品种选育与评价的原理和方法评述
来源:
时间:2025-09-15 14:50
[1] 赵洪璋. 小麦杂交育种工作的若干问题. 甘肃农业科技, 1982, (8): 1-3. Zhao H Z. Several issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1982, (8): 1-3. (in Chinese)[2] 赵洪璋. 小麦杂交育种的基本理论和三大问题. 甘肃农业科技, 1991, (2): 4-5. Zhao H Z. Basic theories and three major issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1991, (2): 4-5 (in Chinese)[3] 赵洪璋, 张海锋, 宋哲民. 小麦杂交育种工作中的若干问题. 陕西农业科学, 1981, (3): 1-8. Zhao H J, Zhang H F, Song Z M. Some issues in wheat hybridization breeding. Shaanxi Agric Sci, 1981, (3): 1-8 (in Chinese)[4] Yan W, Tinker N A, Bekele W A, Mitchell-Fetch J, Frégeau-Reid J. Theoretical unification and practical integration of conventional methods and genomic selection in plant breeding. Crop Breed Genet Genomic, 2019, 1: e190003. https://doi.org/10.20900/cbgg20190003.[5] Yan W. A systematic narration of some key concepts and procedures in plant breeding. Front Plant Sci, 2021, 12: 1863.[6] Duvick D N. Plant breeding, an evolutionary concept. Crop Sci, 1996, 36: 539-548.
doi: 10.2135/cropsci1996.0011183X003600030001x[7] Rasmusson D C, Phillips R L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci, 1997, 37: 303-310.
doi: 10.2135/cropsci1997.0011183X003700020001x[8] 李振声. 小麦远缘杂交新品种——小偃6号. 山西农业科学, 1986, (5): 30. Li Z S. New wheat cultivar from wide cross: Xiaoyan 6. Shanxi Agric Sci, 1986, (5): 30. (in Chinese)[9] Arrones A, Vilanova S, Plazas M, Mangino G, Pascual L, Díez M J, Prohens J, Gramazio P. The dawn of the age of multi-parent MAGIC populations in plant breeding: novel powerful next- generation resources for genetic analysis and selection of recombinant elite material. Biology, 2020, 9: 229.
doi: 10.3390/biology9080229[10] Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512[11] Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010, 9: 166-177.
doi: 10.1093/bfgp/elq001[12] Heslot N, Jannink J L, Sorrells M E. Perspectives for genomic selection applications and research in plants. Crop Sci, 2015, 55: 1-12.
doi: 10.2135/cropsci2014.03.0249[13] Osthushenrich T, Frisch M, Zenke-Philippi C, Jaiser H, Spiller M, Cselényi L, Krumnacker K, Boxberger S, Kopahnke D, Habekuß A, Ordon F. Prediction of means and variances of crosses with genome-wide marker effects in barley. Front Plant Sci, 2018, 9: 1899.
doi: 10.3389/fpls.2018.01899pmid: 30627135[14] Wang L, Zhu G, Johnson W, Kher M. Three new approaches to genomic selection. Plant Breed, 2018, 137: 673-681
doi: 10.1111/pbr.12640[15] Jean M, Cobe E, O’Donoughue L, Rajcan I, Belzile F. Improvement of key agronomical traits in soybean through genomic prediction of superior crosses. Crop Sci, 2021, 61: 3908-3918.
doi: 10.1002/csc2.20583[16] Eberhart S A. Factors affecting efficiencies of breeding methods. Afr Soils, 1970, 15: 655-680.[17] Cobb J N, Juma R U, Biswas P S, Arbelaez J D, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng E H. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet, 2019, 132: 627-645.
