首页 分享 Overview of methods for assessing the vulnerability of wildlife to climate change

Overview of methods for assessing the vulnerability of wildlife to climate change

来源:花匠小妙招 时间:2024-11-12 03:26
[1] Intergovernmental Panel on Climate change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland:IPCC,2014: 151. [2]Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F.Impacts of climate change on the future of biodiversity.Ecology Letters, 2012, 15(4): 365–377.DOI:10.1111/j.1461-0248.2011.01736.x [3] Cramer W, Yohe G W, Auffhammer M, Huggel U, Molau U, Da Sliva Dias M A F, Solow A, Stone D A, Tibig L. Detection and attribution of observed impacts//Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, White L L, eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspect. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press, 2014: 979-1037. [4]Chen I C, Hill J K, Ohlemüller R, Roy D B, Thomas C D.Rapid range shifts of species associated with high levels of climate warming.Science, 2011, 333(6045): 1024–1026.DOI:10.1126/science.1206432 [5]Ancillotto L, Santini L, Ranc N, Maiorano L, Russo D.Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation.The Science of Nature, 2016, 103(3/4): 15–15. [6]Auer S K, Martin T E.Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success.Global Change Biology, 2013, 19(2): 411–419.DOI:10.1111/gcb.2012.19.issue-2 [7]Yan C, Stenseth N C, Krebs C J, Zhang Z B.Linking climate change to population cycles of hares and lynx.Global Change Biology, 2013, 19(11): 3263–3271. [8]Yang L H, Rudolf V H W.Phenology, ontogeny and the effects of climate change on the timing of species interactions.Ecology Letters, 2013, 13(1): 1–10. [9]Lučan R K, Weiser M, Hanák V.Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat.Journal of Zoology, 2013, 290(2): 151–159.DOI:10.1111/jzo.2013.290.issue-2 [10]Charmantier A, Gienapp P.Climate change and timing of avian breeding and migration: evolutionary versus plastic changes.Evolutionary Applications, 2014, 7(1): 15–28.DOI:10.1111/eva.12126 [11]Koen E L, Bowman J, Murray D L, Wilson P J.Climate change reduces genetic diversity of Canada Lynx at the trailing range edge.Ecography, 2013, 37(8): 375–762. [12]Rinawati F, Stein K, Lindner A.Climate change impacts on biodiversity-the setting of a lingering global crisis.Diversity, 2013, 5(1): 114–123.DOI:10.3390/d5010114 [13]Urban M C.Accelerating extinction risk from climate change.Science, 2016, 348(6234): 571–573. [14] United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris agreement. Report No. FCCC/CP/2015/L.9/Rev.1. 2015. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. [15]Thomas C D, Cmeron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B F N, de Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T, Phillips O L, Williams S E.Extinction risk from climate change.Nature, 2004, 427(6970): 145–148.DOI:10.1038/nature02121 [16]Malcolm J R, Liu C R, Neilson R P, Hansen L, Hannah L.Global warming and extinctions of endemic species from biodiversity hotspots.Conservation Biology, 2006, 20(2): 538–548.DOI:10.1111/cbi.2006.20.issue-2 [17]Pereira H M, Leadley P W, Proença V, Alkemade R, Scharlemann J P W, Fernandez-Manjarrés J F, Araújo M B, Balvanera P, Biggs R, Cheung W W L, Chini L, Cooper H D, Gilman E L, Guénette S, Hurtt G C, Huntington H P, Mace G M, Oberdorff T, Revenga C, Rodrigues P, Scholes R J, Sumaila U R, Walpole M.Scenarios for global biodiversity in the 21st century.Science, 2010, 330(6010): 1496–1501.DOI:10.1126/science.1196624 [18]Levinsky I, Skov F, Svenning J C, Rahbek C.Potential impacts of climate change on the distributions and diversity patterns of European mammals.Biodiversity and Conservation, 2007, 16(13): 3830–3816. [19]Arribas P, Abellán P, Velasco J, Bilton D, Millán A, Sánchez-Fernández D.Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies.Global Change Biology, 2012, 18(7): 2135–2146.DOI:10.1111/j.1365-2486.2012.02691.x [20]Foden W B, Butchart S H M, Stuart S N, Vié J C, Akçakaya H R, Angulo A, DeVantier L M, Gutsche A, Turak E, Cao L, Donner S D, Katariya V, Bernard R, Holland R A, Hughes A F, O'Hanlon S E, Garnett S T, Şekercioğlu C H, Mace G M.Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.PLoS One, 2013, 8(6): e65427.DOI:10.1371/journal.pone.0065427 [21] Oppenheimer M M, Campos M, Warren R, Birkmann J, Luber G, O'Neill B, Takahashi K. Emergent risks and key vulnerabilities//Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, White L L, eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspect. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press, 2014: 1039-1099. [22] 环境保护部. 中国生物多样性保护战略与行动计划. 北京:中国环境科学出版社,2011. [23]吴建国, 吕佳佳, 艾丽.气候变化对生物多样性的影响:脆弱性和适应.生态环境学报, 2009, 18(2): 693–703. [24] Intergovernmental Panel on Climate change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge, UK:Cambridge University Press,2007: 976–976. [25]Gallopin G C.Linkages between vulnerability, resilience, and adaptive capacity.Global Environmental Change, 2006, 16(3): 293–303.DOI:10.1016/j.gloenvcha.2006.02.004 [26]Williams S E, Shoo L P, Isaac J L, Hoffmann A A, Langham G.Towards an integrated framework for assessing the vulnerability of species to climate change.PLoS Biology, 2008, 6(12): 2621–2626. [27] Foden W B, Pacifici M, Hole D. Chapter 2. Setting the scene//Foden W B, Young B E, eds. IUCN SSC guidelines for assessing species' vulnerability to climate change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No.59. Gland, Switzerland and Cambridge, UK, 2016: 5-11. [28] Glick P, Stein B A, Edelson N A. Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. Washington, D. C:National Wildlife Federation,2011. [29]Dawson T P, Jackson S T, House J I, Prentice I C, Mace G M.Beyond predictions: biodiversity conservation in a changing climate.Science, 2011, 332(6025): 53–58.DOI:10.1126/science.1200303 [30]Rowland E L, Davison J E, Graumlich L J.Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process.Environment Management, 2011, 47(3): 322–337.DOI:10.1007/s00267-010-9608-x [31] Stein B A, Glick P, Edelson N A, Staudt A. Climate-Smart Conservation: Putting Adaptation Principles Into Practice. Washington, D. C:National Wildlife Federation,2011. [32]Nicotra A B, Beever E A, Robertson A L, Hofmann G E, O'Leary J.Assessing the components of adaptive capacity to improve conservation and management efforts under global change.Conservation Biology, 2015, 29(5): 1268–1278.DOI:10.1111/cobi.12522 [33]Beever E A, O'Leary J, Mengelt C, West J M, Julius S, Green N, Magness D, Petes L, Stein B, Nicotra A B, Hellmann J J, Robertson A L, Staudinger M D, Rosenberg A A, Babij E, Brennan J, Schuurman G W, Hofmann G E.Improving conservation outcomes with a new paradigm for understanding species' fundamental and realized adaptive capacity.Conservation Letters, 2016, 9(2): 131–137.DOI:10.1111/conl.12190 [34]Tuberville T D, Andrews K M, Sperry J H, Grosse A M.Use of the NatureServe climate change vulnerability index as an assessment tool for reptiles and amphibians: lessons learned.Environmental Management, 2015, 56(4): 822–834.DOI:10.1007/s00267-015-0537-6 [35]Pearson R G, Dawson T P.Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?.Global Ecology and Biogeography, 2013, 12(5): 361–371. [36]Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loisell B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M M, Peterson A T, Phillips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberón J, Williams S, Wisz M S, Zimmermann N E.Novel methods improve prediction of species' distributions from occurrence data.Ecography, 2006, 29(2): 129–151.DOI:10.1111/j.2006.0906-7590.04596.x [37]Songer M, Delion M, Biggs A, Huang Q Y.Modeling impacts of climate change on giant panda habitat.International Journal of Ecology, 2012, 2012: 108752. [38]Lawler J J, Shafer S L, Bancroft B A, Blaustein A R.Projected climate change impacts for the amphibians of the Western Hemisphere.Conservation Biology, 2010, 24(1): 38–50.DOI:10.1111/cbi.2010.24.issue-1 [39]Thuiller W, Lavorel S, Araújo M B.Niche properties and geographical extent as predictors of species sensitivity to climate change.Global Ecology and Biogeography, 2005, 14(4): 347–357.DOI:10.1111/geb.2005.14.issue-4 [40]Heikkinen R K, Luoto M, Leikola N, Pöyry J, Settele J, Kudrna O, Marmion M, Fronozek S, Thuiller W.Assessing the vulnerability of European butterflies to climate change using multiple criteria.Biodiversity and Conservation, 2010, 19(3): 695–723.DOI:10.1007/s10531-009-9728-x [41] Kane A, Burkett TC, Kloper S, Sewall J. Virginia's Climate Modeling and Species Vulnerability Assessment: How Climate Data Can Inform Management and Conservation. Reston, Virginia:National Wildlife Federation,2013. [42]Lawler J J, Shafer S L, White D, Kareiva P, Maurer E P, Blaustein A R, Bartlein P.Projected climate-induced faunal change in the western Hemisphere.Ecology, 2009, 90(3): 588–597.DOI:10.1890/08-0823.1 [43]Sinervo B, Mendez-de-la-Cruz F, Miles D B, Heulin B, Bastiaans E, Cruz M V S, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa M L, Meza-Lázaro R N, Gadsden H, Avila L J, Morando M, De La Riva I J, Sepulveda P V, Rocha C F D, Ibargüengoytía N, Puntriano C A, Massot M, Lepetz V, Oksanen T A, Chapple D G, Bauer A M, Branch W R, Clobert J, Sites J W Jr.Erosion of lizard diversity by climate change and altered thermal niches.Science, 2010, 328(5980): 894–899.DOI:10.1126/science.1184695 [44]Pearson R G, Stanton K T, Shoemaker M E, Aiello-Lammens M E, Ersts P J, Horning N, Fordham D A, Raxworthy C J, Ryu H Y, McNees J, Akçakaya H R.Life history and spatial traits predict extinction risk due to climate change.Nature Climate Change, 2014, 4(3): 217–221.DOI:10.1038/nclimate2113 [45]Polocazanska E S, Brown C J, Sydeman W J, Kiessling W, Schoeman D S, Moore P J, Brander K, Bruno J F, Buckley J B, Burrows M T, Duarte C M, Halpern B S, Holding J, Kappel C V, O'Connor M I, Pandolfi J M, Parmesan C, Schwing F, Thompson S A, Richardson A J.Global imprint of climate change on marine life.Nature Climate Change, 2013, 3(10): 919–925.DOI:10.1038/nclimate1958 [46]Adams-Hosking C, Grantham H S, Rhodes J R, McAlpine C, Moss P T.Modeling climate-change-induced shifts in the distribution of the koala.Wildlife Research, 2011, 38(2): 122–130.DOI:10.1071/WR10156 [47]MacCracken J G, Garlich-Miller J, Snyder J, Meehan R, Meehan R.Bayesian belief network models for species assessments: An example with the pacific walrus.Wildlife Society Bulletin, 2013, 37(1): 226–235.DOI:10.1002/wsb.229 [48]Forrest J L, Wikramanayake E, Shresha R, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa G J, Thapa K.Conservation and climate change: Assessment the vulnerability of snow leopard habitat to treeline shift in the Himalaya.Biological Conservation, 2012, 150(1): 129–135.DOI:10.1016/j.biocon.2012.03.001 [49]Fan J T, Li J S, Xia R, Hu L L, Wu X P, Li G.Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China.Ecological Modelling, 2014, 274: 12–20.DOI:10.1016/j.ecolmodel.2013.11.023 [50]Li R Q, Xu M, Wong M H G, Qiu S, Li X H, Ehrenfeld D, Li D M.Climate change threatens giant panda protection in the 21st century.Biological Conservation, 2015, 182: 93–101.DOI:10.1016/j.biocon.2014.11.037 [51]Bertelsmeier C, Guénard B, Courchamp F.Climate change may boost the invasion of the Asian needle ant.PLoS One, 2013, 8(10): e75438.DOI:10.1371/journal.pone.0075438 [52]Ficetola G F, Maiorano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W.Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs.Global Change Biology, 2010, 16(2): 528–537.DOI:10.1111/gcb.2010.16.issue-2 [53]Reshetnikov A N, Ficetola G F.Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic.Biological Invasions, 2011, 13(12): 2967–2980.DOI:10.1007/s10530-011-9982-1 [54] Young B E, Hall K R, Byers E, Gravuer K, Hammerson G, Redder A, Szabo K. Rapid assessment of plant and animal vulnerability to climate change//Brodie J, Post E, Doak D, eds. Wildlife Conservation in A Changing Climate. Chicago, IL: University of Chicago Press. 2012: 129-150. [55]Pacifici M, Foden W B, Visconti P, Watson J E M, Butchart S H M, Kovacs K M, Scheffers B R, Hole D G, Martin T G, Akçakaya H R, Corlett R T, Huntley B, Bickford D, Carr J A, Hoffmann A A, Midgley G F, Pearce-Kelly P, Pearson R G, Williams S E, Willis S G, Young B, Rondinini C.Assessing species vulnerability to climate change.Nature Climate Change, 2015, 5(3): 215–225.DOI:10.1038/nclimate2448 [56]Naveda-Rodríguez A, Vargas F H, Kohn S, Zapata-Ríos G.Andean Condor (Vultur gryphus) in Ecuador: Geographic distribution, population size and extinction risk.PLoS One, 2016, 11(3): e0151827.DOI:10.1371/journal.pone.0151827 [57]Jenouvrier S, Caswell H, Barbraud C, Hollan M, Stroeve J, Weimerskirch H, Cohen J E.Demographic models and IPCC climate projections predict the decline of an emperor penguin population.Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1844–1847.DOI:10.1073/pnas.0806638106 [58]Overgaard J, Kearney M R, Hoffmann A A.Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.Global Change Biology, 2014, 20(6): 1738–1750.DOI:10.1111/gcb.12521 [59]Huey R B, Kearney M R, Krockenberger A, Holtum J A M, Jess M, Williams S E.Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.Philosophical Transactions of the Royal Society B, 2012, 19(1596): 1665–1679. [60]Sunday J, Bates A E, Dulvy N K.Thermal tolerance and the global redistribution of animals.Nature Climate Change, 2012, 2(9): 686–690.DOI:10.1038/nclimate1539 [61]Lancaster L T.Widespread range expansions shape latitudinal variation in insect thermal limits.Nature Climate Change, 2016, 6(6): 618–621.DOI:10.1038/nclimate2945 [62]Schloss C A, Nuñez T A, Lawler J J.Dispersal will limit ability of mammals to track climate change in the Western Hemisphere.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8606–8611.DOI:10.1073/pnas.1116791109 [63]Morin X, Thuiller W.Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change.Ecology, 2009, 90(5): 1301–1313.DOI:10.1890/08-0134.1 [64] Young B E, Byers E, Hammerson G, Frances A, Oliver L, Treher A. Guidelines for Using the NatureServe Climate Change Vulnerability Index (Release 3. Arlington, VA:NatureServe,2015. [65]Gardali T, Seavy N E, DiGaudio R, Comrack L A.A climate change vulnerability assessment of California's at-risk bird.PLoS One, 2012, 7(3): e29507.DOI:10.1371/journal.pone.0029507 [66]Young B E, Dubois N S, Rowland E L.Using the climate change vulnerability index to inform adaptation planning: lessons, innovations, and next steps.Wildlife Society Bulletin, 2014, 39(1): 174–181. [67]Siegel R