A review on wildfire studies in the context of global change
Van Lierop P, Lindquist E, Sathyapala S, Franceschini G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 2015, 352: 78-88.
[2]Aldersley A, Murray S J, Cornell S E. Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment, 2011, 409(18): 3472-3481. DOI:10.1016/j.scitotenv.2011.05.032
[3] [4]Van Der Werf G R, Randerson J T, Giglio L, Van Leeuwen T T, Chen Y, Rogers B M, Mu M Q, Van Marle M J E, Morton D C, Collatz G J, Yokelson R J, Kasibhatla P S. Global fire emissions estimates during 1997-2016. Earth System Science Data, 2017, 9(2): 697-720. DOI:10.5194/essd-9-697-2017
[5]Staver A C, Archibald S, Levin S A. The global extent and determinants of savanna and forest as alternative biome states. Science, 2011, 334(6053): 230-232. DOI:10.1126/science.1210465
[6]Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D'Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, Van Der Werf G R, Pyne S J. Fire in the earth system. Science, 2009, 324(5926): 481-484. DOI:10.1126/science.1163886
[7] [8]Liu W, Song C, Schroeder T A, Cohen W B. Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis data. International Journal of Remote Sensing, 2008, 29(13): 3855-3872. DOI:10.1080/01431160701840166
[9]Pellegrini A F A, Anderegg W R L, Paine C E T, Hoffmann W A, Kartzinel T, Rabin S S, Sheil D, Franco A C, Pacala S W. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20(3): 307-316. DOI:10.1111/ele.12725
[10]Hoffmann W A, Geiger E L, Gotsch S G, Rossatto D R, Silva L C R, Lau O L, Haridasan M, Franco A C. Ecological thresholds at the savanna-forest boundary:how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 2012, 15(7): 759-768. DOI:10.1111/j.1461-0248.2012.01789.x
[11]Li F, Lawrence D M. Role of fire in the global land water budget during the twentieth century due to changing ecosystems. Journal of Climate, 2017, 30(6): 1893-1908. DOI:10.1175/JCLI-D-16-0460.1
[12]Ward D S, Kloster S, Mahowald N M, Rogers B M, Randerson J T, Hess P G. The changing radiative forcing of fires:global model estimates for past, present and future. Atmospheric Chemistry and Physics, 2012, 12(22): 10857-10886. DOI:10.5194/acp-12-10857-2012
[13]Flannigan M D, Krawchuk M A, De Groot W J, Wotton B M, Gowman L M. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009, 18(5): 483-507. DOI:10.1071/WF08187
[14]Jolly W M, Cochrane M A, Freeborn P H, Holden Z A, Brown T J, Williamson G J, Bowman D M J S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015, 6: 7537. DOI:10.1038/ncomms8537
[15]Giglio L, Boschetti L, Roy D P, Humber M L, Justice C O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 2018, 217: 72-85. DOI:10.1016/j.rse.2018.08.005
[16]Chuvieco E, Aguado I, Jurdao S, Pettinari M L, Yebra M, Salas J, Hantson S, De La Riva J, Ibarra P, Rodrigues M, Echeverría M, Azqueta D, Román M V, Bastarrika A, Martínez S, Recondo C, Zapico E, Martínez-Vega F J. Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 2014, 23(5): 606-619. DOI:10.1071/WF12052
[17]Chuvieco E, Lizundia-Loiola J, Pettinari M L, Ramo R, Padilla M, Tansey K, Mouillot F, Laurent P, Storm T, Heil A, Plummer S. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 2018, 10(4): 2015-2031. DOI:10.5194/essd-10-2015-2018
[18]Van Der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, Van Leeuwen T T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 2010, 10(23): 11707-11735. DOI:10.5194/acp-10-11707-2010
[19]Andela N, Morton D C, Giglio L, Paugam R, Chen Y, Hantson S, Van Der Werf G R, Randerson J T. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth System Science Data, 2018. DOI:10.5194/essd-2018-89