doi: 10.1007/s00122-019-03317-0[18] Zhou J, Nguyen H T. Solve the Breeder’s Equation using High- throughput Crop Phenotyping Technology. In: High-Throughput Crop Phenotyping (1-11). Wageningen, the Netherlands: Springer, 2021.[19] Comstock R E, Moll R H. Genotype-environment interactions. Stat Gen Plant Breed, 1963, 982: 164-196.[20] DeLacy I H, Basford K E, Cooper M, Bull J K, McLaren C G. Analysis of multienvironment trials—a historical perspective. In: Cooper M, Hammer G L, eds. Plant Adaptation and Crop Improvement. Wallingford (UK): IRRI/CABI, 1996. p 39124.[21] Atlin G N, Baker R J, McRae K B, Lu X. Selection response in subdivided target regions. Crop Sci, 2000, 40: 7-13.
doi: 10.2135/cropsci2000.4017[22] Yan W. Analysis and handling of G×E in a practical breeding program. Crop Sci, 2016, 2106-2118.[23] Cooper M, Voss-Fels K P, Messina C D, Tang T, Hammer G L. Tackling G×E×M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor Appl Genet, 2021, 134: 1625-1644.
doi: 10.1007/s00122-021-03812-3pmid: 33738512[24] Fehr W. Principles of Cultivar Development:Theory and Technique. New York, USA: Macmillian Publishing Company, 1991.[25] Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597-605.
doi: 10.2135/cropsci2000.403597x[26] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805 Yan W. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819 (in Chinese with English Abstract).[27] Atlin G N, Kleinknecht K, Singh K P, Piepho H P. Managing genotype × environment interaction in plant breeding programs: a selection theory approach. J Ind Soc Agric Stat, 2011, 65: 237-247.[28] Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014.[29] Yan W. Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Sci, 2015, 113-122.[30] Yan W. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data. Sci Rep, 2019, 9: 7130.
doi: 10.1038/s41598-019-43683-9[31] Gabriel K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58: 453-467.
doi: 10.1093/biomet/58.3.453[32] Yan W, Mitchell-Fetch J, Beattie A, Nilsen K T, Pageau D, DeHaan B, Hayes M, Mountain N, Cummiskey A, MacEachern D. Oat mega-environments in Canada. Crop Sci, 2021, 61: 1143-1153.[33] Yan W, Frégeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 2015, 361-372.[34] Yan W. Estimation of the optimal number of replicates in crop variety trials. Front Plant Sci, 2021, 11: 2231[35] Becker H C. Correlations among some statistical measures of phenotypic stability. Euphytica, 1981, 30: 835-840.
doi: 10.1007/BF00038812[36] Lin C S, Binns M R, Lefkovitch L P. Stability analysis: where do we stand? Crop Sci, 1986, 26: 894-900.
doi: 10.2135/cropsci1986.0011183X002600050012x[37] Huehn M. Nonparametric measures of phenotypic stability. Part 2: applications. Euphytica, 1990, 47: 195-201.
doi: 10.1007/BF00024242[38] Segherloo A E, Sabaghpour S H, Dehghani H, Kamrani M. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 2008, 162: 221-229.
doi: 10.1007/s10681-007-9552-x[39] Scapim C A, Pacheco C A P, do Amaral Jr A T, Vieira R A, Pinto R J B, Conrado T V. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica, 2010, 174: 209-218.
doi: 10.1007/s10681-010-0118-y[40] Eberhart S T, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x[41] Ceccarelli S. Wide adaptation: how wide? Euphytica, 1989, 40: 197-205.
doi: 10.1007/BF00024512[42] Zobel R W, Wright M J, Gauch Jr H G. Statistical analysis of a yield trial. Agron J, 1988, 80: 388-393.
doi: 10.2134/agronj1988.00021962008000030002x[43] Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-653.
doi: 10.2135/cropsci2006.06.0374[44] Lin C S, Binns M R. A superiority measure of cultivar performance for cultivar × location data. Can J Plant Sci, 1988, 68: 193-198.
doi: 10.4141/cjps88-018[45] Lin C S, Binns M R. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breed Rev, 1994, 12: 271-297.[46] Kang M S. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agron J, 1993, 85: 754-757.