B, Pyle P, Thorne J H, Holguin A J, Howell C A, Stock S, Tingley M W.Vulnerability of birds to climate change in California's Sierra Nevada.Avian Conservation and Ecology, 2014, 9(1): 7–7.DOI:10.5751/ACE-00658-090107 [68] Dubois N, Caldas A, Boshoven J, Delach A. Integrating Climate Change Vulnerability Assessments Into Adaptation Planning: A Case Study Using the NatureServe Climate Change Vulnerability Index to Inform Conservation Planning for Species in Florida. Washington D. C:Defenders of Wildlife,2011. [69] Foden W, Mace G M, Vié J C, Angulo A, Butchart S, DeVantier L, Dublin H, Gutsche A, Stuart S N, Turak E. Species susceptibility to climate change impacts//Vié J C, Hiton-Taylor C, Stuart S N, eds. The 2008 review of the IUCN Red List of threatened species. Switzerland: IUCN Gland, 2008. [70] Foden W B, Young B E. IUCN SSC guidelines for assessing species' vulnerability to climate change. Version 1. 0. occasional paper of the IUCN species survival commission No. 59. Cambridge. UK and Gland, Switzerland: IUCN Species Survival Commission, 2016: X+114pp. [71]Foden W B, Butchart S H M, Stuart S N, Vié J C, Akçakaya H R, Angulo A, DeVantier L M, Gutsche A, Turak E, Cao L, Donner S D, Katariya V, Bernard R, Holland R A, Hughes A F, O'Hanlon S E, Garnett S T, Şekercioğlu C H, Mace G M.Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.PLoS One, 2013, 8(6): e65427.DOI:10.1371/journal.pone.0065427 [72] Carr J A, Outhwaite W E, Goodman G L, Oldfield T E E, Foden W B. Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa's Albertine Rift. Occasional Paper of the IUCN Species Survival Commission No. 48. Gland, Switzerland and Cambridge, UK: IUCN, 2013: Xii+224. [73] U.S. Environmental Protection Agency (EPA). A Framework for Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change (External Review Draft). Washington, DC:U.S. Environmental Protection Agency,2009. [74] U.S. Fish and Wildlife Service. Final Recovery Plan for the Mexican Spotted Owl (Strix occidentalis lucida), first revision. U.S. Fish and Wildlife Service. New Mexico, USA: Albuquerque, 2012: 413-413. [75]Moyle P B, Kiernan K D, Crain P K, Muiñones R M.Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.PLoS One, 2013, 8(5): e63883.DOI:10.1371/journal.pone.0063883 [76] Bagne K E, Friggens M M, Finch D M. A System for Assessing Vulnerability of Species (SAVS) to Climate Change. Gen. Tech. Rep. RMRS-GTR-257. Fort Collins, CO. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2011: 28-28. http://onlinelibrary.wiley.com/doi/10.1002/ece3.2981/full [77] Bagne K E, Finch DM. Vulnerability of Species to Climate Change in the Southwest: Threatened, Endangered, and Risk Species at the Barry M. Goldwater Range, Arizona. Gen. Tech. Rep. RMRS-GTR-257. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2012: 139-139. [78] Friggens M M, Finch D M, Bagne K E, Coe S J, Hawksworth D L. Vulnerability of species to climate change in the Southwest: terrestrial species of the middle Rio Grande. Gen. Tech. Rep. RMRS-GTR-306. Fort Collins, CO. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2013: 191-191. [79]Reece J S, Noss R F.Prioritizing species by conservation value and vulnerability: a new index applied to species threatened by sea-level rise and other risks in Florida.Natural Areas Journal, 2014, 34(1): 31–45.DOI:10.3375/043.034.0105 [80]Reece J S, Noss R F, Oetting J, Hoctor T, Volk M.A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.PLoS One, 2013, 8(11): e80658.DOI:10.1371/journal.pone.0080658 [81]Benscoter A M, Reece J S, Noss R F, Brandt L A, Mazzotti F J, Romañach S S, Watling J I.Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation.PLoS One, 2013, 8(8): e70647.DOI:10.1371/journal.pone.0070647 [82]Addo-Bediako A, Chown S L, Gaston K J.Thermal tolerance, climatic, variability and latitude.Proceedings of the Royal Society B: Biological Sciences, 2000, 267(1445): 739–745.DOI:10.1098/rspb.2000.1065 [83]Jiang G S, Ma J Z, Zhang M H, Stott P.Multiple spatial-scale resource selection function models in relation to human disturbance for moose in northeastern China.Ecological Research, 2009, 24(2): 423–440.DOI:10.1007/s11284-008-0519-8 [84]Jeschke J M, Strayer D L.Usefulness of bioclimatic models for studying climate change and invasive species.Annals of the New York Academy of Sciences, 2008, 1134(1): 1–24.DOI:10.1196/nyas.2008.1134.issue-1 [85]Carvalho S B, Brito J C, Crespo E J, Possingham H P.From climate change predictions to actions-conservation vulnerable animals groups in hotspots at a regional scale.Global Change Biology, 2010, 16(12): 3257–3270.DOI:10.1111/j.1365-2486.2010.02212.x [86]Hole D G, Huntley B, Arinaitwe J, Butchart S H M, Collingham Y C, Fishpool L D C, Pain D J, Willis S G.Toward a management framework for networks of protected areas in the face of climate change.Conservation Biology, 2011, 25(2): 305–315. [87]Beechie T, Imaki H, Greene J, Wade A, Wu H, Pess G, Roni P, Kimball J, Stanford J, Kiffney P, Mantua N.Restoring salmon habitat for a changing climate.River Research and Applications, 2013, 28(8): 939–960. [88]Ashcroft M B.Identifying refugia from climate change.Journal of Biogeography, 2010, 37(8): 1407–1413. [89]Li J, McCarthy T M, Wang H, Weckworth B V, Schaller G B, Mishra C, Lu Z, Beissinger S R.Climate refugia of snow leopards in high Asia.Biological Conservation, 2016, 203: 188–196.DOI:10.1016/j.biocon.2016.09.026 [90] Belle E M S, Burgess N D, Misrachi M, Arnell A, Masumbuko B, Somda J, Hartley A, Jones R, Janes T, McSweeney C, Mathison C, Buontempo C, Butchart S, Willis S G, Baker D J, Carr J, Hughes A, Foden W, Smith R J, Smith J, Stolton S, Dudley N, Hockings M, Mulongoy J, Kingston N. Climate change impacts on biodiversity and protected area in West Africa, Summary of the main outputs of the PARCC project, Protected area resilient to climate change in West Africa. Cambridge, UK:UNEP-WCMC,2016. [91]Hannah L, Midgley G, Andelman S, Araujo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P.Protected area needs in a changing climate.Frontiers in Ecology and the Environment, 2007, 5(3): 131–138.DOI:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2 [92] Gross J, Watson J, Woodley S, Welling L, Harmon D. Responding to Climate Change: Guidance for Protected Area Managers and Planners. IUCN WCPA Best Practice Protected Area Guidelines Series No. XX. Gland, Switzerland: IUCN, 2015. [93] Foden W, Akçakaya R. Chapter 7. The IUCN Red List and Climate Change Vulnerability//Foden W B, Young B E, eds. IUCN SSC Guidelines for Assessing Species' Vulnerability to Climate Change. Version 1. 0. Occasional Paper of the IUCN Species Survival Commission No. 59. Gland, Switzerland and Cambridge, UK, 2016: 57-58. [94] 科学技术部社会发展科技司, 中国21世纪义程管理中心. 适宜气候变化国家战略研究. 北京:科学出版社,2011. [95]Wu X P, Lin X, Zhang Y, Gao J J, Guo L, Li Z S.Impacts of climate change on ecosystem in priority areas of biodiversity conservation in China.Chinese Science Bulletin, 2014, 59(34): 4668–4680.DOI:10.1007/s11434-014-0612-z [96]Li X Y, Clinton N, Si Y L, Liao J S, Liang L, Gong P.Projected impacts of climate change on protected birds and nature reserves in China.Chinese Science Bulletin, 2015, 60(19): 1644–1653. [97] 蒋志刚. 保护生物学原理. 北京:科学出版社,2014. [98]Shen Z H, Ma K P.Effects of climate change on biodiversity.Chinese Science Bulletin, 2014, 59(34): 4637–4638.DOI:10.1007/s11434-014-0654-2 [99]杜寅, 周放, 舒晓莲, 李一琳.