施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响
来源:
时间:2025-05-22 20:45
[1] Cleveland C C, Townsend A R, Schimel D S, Fisher H, Howarth R W, Hedin L O, Perakis S S, Latty E F, Fischer J C V, Elseroad A. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles, 1999, 13: 623-645.
doi: 10.1029/1999GB900014[2] Roesch L, Camargo F, Bento F M, Triplett E W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil, 2008, 302: 91-104.
doi: 10.1007/s11104-007-9458-3[3] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil. ISME J, 2008, 3: 124-136.
doi: 10.1038/ismej.2008.82[4] Li Y, Pan F, Yao H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments, 2019, 19: 1948-1958.
doi: 10.1007/s11368-018-2192-z[5] 郑棉海, 陈浩, 朱晓敏, 毛庆功, 莫江明. 矿质养分输入对森林生物固氮的影响. 生态学报, 2015, 35: 7941-7954. Zheng M H, Chen H, Zhu X M, Mao Q G, Mo J M. Effect of mineral nutrient input on biological nitrogen fixation in forest. Acta Ecol Sin, 2015, 35: 7941-7954. (in Chinese with English abstract)[6] Chen L, Li K K, Shi W J, Wang X L, Chen W X. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393: 114999.[7] Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem, 2017, 113: 240-249.
doi: 10.1016/j.soilbio.2017.06.019[8] Reed R, Marjon D V, Portilho C N, Evódio M, Edilson P, Lucy S. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett, 2010, 279: 15-22.
doi: 10.1111/j.1574-6968.2007.00975.x[9] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y G, Chu H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7: 143.[10] Wang J, Li Q, Shen C, Yang F, Wang J, Yuan G. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad Develop, 2021, 32: 1-10.
doi: 10.1002/ldr.3658[11] Sun Q, Rui W, Ying W, Du L, Man Z, Xin G, Hu Y, Guo S. Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? Geoderma, 2018, 325: 172-182.
doi: 10.1016/j.geoderma.2018.04.001[12] Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J Soils Sediments, 2017, 18: 1076-1086.
doi: 10.1007/s11368-017-1836-8[13] 陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40: 8528-8538. Chen J, Luo T S, Zhou Z, Xu H, Chen D X, Li Y D. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecol Sin, 2020, 40: 8528-8538. (in Chinese with English abstract)[14] Jacot K A, Lüscher A, NöSberger J, Hartwig U A. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem, 2000, 32: 1043-1052.
doi: 10.1016/S0038-0717(00)00012-2[15] Rösch C, Mergel A, Hermann Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002, 68: 3818-3829.
doi: 10.1128/AEM.68.8.3818-3829.2002[16] Xiao D, Tan Y, Liu X, Yang R, Wang K. Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agric Ecosyst Environ, 2020, 288: 106707.[17] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15: 432-439.
doi: 10.1016/S2095-3119(15)61079-6[18] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213. Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)[19] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
pmid: 30912389 Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201903.019pmid: 30912389[20] 左元梅, 刘永秀, 张福锁. NO3-态氮对花生结瘤与固氮作用的影响. 生态学报, 2003, 23: 758-764. Zuo Y M, Liu Y X, Zhang F S. Effects of the NO3--N on nodule formation and nitrogen fixing of peanut. Acta Ecol Sin, 2003, 23: 758-764. (in Chinese with English abstract)[21] Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, Yuan J, Chen Z, Ding W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol Biochem, 2018, 123: 218-228.
doi: 10.1016/j.soilbio.2018.05.018[22] 吴海宁, 黄志鹏, 唐秀梅, 熊发前, 钟瑞春, 贺梁琼, 韩柱强, 蒋菁, 刘菁, 唐荣华. 氮肥减施对花生根际土壤固氮微生物多样性的影响. 江苏农业科学, 2019, 47(16): 93-97. Wu H N, Huang Z P, Tang X M, Xiong F M, Zhong R C, He L Q, Han Z Q, Jiang J, Liu J, Tang R H. Effect of nitrogen reduced-fertilization on soil diazotrophic diversity in peanut rhizosphere. Jiangsu Agric Sci, 2019, 47(16): 93-97. (in Chinese with English abstract)[23] Gorbet D W, Burton J C. A non-nodulating peanut. Crop Sci, 1979, 19: 727-728.
doi: 10.2135/cropsci1979.0011183X001900050045x[24] 石海, 苗淑杰, 刘居东, 周克琴. 施氮对结瘤和非结瘤近等位基因大豆生长和固氮性状的影响. 大豆科学, 2012, 31: 961-965. Shi H, Miao S J, Liu J D, Zhou K Q. Effect of nitrogen application on growth and nitrogen fixation in nodulation and non-nodulation soybean isolines. Soybean Sci, 2012, 31: 961-965. (in Chinese with English abstract)[25] Selamat A, Gardner F P. Nitrogen partitioning and redistribution in nonnodulating peanut related to nitrogen stress. Agron J, 1985, 77: 859-862.