doi: 10.2134/agronj1993.00021962008500030042x[47] Gauch Jr H G, Zobel R W. Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet, 1988, 76: 1-10.
doi: 10.1007/BF00288824pmid: 24231975[48] Yan W, Kang M S. GGE Biplot Analysis:a Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, USA: CRC Press, 2002.[49] Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
doi: 10.2135/cropsci2005.07-0193[50] Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci, 2008, 48: 866-889.
doi: 10.2135/cropsci2007.09.0513[51] Yan W. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J Indian Soc Agri Stat, 2011, 65: 181-193.[52] Badu-Apraku B, Oyekunle M, Obeng-Antwi K, Osuman A S, Ado S G, Coulibay N. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. J Agric Sci, 2012, 150: 473.
doi: 10.1017/S0021859611000761[53] Amira J O, Ojo D K, Ariyo O J, Oduwaye O A, Ayo-Vaughan M A. Relative discriminating powers of GGE and AMMI models in the selection of tropical soybean genotypes. Afr J Crop Sci, 2013, 21: 67-73.[54] Hoyos-Villegas V, Wright E M, Kelly J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel. Crop Sci, 2016, 56: 1081-1094.
doi: 10.2135/cropsci2015.10.0609[55] Oliveira T R A D, Carvalho H W L D, Oliveira G H F, Costa E F N, Gravina G D A, Santos R D D, Carvalho J L S D. Hybrid maize selection through GGE biplot analysis. Bragantia, 2019, 78: 166-174.
doi: 10.1590/1678-4499.20170438[56] Heslot N, Yang H P, Sorrells M E, Jannink J L. Genomic selection in plant breeding: a comparison of models. Crop Sci, 2012, 52, 146-160.
doi: 10.2135/cropsci2011.06.0297[57] Cullis B R, Gleeson A C. Spatial analysis of field experiments: an extension to two dimensions. Biometrics, 1991, 47: 1449-1460.
doi: 10.2307/2532398[58] Cullis B R, Gogel B, Verbyla A, Thompson R. Spatial analysis of multi-environment early generation variety trials. Biometrics, 1998, 54: 1-18.
doi: 10.2307/2533991[59] Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat, 1997, 2: 269-293.
doi: 10.2307/1400446[60] Burgueño J, Cadena A, Crossa J, Banziger M, Gilmour A R, Cullis B. User’s Guide for Spatial Analysis of Field Variety Trials using ASREML. Mexico: CIMMYT, 2000.[61] Qiao C G, Basford K E, DeLacy I H, Cooper M. Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theor Appl Genet, 2000, 100: 9-16.
doi: 10.1007/s001220050002[62] Yang R C, Ye T Z, Blade S F, Bandara M. Efficiency of spatial analyses of field pea variety trials. Crop Sci, 2004, 44: 49-55.
doi: 10.2135/cropsci2004.4900[63] Tanksley S D. Molecular markers in plant breeding. Plant Mol Biol Rep, 1983, 1: 3-8.[64] Yan W, Wallace D H. Breeding for negatively associated traits. Plant Breed Rev, 1995, 13: 141-177.[65] Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291.
doi: 10.1046/j.1439-0523.2002.730285.x[66] Cooper M, van Eeuwijk F A, Hammer G L, Podlich D W, Messina C. Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol, 2009, 12: 231-240.
doi: 10.1016/j.pbi.2009.01.006pmid: 19282235[67] Hao Y, Velu G, Peña R J, Singh S, Singh R P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed, 2014, 34: 1893-1902.
doi: 10.1007/s11032-014-0147-7[68] Crespo-Herrera L A, Velu G, Singh R P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol, 2016, 169: 27-35.
doi: 10.1111/aab.12276[69] Simmonds N, Smartt J. Principles of Crop Improvement, 2nd edn. Oxford, UK: Blackwell Science Ltd. Press, 1999.[70] Yan W, Frégeau-Reid J. Breeding line selection based on multiple traits. Crop Sci, 2008, 48: 417-423.