全球气候变暖对中国鸟类区系的影响.动物分类学报, 2009, 34(3): 664–674. [100]Ge Q S, Wang H J, Rutishauser T, Dai J H.Phenological response to climate change in China: a meat-analysis.Global Change Biology, 2015, 24(1): 265–274. [101]Jiang G S, Liu J, Xu L, Yu G R, He H L, Zhang Z B.Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem.Integrative Zoology, 2013, 8(2): 162–174.DOI:10.1111/inz.2013.8.issue-2 [102]Jiang G, Zhao T, Liu J, Xu L, Yu G, He H, Krebs C J, Zhang Z.Effects of ENSO-linked climate change and vegetation on population dynamics of sympatric rodent species in semiarid grasslands of Inner Mongolia, China.Canadian Journal of Zoology, 2011, 89(8): 679–691. [103]马瑞俊, 蒋志刚.全球气候变化对野生动物的影响.生态学报, 2005, 25(11): 3061–3066.DOI:10.3321/j.issn:1000-0933.2005.11.037 [104] 杨海龙. 库姆塔格沙漠地区野骆驼栖息地分析及气候变化影响[D]. 北京: 中国林业科学研究院, 2011. http://d.wanfangdata.com.cn/Thesis/D603360 [105]Luo Z H, Zhou S R, Yu W D, Yu H L, Yang J Y, Tian Y H, Zhao M, Wu H.Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China.American Journal of Primatology, 2014, 77(2): 135–151. [106]Hu J H, Hu H J, Jiang Z G.The impacts of climate change on the wintering distribution of an endangered migratory bird.Oecologia, 2010, 164(2): 555–565.DOI:10.1007/s00442-010-1732-z [107]Lu N, Jing Y, Lloyd H, Sun Y H.Assessing the distributions and potential risks from climate change for the Sichuan Jay (Perisoreus internigrans).The Condor, 2012, 114(2): 365–376.DOI:10.1525/cond.2012.110030 [108]Lei J C, Xu H G, Cui P, Guang Q W, Ding H.The potential effects of climate change on suitable habitat for the Sichuan hill partridge (Arborophila rufipectus, Boulton): Based on the maximum entropy modelling.Polish Journal of Ecology, 2014, 62(4): 771–787.DOI:10.3161/104.062.0419 [109]Duan R Y, Kong X Q, Huang M Y, Varela S, Ji X.The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China.PeerJ, 2016, 4(10): e2185. [110]Luo Z H, Jiang Z G, Tang S H.Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.Ecological Applications, 2015, 25(1): 24–38.DOI:10.1890/13-1499.1 [111]Suggitt A J, Gillingham P K, Hill J K, Huntley B, Kunin W E, Roy D B, Thomas C D.Habitat microclimates drive fine-scale variation in extreme temperatures.Oikos, 2011, 120(1): 1–8.DOI:10.1111/more.2010.120.issue-1 [112]Franklin J, Davis F W, Ikegami M, Syphard A D, Flint L E, Flint A L, Hannah L.Modeling plant species distributions under future climates: how fine scale do climate projections need to be?.Global Change Biology, 2013, 19(2): 473–483.DOI:10.1111/gcb.2012.19.issue-2

相关知识

Ecological Impacts of Climate Change and Adaption Strategies
Response characteristics of ecosystems and soil conservation services to future climate change in the Three
Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China
A review of the potential impacts of climate change on water environment in lakes and reservoirs
Management strategy for biodiversity conservation to adapt to climate change in China
Research progress on the response processes of vegetation activity to climate change
Potential Impacts of Climate Change in Future on the Geographical Distributions of Relic Liriodendron chinense
Effect of future climate change on suitable areas of Rhododendrons in Guangdong
Prediction of potential distribution of Cypripedium macranthos under climate change scenarios in China
Responses of soil microbial community to global climate change: a review

网址: Overview of methods for assessing the vulnerability of wildlife to climate change https://www.huajiangbk.com/newsview500985.html

所属分类:花卉
上一篇: 夏季浙江省地域气候适应性民居热舒
下一篇: 内蒙古地带性针茅植物对CO2和气

推荐分享