doi: 10.2134/agronj1985.00021962007700060009xa[26] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31: 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418 Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31: 2418-2425. (in Chinese with English abstract)[27] Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ, 2017, 619: 1530-1537.[28] 徐鹏霞, 韩丽丽, 贺纪正, 罗锋, 张丽梅. 非共生生物固氮微生物分子生态学研究进展. 应用生态学报, 2017, 28: 3440-3450. Xu P X, Han L L, He J Z, Luo F, Zhang L M. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chin J Appl Ecol, 2017, 28: 3440-3450. (in Chinese with English abstract)[29] Reinhold-Hurek B, Bünger W, Burbano C S, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342pmid: 26243728[30] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl, 2010, 20: 30-59.
pmid: 20349829[31] Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 2020, 101: e03053.[32] Calderoli P A, Collavino M M, Kraemer F B, Morrás H, Aguilar O M. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2-fixing community depending on depth and agriculturaluse of soil. Microbiol Open, 2017, 6: e502.[33] Wang R, Chang Y L, Zheng W T, Zhang D, Zhang X X, Sui X H, Wang E T, Hu J Q, Zhang L Y, Chen W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Sys Appl Microbiol, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009[34] Indrasumunar A, Menzies N W, Dart P J. Laboratory prescreening of Bradyrhizobium japonicum for low pH, Al and Mn tolerance can be used to predict their survival in acid soils. Soil Biol Biochem, 2012, 48: 135-141.
doi: 10.1016/j.soilbio.2012.01.019[35] Duncan N, Menge L, Levin S, Hedin L. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat, 2009, 174: 465-477.
doi: 10.1086/605377
doi: 10.1029/1999GB900014[2] Roesch L, Camargo F, Bento F M, Triplett E W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil, 2008, 302: 91-104.
doi: 10.1007/s11104-007-9458-3[3] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil. ISME J, 2008, 3: 124-136.
doi: 10.1038/ismej.2008.82[4] Li Y, Pan F, Yao H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments, 2019, 19: 1948-1958.
doi: 10.1007/s11368-018-2192-z[5] 郑棉海, 陈浩, 朱晓敏, 毛庆功, 莫江明. 矿质养分输入对森林生物固氮的影响. 生态学报, 2015, 35: 7941-7954. Zheng M H, Chen H, Zhu X M, Mao Q G, Mo J M. Effect of mineral nutrient input on biological nitrogen fixation in forest. Acta Ecol Sin, 2015, 35: 7941-7954. (in Chinese with English abstract)[6] Chen L, Li K K, Shi W J, Wang X L, Chen W X. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping. Geoderma, 2021, 393: 114999.[7] Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem, 2017, 113: 240-249.
doi: 10.1016/j.soilbio.2017.06.019[8] Reed R, Marjon D V, Portilho C N, Evódio M, Edilson P, Lucy S. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett, 2010, 279: 15-22.
doi: 10.1111/j.1574-6968.2007.00975.x[9] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y G, Chu H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7: 143.[10] Wang J, Li Q, Shen C, Yang F, Wang J, Yuan G. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad Develop, 2021, 32: 1-10.
doi: 10.1002/ldr.3658[11] Sun Q, Rui W, Ying W, Du L, Man Z, Xin G, Hu Y, Guo S. Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? Geoderma, 2018, 325: 172-182.
doi: 10.1016/j.geoderma.2018.04.001[12] Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J Soils Sediments, 2017, 18: 1076-1086.
doi: 10.1007/s11368-017-1836-8[13] 陈洁, 骆土寿, 周璋, 许涵, 陈德祥, 李意德. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40: 8528-8538. Chen J, Luo T S, Zhou Z, Xu H, Chen D X, Li Y D. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecol Sin, 2020, 40: 8528-8538. (in Chinese with English abstract)[14] Jacot K A, Lüscher A, NöSberger J, Hartwig U A. Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem, 2000, 32: 1043-1052.
doi: 10.1016/S0038-0717(00)00012-2[15] Rösch C, Mergel A, Hermann Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol, 2002, 68: 3818-3829.
doi: 10.1128/AEM.68.8.3818-3829.2002[16] Xiao D, Tan Y, Liu X, Yang R, Wang K. Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agric Ecosyst Environ, 2020, 288: 106707.[17] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15: 432-439.