[20] [21]Ying L X, Han J, Du Y S, Shen Z H. Forest fire characteristics in China:spatial patterns and determinants with thresholds. Forest Ecology and Management, 2018, 424: 345-354. DOI:10.1016/j.foreco.2018.05.020
[22]Giglio L, Van Der Werf G R, Randerson J T, Collatz G J, Kasibhatla P. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 2006, 6(4): 957-974. DOI:10.5194/acp-6-957-2006
[23]Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitative study of biomass burning:derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 2003, 86(1): 83-107. DOI:10.1016/S0034-4257(03)00070-1
[24]Roy D P, Boschetti L, Justice C O, Ju J. The collection 5 MODIS burned area product-Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 2008, 112(9): 3690-3707. DOI:10.1016/j.rse.2008.05.013
[25]Giglio L, Randerson J T, Van Der Werf G R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research:Biogeosciences, 2013, 118(1): 317-328. DOI:10.1002/jgrg.20042
[26] [27] [28]Cheney P, Gould J, McCaw L. The dead-man zone-a neglected area of firefighter safety. Australian Forestry, 2001, 64(1): 45-50. DOI:10.1080/00049158.2001.10676160
[29]Taylor S W, Wotton B M, Alexander M E, Dalrymple G N. Variation in wind and crown fire behaviour in a northern jack pine-black spruce forest. Canadian Journal of Forest Research, 2004, 34(8): 1561-1576. DOI:10.1139/x04-116
[30]De Groot W J, Bothwell P M, Taylor S W, Wotton B M, Stocks B J, Alexander M E. Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 2004, 34(8): 1634-1641. DOI:10.1139/x04-073
[31]Finney M A. FARSITE:Fire Area Simulator-Model Development and Evaluation. Ogden, UT:United StatesDepartment of Agriculture, Forest Service, Rocky Mountain Research Station, 2004:1-3.
[32]Tymstra C, Bryce R W, Wotton B M, Taylor S W, Armitage O B. Development and Structure of Prometheus:The Canadian Wildland Fire Growth Simulation Model. Edmonton, Alberta:Canadian Forest Service, Northern Forestry Centre, 2010, 64-71.
[33] [34]Fulé P Z, Crouse J E, Roccaforte J P, Kalies E L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. Forest Ecology and Management, 2012, 269: 68-81. DOI:10.1016/j.foreco.2011.12.025
[35]Li X N, He H S, Wu Z W, Liang Y, Schneiderman J E. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in Northeastern China. PLoS One, 2013, 8(4): e59747. DOI:10.1371/journal.pone.0059747
[36]Amiro B D, Logan K A, Wotton B M, Flannigan M D, Todd J B, Stocks B J, Martell D L. Fire weather index system components for large fires in the Canadian boreal forest. International Journal of Wildland Fire, 2004, 13(4): 391-400. DOI:10.1071/WF03066
[37]Flannigan M D, Bergeron Y, Engelmark O, Wotton B M. Future wildfire in circumboreal forests in relation to global warming. Journal of Vegetation Science, 1998, 9(4): 469-476. DOI:10.2307/3237261
[38] [39]Hantson S, Pueyo S, Chuvieco E. Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 2015, 24(1): 77-86. DOI:10.1111/geb.12246
[40]Rogers B M, Soja A J, Goulden M L, Randerson J T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 2015, 8(3): 228-234. DOI:10.1038/ngeo2352
[41]Yue C, Ciais P, Cadule P, Thonicke K, Archibald S, Poulter B, Hao W M, Hantson S, Mouillot F, Friedlingstein P, Maignan F, Viovy N. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE-Part 1:simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7(6): 2747-2767. DOI:10.5194/gmd-7-2747-2014
[42]Fairman T A, Nitschke C R, Bennett L T. Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. International Journal of Wildland Fire, 2016, 25(8): 831-848. DOI:10.1071/WF15010
[43]Bowman D M J S, Williamson G J, Abatzoglou J T, Kolden C A, Cochrane M A, Smith A M S. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution, 2017, 1(3): 0058.
