的遗传调控机理以及影响花青素苷呈色的主要因素及其遗传调控机理3个方面,对影响植物花朵呈色的机制进行了综述,并对近年来基于花青素苷代谢和呈色机理的花色改良分子设计育种,尤其是国际上广泛关注的蓝色花育种进行了梳理和总结,以期为定向培育具有新奇花色的观赏植物新品种提供参考。
DAI S L,
HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011. (in Chinese)
Flower color, one of the most important quality traits for ornamental plants, is of great adaptive significance during the natural evolution process of plants. Moreover, flower color is also an important content for epigenetic researches. Anthocyanins, the most important pigments for flower coloration, designate the flower colors of approximately 80% plant families in angiosperm. Up to date, more than 400 anthocyanins have been isolated and identified from the natural world, which are mainly derived from six anthocyanidins. The biosynthetic pathway of anthocyanins has been well studied, which starts from the flavonoid metabolic pathway. Different branch pathways result in the diversity of anthocyanins, mainly due to the differences of substituent groups that are located on the basic skeleton of various anthocyanidins. During the biosynthetic process of anthocyanins, the competition forces of enzymes which are located on the branch nodes and the substrate specificity of some key enzymes result in the genus and species specificity of anthocyanins and the corresponding flower color phenotypes. Anthocyanins are transferred to vacuole and are packaged as chromatophore after being biosynthesized. The accumulation and conserve abilities on the chromatophore of vacuole affect the coloration of anthocyanins to a large extent. Therefore, many intracellular factors, such as the pH value of vacuole, the content of co-pigments and the complexation of metal ion, jointly affect the final coloration of anthocyanins in the petals. At present, some structural and regulatory genes that are related to the anthocyanins biosynthesis and coloration have been isolated, whose functions also have been well revealed. Based on these genes, some transgenic flowers have been successfully bred out. However, the mechanisms of gene regulating expression, including the regulation mechanisms on the transcriptional and post-transcriptional levels, and the differences of DNA sequences and the DNA methylation, still remain elusive. Moreover, the present modifications on the flower colors are still very limited. Therefore, how to apply these mechanisms on the transgenic breeding of flower color modification is a frontier topic. Revealing the organ coloration mechanisms based on anthocyanins in horticultural crops is conducive to the understanding of coloration mechanisms of flowers; studies on the mechanisms of flower color in ornamental plants is of important reference value for the reveal of the organ coloration mechanisms in horticultural crops. Therefore, in this paper, we reviewed the mechanisms of flower coloration in ornamental plants from three aspects, including the mechanisms of the branch pathways generation, the genetic regulation mechanisms of anthocyanins biosynthetic pathway, and the main factors affecting the anthocyanins coloration and the corresponding genetic regulation mechanisms. Finally, we summarized the successes of molecular design breeding on flower color modification based on these mechanisms, especially the international-concerned molecular breeding for blue flowers, aiming at providing references for the directive breeding of ornamental plants with novel flower colors.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]李辛雷, 王佳童, 孙振元, 王洁, 殷恒福, 范正琪, 李纪元. 金花茶和白色山茶及其3个杂交品种类黄酮成分与花色的关系. 园艺学报, 2019, 46(6): 1145-1154.
摘要
以金花茶(Camellia nitidissima,深黄色)和山茶(C. japonica,白色)及其杂交品种(淡黄色)为试验材料,按照CIE L*a*b*表色系法测量其花色,利用超高效液相色谱—四极杆—飞行时间质谱(UPLC-Q-TOF-MS)联用技术定性定量分析其类黄酮成分与含量,运用多元线性回归方法研究其花色与类黄酮成分之间的关系。在金花茶和白色山茶及其3个杂交品种中共检测到10种类黄酮成分,其中天竺葵素–3–O–葡萄糖苷(Pg3G)、木犀草素–7–O–芸香糖苷(Lu7R)、圣草素(Er)和染料木苷(Gin)为金花茶中首次发现,而在白色山茶品种‘银白查理斯’和‘白凤’中未检测到Pg3G、Er和Gin,Lu7R含量极低。金花茶中主要成分为槲皮素–3–O–葡萄糖苷(Qu3G)、槲皮素–3–O–芸香糖苷(Qu3R)、槲皮素–7–O–葡萄糖苷(Qu7G)、山萘酚–3–O–葡萄糖苷(Km3G)、Pg3G和Lu7R。杂交品种中木犀草素(Lu)、山萘酚(Km)和Er含量高于双亲,其余成分及类黄酮总量介于双亲之间。Qu3G和Qu3R是决定金花茶及其与白色山茶杂交的品种花瓣呈现黄色的主要成分,Qu3G和Qu3R含量的增加导致花色显著变黄;Qu3G含量的积累显著增加了花色鲜艳程度,Pg3G影响色调。
LI X L,
WANG J T,
SUN Z Y,
WANG J,
YIN H F,
FAN Z Q,
LI J Y. Flavonoid components and their effects on flower colors in Camellia nitidissima, white C. japonica and their three hybrid cultivars. Acta Horticulturae Sinica, 2019, 46(6): 1145-1154. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]ZHANG J F,
QIU X J,
TAN Q Y,
XIAO Q M,
MEI S Y. A Comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). Journal of Agricultural and Food Chemistry, 2020, 68: 14463-14470.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]赵昶灵. 几个梅花品种花色的时空变化、花色苷的分子结构和F3'H克隆的研究[D]. 南京: 南京农业大学, 2005.
ZHAO C L. Temporal and spatial changes of flower colors, molecular structure of anthocyanins and F3'H cloning of several plum cultivars[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}基金
国家重点研发计划(2019YFD1001500)
中央高校基本科研业务费专项基金(2662020YLPY006)
{{custom_fund}}相关知识
类黄酮的作用是什么?
不同季节迎春花茎叶中总黄酮含量的测定
甲咪唑烟酸及其代谢物在花生及土壤中的残留动态研究
菊花花色形成的表型分析
三个芍药新花色品种的花色表型与类黄酮含量分析
多组学助力深入探究植物花发育机制
不同梅品种花果特性分析与评价
荷花花瓣和花粉类黄酮成分分析
不同花色菊花品种花色素成分的初步分析
长春花化学成分分离及分析
网址: 梅花不同花色品种及开花阶段类黄酮代谢物测定与分析 https://www.huajiangbk.com/newsview493989.html
上一篇: 研究揭示植物激素茉莉酸跨膜转运分 |
下一篇: 科学网—重建风毛菊属属下分类系统 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039