doi: 10.2135/cropsci2007.05.0254[71] Yan W, Frégeau-Reid J. Genotype by yield×trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8[72] Yan W, Frégeau-Reid J, Mountain N, Kobler J. Genotype and management evaluation based on genotype by yield × trait (GYT) analysis. Crop Breed Genet Genom, 2019, 1: e190002.[73] Boureima S, Abdoua Y A O U. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turk J Field Crops, 2019, 24: 237-244.[74] de Oliveira T R A, de Amaral G G, de Moura R M, de Alcântara N F, da Cruz D P, de Oliveira G H F, da Costa J M E P Rocha R S. GYT biplot analysis: a new approach for cowpea line selection. J Exp Agric Internat, 2019, 41: 1-9.[75] Mohammadi R. Genotype by yield × trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Res Commun, 2019, 47: 541-551.
doi: 10.1556/0806.47.2019.32[76] Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323-330.
pmid: 18076469[77] Ma F, Xu Y, Ma Z, Li L, An D. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018, 38: 91.
doi: 10.1007/s11032-018-0837-7[78] Badu-Apraku B, Bankole F A, Ajayo B S, Fakorede M A B, Akinwale R O, Talabi A O. Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Prot, 2021, 139: 105386.[79] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135 Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135[80] Tsenov N, Gubatov T, Yanchev I. Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Res Commun, 2021, 49: 119-124.
doi: 10.1007/s42976-020-00080-7[81] Sofi P A, Saba I, Ara A, Rehman K. Comparative efficiency of GY × T approach over GT approach in genotypic selection in multiple trait evaluations: case study of common bean (Phaseolus vulgaris) grown under temperate Himalayan conditions. Agric Res (India: Online), 2021, 10.1007/s40003-021-00577-5.
doi: 10.1007/s40003-021-00577-5[82] de Oliveira L A, da Silva C P, da Silva A Q, Mendes C T E, Nuvunga J J, Nunes J A R, Parrella R A D C, Baleste M, Filho J S D S B. Bayesian GGE model for heteroscedastic multi- environmental trials. Crop Sci, 2022, 62: in press. 10.1002/csc2.20696.
doi: 10.1002/csc2.20696
doi: 10.2135/cropsci1996.0011183X003600030001x[7] Rasmusson D C, Phillips R L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci, 1997, 37: 303-310.
doi: 10.2135/cropsci1997.0011183X003700020001x[8] 李振声. 小麦远缘杂交新品种——小偃6号. 山西农业科学, 1986, (5): 30. Li Z S. New wheat cultivar from wide cross: Xiaoyan 6. Shanxi Agric Sci, 1986, (5): 30. (in Chinese)[9] Arrones A, Vilanova S, Plazas M, Mangino G, Pascual L, Díez M J, Prohens J, Gramazio P. The dawn of the age of multi-parent MAGIC populations in plant breeding: novel powerful next- generation resources for genetic analysis and selection of recombinant elite material. Biology, 2020, 9: 229.
doi: 10.3390/biology9080229[10] Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512[11] Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010, 9: 166-177.
doi: 10.1093/bfgp/elq001[12] Heslot N, Jannink J L, Sorrells M E. Perspectives for genomic selection applications and research in plants. Crop Sci, 2015, 55: 1-12.
doi: 10.2135/cropsci2014.03.0249[13] Osthushenrich T, Frisch M, Zenke-Philippi C, Jaiser H, Spiller M, Cselényi L, Krumnacker K, Boxberger S, Kopahnke D, Habekuß A, Ordon F. Prediction of means and variances of crosses with genome-wide marker effects in barley. Front Plant Sci, 2018, 9: 1899.