[44]Sedano F, Randerson J T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences, 2014, 11(14): 3739-3755. DOI:10.5194/bg-11-3739-2014
[45]Romps D M, Seeley J T, Vollaro D, Molinari J. Projected increase in lightning strikes in the United States due to global warming. Science, 2014, 346(6211): 851-854. DOI:10.1126/science.1259100
[46]Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins E B, Randerson J T. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7(7): 529-534. DOI:10.1038/nclimate3329
[47]Lutz J A, Van Wagtendonk J W, Thode A E, Miller J D, Franklin J F. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. International Journal of Wildland Fire, 2009, 18(7): 765-774. DOI:10.1071/WF08117
[48]Stocks B J, Mason J A, Todd J B, Bosch E M, Wotton B M, Amiro B D, Flannigan M D, Hirsch K G, Logan K A, Martell D L, Skinner W R. Large forest fires in Canada, 1959-1997. Journal of Geophysical Research:Atmospheres, 2003, 107(D1): 8149.
[49]Kasischke E S, Verbyla D L, Rupp T S, McGuire A D, Murphy K A, Jandt R, Barnes J L, Hoy E E, Duffy P A, Calef M, Turetsky M R. Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 2010, 40(7): 1313-1324. DOI:10.1139/X10-098
[50]Gillett N P, Weaver A J, Zwiers F W, Flannigan M D. Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 2004, 31(18): L18211. DOI:10.1029/2004GL020876
[51]Kasischke E S, Turetsky M R. Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 2006, 33(9): L09703.
[52]Turetsky M R, Donahue W F, Benscoter B W. Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2011, 2: 514. DOI:10.1038/ncomms1523
[53]Jolly W M, Hadlow A M, Huguet K. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. International Journal of Wildland Fire, 2014, 23(4): 480-489. DOI:10.1071/WF13127
[54]Westerling A L. Increasing western US forest wildfire activity:sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B:Biological Sciences, 2016, 371(1696): 20150178. DOI:10.1098/rstb.2015.0178
[55]Chen Y, Morton D C, Andela N, Giglio L, Randerson J T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environmental Research Letters, 2016, 11(4): 045001. DOI:10.1088/1748-9326/11/4/045001
[56]Siegert F, Ruecker G, Hinrichs A, Hoffmann A A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 2001, 414(6862): 437-440. DOI:10.1038/35106547
[57]Chen Y, Morton D C, Andela N, Van Der Werf G R, Giglio L, Randerson J T. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7(12): 906-911. DOI:10.1038/s41558-017-0014-8
[58]Archibald S, Staver A C, Levin S A. Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 847-852. DOI:10.1073/pnas.1118648109
[59]Mollicone D, Eva H D, Achard F. Ecology:human role in Russian wild fires. Nature, 2006, 440(7083): 436-437. DOI:10.1038/440436a
[60]Morton D C. Changes in Amazon Forest Structure from Land-Use Fires: Integrating Satellite Remote Sensing and Ecosystem Modeling. College Park: University of Maryland, 2008.
[61]Noojipady P, Morton D C, Schroeder W, Carlson K M, Huang C Q, Gibbs H K, Burns D, Walker N F, Prince S D. Managing fire risk during drought:the influence of certification and El Ninõ on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 2017, 8(3): 749-771. DOI:10.5194/esd-8-749-2017
[62]Andela N, Van Der Werf G R, Kaiser J W, Van Leeuwen T T, Wooster M J, Lehmann C E R. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 2016, 13(12): 3717-3734. DOI:10.5194/bg-13-3717-2016
[63]Rabin S S, Melton J R, Lasslop G, Bachelet D, Forrest M, Hantson S, Kaplan J O, Li F, Mangeon S, Ward D S, Yue C, Arora V K, Hickler T, Kloster S, Knorr W, Nieradzik L, Spessa A, Folberth G A, Sheehan T, Voulgarakis A, Kelley D I, Prentice I C, Sitch S, Harrison S, Arneth A. The fire modeling intercomparison project (FireMIP), phase 1:experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10(3): 1175-1197. DOI:10.5194/gmd-10-1175-2017
[64]Bistinas I, Harrison S P, Prentice I C, Pereira J M C. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences, 2014, 11(18): 5087-5101. DOI:10.5194/bg-11-5087-2014
[65]Archibald S, Roy D P. Identifying individual fires from satellite-derived burned area data//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE, 2009.
