首页 分享 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究

具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究

来源:花匠小妙招 时间:2025-05-11 07:44
具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究桂林电子科技大学材料科学与工程学院, 广西信息材料重点实验室暨广西新能源与材料结构与性能协同创新中心, 广西 桂林 541004A Study on Nickel-Cobalt Nanoflower Composite Materials with P and S Double Vacancies as Supercapacitor ElectrodesWU Xuehu, SUN Lixian*, XU Fen*, LI Bin, FANG Songwen, ZHANG Jing, CHEN Xiang, SONG Lingjun, LU Junming, GAO Yuan, DU Maozhan, XU RudanGuangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 摘要参考文献 相关文章推荐阅读Metrics 摘要 近年来,多元过渡金属氧化物和硫化物在超级电容器电极材料领域备受关注,其中NiCo2S4其低成本、低电负性和强的电化学活性而成为研究热点。然而,NiCo2S4电子电导率较低,反应动力学较慢,导致比容量低,倍率性能差,容量衰减快,实际应用受限。因此,提高NiCo2S4的电导率和反应速率是提高其电化学性能的关键。本工作采用水热法、硫化法和磷化法制备了具有P、S双空位的镍钴纳米花(P-NiCo2Sn),其在磷化过程中可以同时获得P掺杂和S空位双缺陷。双缺陷可以调节电子结构,产生丰富的电化学位点,促进电子转移和改善反应动力学。该纳米花结构的比表面积为66.342 m2·g-1。P-NiCo2Sn电极在1 A·g-1电流密度下的比电容为1 257 F·g-1,在800 W·kg-1功率密度下表现出44.2 Wh·kg-1的能量密度。组装的P-NiCo2Sn//AC非对称超级电容器在10 000次连续充电/放电循环后的容量保持率为89.9%。服务把本文推荐给朋友加入引用管理器 E-mail AlertRSS作者相关文章吴学虎 孙立贤 徐芬 李彬 方淞文 张靖 陈翔 宋领君 卢俊铭 高源 杜毛湛 徐如丹关键词: 缺陷 磷化法 纳米花 高循环性能   Abstract: Multinary transition metal oxides and sulfides have garnered intensive interest in the field of supercapacitor electrodes, among which NiCo2S4 has been considered as a hotspot owing to its low cost, low electronegativity and strong electrochemical activity. However, its low electron conductivity and sluggish reaction kinetics have resulted in low specific capacitance, poor rate performance, and rapid capacity decay, limiting its practical applications. Therefore, enhancing the electron conductivity and reaction kinetics of NiCo2S4 is crucial for improving its electrochemical performance. In this study, phosphorus and sulfur co-defected nickel cobalt nanoflowers (P-NiCo2Sn) were synthesized via hydrothermal, sulfidation, and phosphorization methods. During the phosphorization process, both P doping and S vacancy double defects were obtained. These double defects can modulate the electronic structure, generate abundant electrochemical active sites, facilitate electron transfer, and promote reaction dynamics. Moreover, the nanoflower structure has a specific surface area of 66.342 m2·g-1. The P-NiCo2Sn electrode exhibits a specific capacitance of 1 257 F·g-1 at a current density of 1 A·g-1, and an energy density of 44.2 Wh·kg-1 at a power density of 800 W·kg-1. The assembled P-NiCo2Sn//AC asymmetric supercapacitor retains 89.9% of its capacity after 10 000 consecutive charge/discharge cycles.Key words: defect  phosphorization method  nanoflowers  high cycling performance出版日期:  2025-04-10     发布日期:  2025-04-10ZTFLH: TB34  基金资助: 广西科技计划(桂科AA24206022);国家自然科学基金(U20A20237;52461032;52371218;52271205;552101245);广西科学研究与技术开发计划项目(AA19182014;AD17195073;AA17202030-1;2021AB17045AB21220027);国家重点研发计划(2018YFB1502103;2018YFB1502105;2022YFB4003200);广西八桂学者基金;桂林漓江学者基金;广西新能源与新材料结构与性能协同创新中心;广西先进功能材料基础与应用人才小高地;桂林市科学研究与技术开发项目(20210102-4);广西信息材料重点实验室(201001);广西植物功能物质可持续利用重点实验室(FPRU2022-4)通讯作者: *孙立贤,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料、机器学习等方面的研究工作。sunlx@guet.edu.cn;
徐芬,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料等方面的研究工作。xufen@guet.edu.cn   作者简介:  吴学虎,桂林电子科技大学材料科学与工程学院硕士研究生,在孙立贤教授、徐芬教授的指导下进行研究。主要研究领域为超级电容器电极材料的制备及性能。引用本文:    吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
WU Xuehu, SUN Lixian, XU Fen, LI Bin, FANG Songwen, ZHANG Jing, CHEN Xiang, SONG Lingjun, LU Junming, GAO Yuan, DU Maozhan, XU Rudan. A Study on Nickel-Cobalt Nanoflower Composite Materials with P and S Double Vacancies as Supercapacitor Electrodes. Materials Reports, 2025, 39(7): 24030138-7.链接本文:  https://www.mater-rep.com/CN/10.11896/cldb.24030138 或         https://www.mater-rep.com/CN/Y2025/V39/I7/24030138