doi: 10.3389/fpls.2018.01899pmid: 30627135[14] Wang L, Zhu G, Johnson W, Kher M. Three new approaches to genomic selection. Plant Breed, 2018, 137: 673-681
doi: 10.1111/pbr.12640[15] Jean M, Cobe E, O’Donoughue L, Rajcan I, Belzile F. Improvement of key agronomical traits in soybean through genomic prediction of superior crosses. Crop Sci, 2021, 61: 3908-3918.
doi: 10.1002/csc2.20583[16] Eberhart S A. Factors affecting efficiencies of breeding methods. Afr Soils, 1970, 15: 655-680.[17] Cobb J N, Juma R U, Biswas P S, Arbelaez J D, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng E H. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet, 2019, 132: 627-645.
doi: 10.1007/s00122-019-03317-0[18] Zhou J, Nguyen H T. Solve the Breeder’s Equation using High- throughput Crop Phenotyping Technology. In: High-Throughput Crop Phenotyping (1-11). Wageningen, the Netherlands: Springer, 2021.[19] Comstock R E, Moll R H. Genotype-environment interactions. Stat Gen Plant Breed, 1963, 982: 164-196.[20] DeLacy I H, Basford K E, Cooper M, Bull J K, McLaren C G. Analysis of multienvironment trials—a historical perspective. In: Cooper M, Hammer G L, eds. Plant Adaptation and Crop Improvement. Wallingford (UK): IRRI/CABI, 1996. p 39124.[21] Atlin G N, Baker R J, McRae K B, Lu X. Selection response in subdivided target regions. Crop Sci, 2000, 40: 7-13.
doi: 10.2135/cropsci2000.4017[22] Yan W. Analysis and handling of G×E in a practical breeding program. Crop Sci, 2016, 2106-2118.[23] Cooper M, Voss-Fels K P, Messina C D, Tang T, Hammer G L. Tackling G×E×M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor Appl Genet, 2021, 134: 1625-1644.
doi: 10.1007/s00122-021-03812-3pmid: 33738512[24] Fehr W. Principles of Cultivar Development:Theory and Technique. New York, USA: Macmillian Publishing Company, 1991.[25] Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597-605.
doi: 10.2135/cropsci2000.403597x[26] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805 Yan W. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819 (in Chinese with English Abstract).[27] Atlin G N, Kleinknecht K, Singh K P, Piepho H P. Managing genotype × environment interaction in plant breeding programs: a selection theory approach. J Ind Soc Agric Stat, 2011, 65: 237-247.[28] Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014.[29] Yan W. Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Sci, 2015, 113-122.[30] Yan W. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data. Sci Rep, 2019, 9: 7130.
doi: 10.1038/s41598-019-43683-9[31] Gabriel K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58: 453-467.
doi: 10.1093/biomet/58.3.453[32] Yan W, Mitchell-Fetch J, Beattie A, Nilsen K T, Pageau D, DeHaan B, Hayes M, Mountain N, Cummiskey A, MacEachern D. Oat mega-environments in Canada. Crop Sci, 2021, 61: 1143-1153.[33] Yan W, Frégeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 2015, 361-372.[34] Yan W. Estimation of the optimal number of replicates in crop variety trials. Front Plant Sci, 2021, 11: 2231[35] Becker H C. Correlations among some statistical measures of phenotypic stability. Euphytica, 1981, 30: 835-840.
doi: 10.1007/BF00038812[36] Lin C S, Binns M R, Lefkovitch L P. Stability analysis: where do we stand? Crop Sci, 1986, 26: 894-900.
doi: 10.2135/cropsci1986.0011183X002600050012x[37] Huehn M. Nonparametric measures of phenotypic stability. Part 2: applications. Euphytica, 1990, 47: 195-201.
doi: 10.1007/BF00024242[38] Segherloo A E, Sabaghpour S H, Dehghani H, Kamrani M. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 2008, 162: 221-229.
doi: 10.1007/s10681-007-9552-x[39] Scapim C A, Pacheco C A P, do Amaral Jr A T, Vieira R A, Pinto R J B, Conrado T V. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica, 2010, 174: 209-218.