[66]Andela N, Morton D C, Giglio L, Chen Y, Van Der Werf G R, Kasibhatla P S, DeFries R S, Collatz G J, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton J R, Yue C, Randerson J T. A human-driven decline in global burned area. Science, 2017, 356(6345): 1356-1362. DOI:10.1126/science.aal4108
[67]Knorr W, Arneth A, Jiang L. Demographic controls of future global fire risk. Nature Climate Change, 2016, 6(8): 781-785. DOI:10.1038/nclimate2999
[68]Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré C L, Myneni R B, Piao S L, Thornton P, Metzl N, Wania R. Carbon and other biogeochemical cycles//Stocker TF, Qin D, Plattner GK, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press, 2013: 465-570.
[69]Van Leeuwen T T, Van Der Werf G R, Hoffmann A A, Detmers R G, Rücker G, French N H F, Archibald S, Carvalho Jr J A, Cook G D, De Groot W J, Hély C, Kasischke E S, Kloster S, McCarty J L, Pettinari M L, Savadogo P, Alvarado E C, Boschetti L, Manuri S, Meyer C P, Siegert F, Trollope L A, Trollope W S W. Biomass burning fuel consumption rates:a field measurement database. Biogeosciences, 2014, 11(24): 7305-7329. DOI:10.5194/bg-11-7305-2014
[70]Van Marle M J E, Kloster S, Magi B I, Marlon J R, Daniau AL, Field R D, Arneth A, Forrest M, Hantson S, Kehrwald N M, Knorr W, Lasslop G, Li F, Mangeon S, Yue C, Kaiser J W, Van Der Werf G R. Historic global biomass burning emissions for CMIP6(BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015). Geoscientific Model Development Discussions, 2017, 10(9): 3329-2257. DOI:10.5194/gmd-10-3329-2017
[71]Lehmann C E R, Anderson T M, Sankaran M, Higgins S I, Archibald S, Hoffmann W A, Hanan N P, Williams R J, Fensham R J, Felfili J, Hutley L B, Ratnam J, Jose J S, Montes R, Franklin D, Russell-Smith J, Ryan C M, Durigan G, Hiernaux P, Haidar R, Bowman D M J S, Bond W J. Savanna vegetation-fire-climate relationships differ among continents. Science, 2014, 343(6170): 548-552. DOI:10.1126/science.1247355
[72]Bond-Lamberty B, Peckham S D, Ahl D E, Gower S T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 2007, 450(7166): 89-92. DOI:10.1038/nature06272
[73] [74]Yue C, Ciais P, Cadule P, Thonicke K, Van Leeuwen T T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE-Part 2:carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 2015, 8(5): 1321-1338. DOI:10.5194/gmd-8-1321-2015
[75]Hantson S, Arneth A, Harrison S P, Kelley D I, Prentice I C, Rabin S S, Archibald S, Mouillot F, Arnold S R, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan J O, Kloster S, Knorr W, Lasslop G, Li F, Mangeon S, Melton J R, Meyn A, Sitch S, Spessa A, Van Der Werf G R, Voulgarakis A, Yue C. The status and challenge of global fire modelling. Biogeosciences, 2016, 13(11): 3359-3375. DOI:10.5194/bg-13-3359-2016
[76] [77]Galanter M, Levy II H, Carmichael G R. Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research:Atmospheres, 2000, 105(D5): 6633-6653. DOI:10.1029/1999JD901113
[78]Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque J F, Gregoire J M, Pétron G. Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment, 2010, 44(11): 1469-1477. DOI:10.1016/j.atmosenv.2010.01.011
[79]Lohmann U, Feichter J. Global indirect aerosol effects:a review. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737. DOI:10.5194/acp-5-715-2005
[80]Lee K H, Kim J E, Kim Y J, Kim J, Von Hoyningen-Huenec W. Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmospheric Environment, 2005, 39(1): 85-99. DOI:10.1016/j.atmosenv.2004.09.032