1 Pang Z H, Qiao Z J, Lei Y W, et al. Materials Reports, 2022, 36(S2), 9 (in Chinese).
庞志恒, 乔志军, 雷贻文, 等. 材料导报, 2022, 36(S2), 9.
2 Zhang Y F. Materials Reports, 2023, 37(S2), 29 (in Chinese).
张亚飞. 材料导报, 2023, 37(S2), 29.
3 Zhang W L, Ran F. Materials Reports, 2020, 34(12), 12010 (in Chinese).
张文林, 冉奋. 材料导报, 2020, 34(12), 12010.
4 Liu R, Xu S, Shao X, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47717.
5 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001 (in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
6 Chen H, Jiang S, Xu B, et al. Journal of Materials Chemistry A, 2019, 7(11), 6241.
7 Zhao Y H, He X Y, Chen R R, et al. Chemical Engineering Journal, 2018, 352, 29.
8 Yi T F, Pan J J, Wei T T, Nano Today, 2020, 33, 100894.
9 Li L Q, Dai Z Y, Zhang Y F, et al. RSC Advances, 2015, 5(101), 83408.
10 Lu X F, Zhang S L, Gao S Y, et al. Angewandte Chemie, 2021, 133(42), 23067.
11 Peng Z W, Yang C, Hu Y Z, et al. Applied Surface Science A, 2022, 573, 151561.
12 Li L, Song L L, Zhang X Y, et al. ACS Applied Energy Materials, 2022, 5(2), 2505.
13 Lin J H, Wang Y H, Zheng X H, et al. Dalton Transactions, 2018, 47(26), 8771.
14 Tan S W, Xue Z G, Tao K, et al. Chemical Communications, 2022, 58(42), 6243.
15 Salunkhe R R, Tang J, Kamachi Y, et al. Journal of the American Che-mical Society , 2015, 9(6), 6288.
16 Wei X J, Li Y H, Peng Y H, et al. Chemical Engineering Journal, 2019, 355, 336.
17 Lu F, Zhou M, Li W R, et al, Nano Energy, 2016, 26, 313.
18 Zhang X, Lu W, Tian Y H, et al. Journal of Colloid and Interface Science, 2022, 606, 1120.
19 Chen X H, Li Q, Che Q J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(13), 11778.
20 Yu X W, Zhao J, Johnsson M, et al. Advanced Functional Materials, 2021, 31(25), 2101578.
21 Liang H F, Xia C, Jiang Q, et al. Nano Energy, 2017, 35, 331.
22 Baig M M, Khan M A, Gul I H, et al. Journal of Electronic Materials, 2023, 52, 5775.
23 Wang G R, Jin Z L, Zhang W X. Journal of Colloid and Interface Science, 2020, 577, 115.
24 Mao X Q, Zou Y J, Liang J, et al. Ceramics International, 2020, 46(2), 1448.
25 Zhao Y Y, Zhang P, Fu W B, et al. Applied Surface Science, 2017, 416, 160.
26 Lin J H, Zhong Z X, Wang H H, et al. Journal of Power Sources, 2018, 407, 6.
27 He X Y, Li R M, Liu J Y, et al. Chemical Engineering Journal, 2018, 334, 1573.
28 Su J H, Zhang Y, Lu M, et al. Journal of Alloys and Compounds, 2023, 957, 170387.
29 Li G F, Song B, Cui X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1687.
30 Tang J B, Huang W X, Lv X, et al. Nanotechnology, 2020, 32, 085604.
31 Shinde S K, Jalak M B, Ghodake G S, et al. Ceramics International, 2019, 45, 17192.
32 Huang Y X, Cheng M, Xiang Z C, et al. Royal Society Open Science, 2018, 5, 180953.
33 Wang H Y, Liang M M, He Z M, et al. Current Applied Physics, 2022, 35, 7.
34 Liu G X, Zhang H Y, Li J, et al. Journal of Materials Science, 2019, 54, 9666.
35 Yang H Y, Guo R S, Jin L H, et al. Journal of Materials Science:Materials in Electronics, 2023, 34, 2274.

[1]Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337-356.[2]Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368-372.[3]Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391-397.[4]Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398-404.[5]Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434-442.[6]Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473-482.[7]Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496-502.[8]Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503-509.[9]Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510-514.[10]Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1-11.ViewedFull text


Abstract

Cited

  Shared      Discussed   

相关知识

镍铁磷化物纳米花@MXene一体化电极及制备方法和用途
一种纳米花状Ni
不同形貌纳米NiCo2O4的研究进展
【博创基金微展示】第16期 刘骄龙:基于纳米花状CuCo2O4/MoS2复合材料的微观电磁损耗机理研究
​【博创基金微展示】第16期刘骄龙:基于纳米花状CuCo2O4/MoS2复合材料的微观电磁损耗机理研究
铂纳米花的绿色合成以及电催化性能的研究
一种用于氮气电化学还原合成氨的介孔氧化镍纳米花电极及其制备方法
一种具有贯通型介孔的氮掺杂花型碳纳米材料及制备方法与流程
超薄 3D CoMn 纳米花偶联硅藻土用于 CO 和丙烷的高效催化氧化,Chemical Engineering Journal
2024年中国超级电容器行业细分纽扣型超级电容器市场分析 2023年市场规模约6.1亿元

网址: 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究 https://www.huajiangbk.com/newsview1925604.html

所属分类:花卉
上一篇: 一种具有P和S双空位镍钴纳米花复
下一篇: 心理学:真正的“一见钟情”,其实

推荐分享