doi: 10.1007/s10681-010-0118-y[40] Eberhart S T, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x[41] Ceccarelli S. Wide adaptation: how wide? Euphytica, 1989, 40: 197-205.
doi: 10.1007/BF00024512[42] Zobel R W, Wright M J, Gauch Jr H G. Statistical analysis of a yield trial. Agron J, 1988, 80: 388-393.
doi: 10.2134/agronj1988.00021962008000030002x[43] Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-653.
doi: 10.2135/cropsci2006.06.0374[44] Lin C S, Binns M R. A superiority measure of cultivar performance for cultivar × location data. Can J Plant Sci, 1988, 68: 193-198.
doi: 10.4141/cjps88-018[45] Lin C S, Binns M R. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breed Rev, 1994, 12: 271-297.[46] Kang M S. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agron J, 1993, 85: 754-757.
doi: 10.2134/agronj1993.00021962008500030042x[47] Gauch Jr H G, Zobel R W. Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet, 1988, 76: 1-10.
doi: 10.1007/BF00288824pmid: 24231975[48] Yan W, Kang M S. GGE Biplot Analysis:a Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, USA: CRC Press, 2002.[49] Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
doi: 10.2135/cropsci2005.07-0193[50] Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci, 2008, 48: 866-889.
doi: 10.2135/cropsci2007.09.0513[51] Yan W. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J Indian Soc Agri Stat, 2011, 65: 181-193.[52] Badu-Apraku B, Oyekunle M, Obeng-Antwi K, Osuman A S, Ado S G, Coulibay N. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. J Agric Sci, 2012, 150: 473.
doi: 10.1017/S0021859611000761[53] Amira J O, Ojo D K, Ariyo O J, Oduwaye O A, Ayo-Vaughan M A. Relative discriminating powers of GGE and AMMI models in the selection of tropical soybean genotypes. Afr J Crop Sci, 2013, 21: 67-73.[54] Hoyos-Villegas V, Wright E M, Kelly J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel. Crop Sci, 2016, 56: 1081-1094.
doi: 10.2135/cropsci2015.10.0609[55] Oliveira T R A D, Carvalho H W L D, Oliveira G H F, Costa E F N, Gravina G D A, Santos R D D, Carvalho J L S D. Hybrid maize selection through GGE biplot analysis. Bragantia, 2019, 78: 166-174.
doi: 10.1590/1678-4499.20170438[56] Heslot N, Yang H P, Sorrells M E, Jannink J L. Genomic selection in plant breeding: a comparison of models. Crop Sci, 2012, 52, 146-160.
doi: 10.2135/cropsci2011.06.0297[57] Cullis B R, Gleeson A C. Spatial analysis of field experiments: an extension to two dimensions. Biometrics, 1991, 47: 1449-1460.
doi: 10.2307/2532398[58] Cullis B R, Gogel B, Verbyla A, Thompson R. Spatial analysis of multi-environment early generation variety trials. Biometrics, 1998, 54: 1-18.
doi: 10.2307/2533991[59] Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat, 1997, 2: 269-293.
doi: 10.2307/1400446[60] Burgueño J, Cadena A, Crossa J, Banziger M, Gilmour A R, Cullis B. User’s Guide for Spatial Analysis of Field Variety Trials using ASREML. Mexico: CIMMYT, 2000.[61] Qiao C G, Basford K E, DeLacy I H, Cooper M. Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theor Appl Genet, 2000, 100: 9-16.
doi: 10.1007/s001220050002[62] Yang R C, Ye T Z, Blade S F, Bandara M. Efficiency of spatial analyses of field pea variety trials. Crop Sci, 2004, 44: 49-55.
doi: 10.2135/cropsci2004.4900[63] Tanksley S D. Molecular markers in plant breeding. Plant Mol Biol Rep, 1983, 1: 3-8.[64] Yan W, Wallace D H. Breeding for negatively associated traits. Plant Breed Rev, 1995, 13: 141-177.[65] Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291.