[81]Chan C Y, Wong K H, Li Y S, Chan L Y, Zheng X D. The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest China. Tellus B:Chemical and Physical Meteorology, 2006, 58(4): 310-318. DOI:10.1111/j.1600-0889.2006.00187.x
[82]Beck P S A, Goetz S J, Mack M C, Alexander H D, Jin Y F, Randerson J T, Loranty M M. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 2011, 17(9): 2853-2866. DOI:10.1111/j.1365-2486.2011.02412.x
[83]Jin Y F, Randerson J T, Goetz S J, Beck P S A, Loranty M M, Goulden M L. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research:Biogeosciences, 2012, 117(G1): G01036.
[84]Rogers B M, Randerson J T, Bonan G B. High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences, 2013, 10(2): 699-718. DOI:10.5194/bg-10-699-2013
[85]Harden J W, Manies K L, Turetsky M R, Neff J C. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biology, 2006, 12(12): 2391-2403. DOI:10.1111/j.1365-2486.2006.01255.x
[86]O'Donnell J A, Harden J W, Mcguire A D, Kanevskiy M Z, Jorgenson M T, Xu X M. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska:implications for post-thaw carbon loss. Global Change Biology, 2011, 17(3): 1461-1474. DOI:10.1111/j.1365-2486.2010.02358.x
[87]Cochrane M A, Alencar A, Schulze M D, Souza Jr C M, Nepstad D C, Lefebvre P, Davidson E A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 1999, 284(5421): 1832-1835. DOI:10.1126/science.284.5421.1832
[88]Cochrane M A. Fire science for rainforests. Nature, 2003, 421(6926): 913-919. DOI:10.1038/nature01437
[89]Aragão L E O C, Anderson L O, Fonseca M G, Rosan T M, Vedovato L B, Wagner F H, Silva C V J, Silva Junior C H L, Arai E, Aguiar A P, Barlow J, Berenguer E, Deeter M N, Domingues L G, Gatti L, Gloor M, Malhi Y, Marengo J A, Miller J B, Phillips O L, Saatchi S. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9(1): 536. DOI:10.1038/s41467-017-02771-y
[90]Hoffmann W A, Adasme R, Haridasan M, De Carvalho M T, Geiger E L, Pereira M A B, Gotsch S G, Franco A C. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 2009, 90(5): 1326-1337. DOI:10.1890/08-0741.1
[91]Balch J K, Brando P M, Nepstad D C, Coe M T, Silvério D, Massad T J, Davidson E A, Lefebvre P, Oliveira-Santos C, Rocha W, Cury R T S, Parsons A, Carvalho K S. The susceptibility of southeastern Amazon forests to fire:Insights from a large-scale burn experiment. BioScience, 2015, 65(9): 893-905. DOI:10.1093/biosci/biv106
[92]Certini G. Effects of fire on properties of forest soils:a review. Oecologia, 2005, 143(1): 1-10. DOI:10.1007/s00442-004-1788-8
[93]Pierce J L, Meyer G A, Jull A J T. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature, 2004, 432(7013): 87-90. DOI:10.1038/nature03058
[94] [95]Han J, Shen Z H, Li Y Y, Luo C F, Xu Q, Yang K, Zhang Z M. Beta diversity patterns of post-fire forests in central Yunnan Plateau, southwest China:disturbances intensify the priority effect in the community assembly. Frontiers in Plant Science, 2018, 9: 1000. DOI:10.3389/fpls.2018.01000
[96] [97]Hu T X, Sun L, Hu H Q, Weise D R, Guo F T. Soil respiration of the Dahurian Larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing'an Mountains, China. Scientific Reports, 2017, 7: 2967. DOI:10.1038/s41598-017-03325-4
[98]Wirth C. Fire regime and tree diversity in boreal forests: implications for the carbon cycle//Scherer-Lorenzen M, Körner C, Schulze E D. Forest Diversity and Function. Berlin, Heidelberg: Springer, 2005: 309-344.