doi: 10.1016/S2095-3119(15)61079-6[18] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213. Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)[19] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
pmid: 30912389 Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201903.019pmid: 30912389[20] 左元梅, 刘永秀, 张福锁. NO3-态氮对花生结瘤与固氮作用的影响. 生态学报, 2003, 23: 758-764. Zuo Y M, Liu Y X, Zhang F S. Effects of the NO3--N on nodule formation and nitrogen fixing of peanut. Acta Ecol Sin, 2003, 23: 758-764. (in Chinese with English abstract)[21] Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, Yuan J, Chen Z, Ding W. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol Biochem, 2018, 123: 218-228.
doi: 10.1016/j.soilbio.2018.05.018[22] 吴海宁, 黄志鹏, 唐秀梅, 熊发前, 钟瑞春, 贺梁琼, 韩柱强, 蒋菁, 刘菁, 唐荣华. 氮肥减施对花生根际土壤固氮微生物多样性的影响. 江苏农业科学, 2019, 47(16): 93-97. Wu H N, Huang Z P, Tang X M, Xiong F M, Zhong R C, He L Q, Han Z Q, Jiang J, Liu J, Tang R H. Effect of nitrogen reduced-fertilization on soil diazotrophic diversity in peanut rhizosphere. Jiangsu Agric Sci, 2019, 47(16): 93-97. (in Chinese with English abstract)[23] Gorbet D W, Burton J C. A non-nodulating peanut. Crop Sci, 1979, 19: 727-728.
doi: 10.2135/cropsci1979.0011183X001900050045x[24] 石海, 苗淑杰, 刘居东, 周克琴. 施氮对结瘤和非结瘤近等位基因大豆生长和固氮性状的影响. 大豆科学, 2012, 31: 961-965. Shi H, Miao S J, Liu J D, Zhou K Q. Effect of nitrogen application on growth and nitrogen fixation in nodulation and non-nodulation soybean isolines. Soybean Sci, 2012, 31: 961-965. (in Chinese with English abstract)[25] Selamat A, Gardner F P. Nitrogen partitioning and redistribution in nonnodulating peanut related to nitrogen stress. Agron J, 1985, 77: 859-862.
doi: 10.2134/agronj1985.00021962007700060009xa[26] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31: 2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418 Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31: 2418-2425. (in Chinese with English abstract)[27] Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ, 2017, 619: 1530-1537.[28] 徐鹏霞, 韩丽丽, 贺纪正, 罗锋, 张丽梅. 非共生生物固氮微生物分子生态学研究进展. 应用生态学报, 2017, 28: 3440-3450. Xu P X, Han L L, He J Z, Luo F, Zhang L M. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chin J Appl Ecol, 2017, 28: 3440-3450. (in Chinese with English abstract)[29] Reinhold-Hurek B, Bünger W, Burbano C S, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342pmid: 26243728[30] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl, 2010, 20: 30-59.
pmid: 20349829[31] Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 2020, 101: e03053.[32] Calderoli P A, Collavino M M, Kraemer F B, Morrás H, Aguilar O M. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2-fixing community depending on depth and agriculturaluse of soil. Microbiol Open, 2017, 6: e502.[33] Wang R, Chang Y L, Zheng W T, Zhang D, Zhang X X, Sui X H, Wang E T, Hu J Q, Zhang L Y, Chen W X. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Sys Appl Microbiol, 2013, 36: 101-105.
doi: 10.1016/j.syapm.2012.10.009[34] Indrasumunar A, Menzies N W, Dart P J. Laboratory prescreening of Bradyrhizobium japonicum for low pH, Al and Mn tolerance can be used to predict their survival in acid soils. Soil Biol Biochem, 2012, 48: 135-141.
doi: 10.1016/j.soilbio.2012.01.019[35] Duncan N, Menge L, Levin S, Hedin L. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. Am Nat, 2009, 174: 465-477.
doi: 10.1086/605377
相关知识
科学网—SBB:无机肥对土壤中固氮菌丰度和群落结构的影响
玉米花生带状间作对植株氮吸收和土壤微生物群落的影响
氮肥减施对花生根际土壤固氮微生物多样性的影响
长期施肥对新疆灰漠土土壤微生物群落结构与功能多样性的影响
施肥和杂草多样性对土壤微生物群落的影响
土壤类型对花生根际土壤细菌群落多样性和产量的影响
镉背景下加拿大一枝黄花凋落物降解对土壤固氮菌群落结构之影响
间作与施氮对花生根际土壤肥力及微生物群落的影响,Agronomy
茅苍术间作对连作花生土壤线虫群落的影响
土地利用变化后不同种植年限香榧土壤微生物群落的组成及多样性
网址: 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响 https://www.huajiangbk.com/newsview2011336.html
上一篇: 【课时作业】选择性必修1(新教材 |
下一篇: 滨海湿地互花米草入侵对土壤碳氮磷 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名