doi: 10.1046/j.1439-0523.2002.730285.x[66] Cooper M, van Eeuwijk F A, Hammer G L, Podlich D W, Messina C. Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol, 2009, 12: 231-240.
doi: 10.1016/j.pbi.2009.01.006pmid: 19282235[67] Hao Y, Velu G, Peña R J, Singh S, Singh R P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed, 2014, 34: 1893-1902.
doi: 10.1007/s11032-014-0147-7[68] Crespo-Herrera L A, Velu G, Singh R P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol, 2016, 169: 27-35.
doi: 10.1111/aab.12276[69] Simmonds N, Smartt J. Principles of Crop Improvement, 2nd edn. Oxford, UK: Blackwell Science Ltd. Press, 1999.[70] Yan W, Frégeau-Reid J. Breeding line selection based on multiple traits. Crop Sci, 2008, 48: 417-423.
doi: 10.2135/cropsci2007.05.0254[71] Yan W, Frégeau-Reid J. Genotype by yield×trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8[72] Yan W, Frégeau-Reid J, Mountain N, Kobler J. Genotype and management evaluation based on genotype by yield × trait (GYT) analysis. Crop Breed Genet Genom, 2019, 1: e190002.[73] Boureima S, Abdoua Y A O U. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turk J Field Crops, 2019, 24: 237-244.[74] de Oliveira T R A, de Amaral G G, de Moura R M, de Alcântara N F, da Cruz D P, de Oliveira G H F, da Costa J M E P Rocha R S. GYT biplot analysis: a new approach for cowpea line selection. J Exp Agric Internat, 2019, 41: 1-9.[75] Mohammadi R. Genotype by yield × trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Res Commun, 2019, 47: 541-551.
doi: 10.1556/0806.47.2019.32[76] Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323-330.
pmid: 18076469[77] Ma F, Xu Y, Ma Z, Li L, An D. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018, 38: 91.
doi: 10.1007/s11032-018-0837-7[78] Badu-Apraku B, Bankole F A, Ajayo B S, Fakorede M A B, Akinwale R O, Talabi A O. Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Prot, 2021, 139: 105386.[79] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135 Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135[80] Tsenov N, Gubatov T, Yanchev I. Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Res Commun, 2021, 49: 119-124.
doi: 10.1007/s42976-020-00080-7[81] Sofi P A, Saba I, Ara A, Rehman K. Comparative efficiency of GY × T approach over GT approach in genotypic selection in multiple trait evaluations: case study of common bean (Phaseolus vulgaris) grown under temperate Himalayan conditions. Agric Res (India: Online), 2021, 10.1007/s40003-021-00577-5.
doi: 10.1007/s40003-021-00577-5[82] de Oliveira L A, da Silva C P, da Silva A Q, Mendes C T E, Nuvunga J J, Nunes J A R, Parrella R A D C, Baleste M, Filho J S D S B. Bayesian GGE model for heteroscedastic multi- environmental trials. Crop Sci, 2022, 62: in press. 10.1002/csc2.20696.
doi: 10.1002/csc2.20696
相关知识
品种选育与评价的原理和方法评述
花卉品种选育策略
一种利用染色体嵌合原理选育特异鸡冠花的方法
利用表观遗传学原理和远缘杂交选育鸡冠花新品种的方法
中药品种选育与“中药品质育种”研究思路
利用表观遗传学原理和远缘杂交选育鸡冠花新品种的方法.pdf
品种选育与繁育
月季种质资源评价及新品种选育与应用
百日草杂交亲本的选育与自交系间遗传多样性评价
“观赏海棠种质评价、新品种选育与推广”获得北京市农业技术推广二等奖
网址: 品种选育与评价的原理和方法评述 https://www.huajiangbk.com/newsview2336098.html
上一篇: 银星的繁殖方式及关键技巧(探索银 |
下一篇: 干货 | 几种育种原理,方法和过 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名