[99]Wooster M J, Zhang Y H. Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters, 2004, 31(20): L20505. DOI:10.1029/2004GL020805
[100]De Groot W J, Cantin A S, Flannigan M D, Soja A J, Gowman L M, Newbery A. A comparison of Canadian and Russian boreal forest fire regimes. Forest Ecology and Management, 2013, 294: 23-34. DOI:10.1016/j.foreco.2012.07.033
[101]Gauthier S, Bernier P, Kuuluvainen T, Shvidenko A Z, Schepaschenko D G. Boreal forest health and global change. Science, 2015, 349(6250): 819-822. DOI:10.1126/science.aaa9092
[102]Fernandes P M, Vega J A, Jiménez E, Rigolot E. Fire resistance of European pines. Forest Ecology and Management, 2008, 256(3): 246-255. DOI:10.1016/j.foreco.2008.04.032
[103]Catry F X, Rego F, Moreira F, Fernandes P M, Pausas J G. Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management, 2010, 260(7): 1184-1192. DOI:10.1016/j.foreco.2010.07.010
[104]Woolley T, Shaw D C, Ganio L M, Fitzgerald S. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. International Journal of Wildland Fire, 2012, 21(1): 1-35. DOI:10.1071/WF09039
[105]Catry F X, Pausas J G, Moreira F, Fernandes P M, Rego F. Post-fire response variability in Mediterranean Basin tree species in Portugal. International Journal of Wildland Fire, 2013, 22(7): 919-932. DOI:10.1071/WF12215
[106]Keeley J E, Pausas J G, Rundel P W, Bond W J, Bradstock RA. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 2011, 16(8): 406-411. DOI:10.1016/j.tplants.2011.04.002
[107]Pausas J G. Evolutionary fire ecology:lessons learned from pines. Trends in Plant Science, 2015, 20(5): 318-324. DOI:10.1016/j.tplants.2015.03.001
[108]Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets V, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. DOI:10.1038/nature02403
[109]Lamont B B, He T H. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 2012, 12: 223. DOI:10.1186/1471-2148-12-223
[110] [111]Glasspool I J, Edwards D, Axe L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 2004, 32(5): 381-383. DOI:10.1130/G20363.1
[112]Pausas J G, Keeley J E. A burning story:the role of fire in the history of life. BioScience, 2009, 59(7): 593-601. DOI:10.1525/bio.2009.59.7.10
[113] [114]Bond W J, Scott AC. Fire and the spread of flowering plants in the cretaceous. New Phytologist, 2010, 188(4): 1137-1150. DOI:10.1111/j.1469-8137.2010.03418.x
[115]Watson J, Alvin K L. An English Wealden floral list, with comments on possible environmental indicators. Cretaceous Research, 1996, 17(1): 5-26. DOI:10.1006/cres.1996.0002
[116]He T H, Pausas J G, Belcher C M, Schwilk D W, Lamont BB. Fire-adapted traits of Pinus arose in the fiery cretaceous. New Phytologist, 2012, 194(3): 751-759. DOI:10.1111/j.1469-8137.2012.04079.x
[117]Schwilk D W, Ackerly D D. Flammability and serotiny as strategies:correlated evolution in pines. Oikos, 2001, 94(2): 326-336. DOI:10.1034/j.1600-0706.2001.940213.x
[118]Fonda R W, Belanger L A, Burley LL. Burning characteristics of western conifer needles. Northwest Science, 1998, 72(1): 1-9.
[119]Bradshaw S D, Dixon KW, Hopper S D, Lambers H, Turner S R. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Science, 2011, 16(2): 69-76.
[120]Hopper S D. OCBIL theory:towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant and Soil, 2009, 322(1/2): 49-86.
[121]Crisp M D, Burrows G E, Cook LG, Thornhill A H, Bowman DM J S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nature Communications, 2011, 2: 193. DOI:10.1038/ncomms1191
[122]Keeley J E, Fotheringham C J. Role of fire in regeneration from seed//Fenner M, ed. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. Wallingford, UK: Western Ecological Research Center, 2000: 311-330.
[123]Flematti G R, Ghisalberti E L, Dixon K W, Trengove R D. A compound from smoke that promotes seed germination. Science, 2004, 305(5686): 977. DOI:10.1126/science.1099944
[124]Flematti G R, Merritt D J, Piggott M J, Trengove R D, Smith S M, Dixon K W, Ghisalberti E L. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2011, 2: 360. DOI:10.1038/ncomms1356
[125]Lamont B B, Downes K S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecology, 2011, 212(12): 2111-2125. DOI:10.1007/s11258-011-9987-y
[126]Bond W J, Midgley JJ. Kill thy neighbour:an individualistic argument for the evolution of flammability. Oikos, 1995, 73(1): 79-85. DOI:10.2307/3545728
[127]Grace S L, Platt W J. Effects of adult tree density and fire on the demography of pregrass stage juvenile longleaf pine (Pinus palustris Mill.). Journal of Ecology, 1995, 83(1): 75-86. DOI:10.2307/2261152
[128]Rodríguez-Trejo A D, Fulé P Z. Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 2003, 12(1): 23-37. DOI:10.1071/WF02040
[129]Pausas J G, Alessio G A, Moreira B, Corcobado G. Fires enhance flammability in Ulexparviflorus. New Phytologist, 2012, 193(1): 18-23. DOI:10.1111/j.1469-8137.2011.03945.x
[130] [131]Hernández-Serrano A, Verdú M, González-Martínez S C, Pausas J G. Fire structures pine serotiny at different scales. American Journal of Botany, 2013, 100(12): 2349-2356. DOI:10.3732/ajb.1300182
[132]Stephens S L, Libby W J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. Journal of Biogeography, 2006, 33(4): 648-652. DOI:10.1111/j.1365-2699.2005.01387.x
[133]Nelson C D, Weng C, Kubisiak T L, Stine M, Brown CL. On the number of genes controlling the grass stage in longleaf pine. Journal of Heredity, 2003, 94(5): 392-398. DOI:10.1093/jhered/esg086
[134]Verdú M, Pausas J G, Segarra-Moragues J G, Ojeda F. Burning phylogenies:fire, molecular evolutionary rates, and diversification. Evolution, 2007, 61(9): 2195-2204. DOI:10.1111/j.1558-5646.2007.00187.x
相关知识
A review on wildfire studies in the context of global change
Responses of soil microbial community to global climate change: a review
A review of the potential impacts of climate change on water environment in lakes and reservoirs
土壤种子库特征对全球变化和人类活动的响应: 研究进展与展望
Research Progress of Terrestrial Plants N/P Ecological Stoichiometry under Global Change
Responses of terrestrial ecosystem water use efficiency to climate change: a review
互花米草入侵对滨海湿地生态系统的影响研究进展
Ecological Impacts of Climate Change and Adaption Strategies
'Islands and Beaches': The Pacific and Indian Oceans in the Long Nineteenth Century——Reading List A1
Overview of methods for assessing the vulnerability of wildlife to climate change
网址: A review on wildfire studies in the context of global change https://www.huajiangbk.com/newsview2337988.html
上一篇: 青春专线 | 我和春天有个约会! |
下一篇: 第一人称 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039