毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性
Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland
Xiaoyan Jiang1,2, Shengjie Gao1,2, Yan Jiang1,2, Yun Tian1,3, Xin Jia ,1,2,3,*, Tianshan Zha1,2,3
Abstract
Aims: During the first two decades of the 21st century, China has made remarkable progress in desertification control. The area of desertified and degraded grassland has been decreasing and the amount of vegetation has been increasing. However, it remains unclear how plant diversity varies during vegetation restoration. This knowledge gap hinders a full assessment of the effectiveness of desertification control efforts. Our goal was to quantify species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration (semi-fixed dunes, fixed dunes, fixed dunes covered with biological soil crusts, fixed dunes with abundant herbaceous plants) in the Mu Us sandy grassland.
Methods: We conducted field investigations and leaf trait measurements (leaf thickness, leaf dry matter content, leaf density, and specific leaf area) during the mid-growing season of 2020 in Yanchi, Ningxia. Based on this, we further used one-way ANOVA and Pearson correlation analysis to explore the differences and relationships among diversity indices at different phases of vegetation restoration.
Results: Our results indicated that: (1) Most leaf traits exhibited no significant phylogenetic signal, implying that leaf functional traits were primarily driven by environmental factors. (2) For α-diversity, Shannon-Wiener diversity (H), species richness (S), functional richness (FRic), and phylogenetic diversity (PD) were the lowest in plant communities at the phase of fixed dunes covered with biological soil crusts. Each of these α-diversity parameters were not significantly different among plant communities during the other three restoration phases. Furthermore, these biodiversity indices were positively correlated with each other, suggesting coordinated changes in species diversity, functional diversity, and phylogenetic diversity during vegetation restoration. (3) All β-diversity indices increased with the number of transitions between phases, indicating that species composition, leaf traits, and phylogeny were consistently changing during vegetation restoration. Species composition, leaf traits, and phylogeny all changed dramatically during the transition from semi-fixed to fixed dunes, resulting in a large dissimilarity between communities during the two phases. (4) The phylogenetic structure of plant communities tended to diverge on fixed dunes, fixed dunes covered with biological soil crusts, and fixed dunes with abundant herbaceous plants, indicating that competitive exclusion was the key factor driving community organization. However, the phylogenetic structure of plant communities on semi-fixed dunes did not exhibit any consistent patterns, implying that community organization was affected by the combined effects of habitat filtering and competitive exclusion.
Conclusion: Although plant diversity did not demonstrate a monotonic increasing trend during vegetation restoration in the Mu Us sandy grassland, different indices of diversity varied coordinately. Therefore, species diversity can be regarded as a reasonable proxy of functional and phylogenetic diversity in this system. The results of this study can provide reference for vegetation construction and management whilst implementing desertification controls, as well as provide scientific basis for the ecological conservation and biodiversity protection of the Mu Us sandy grassland.
Keywords:species diversity;functional diversity;phylogenetic diversity;vegetation restoration;the Mu Us sandy grassland
荒漠化草地的恢复是20世纪80年代以来我国生态建设取得的重大成就之一, 1982-2015年我国有45.8%的荒漠区域呈现植被显著变绿, 随着荒漠变绿, 植被盖度和生物量显著提高, 荒漠化趋势得到明显逆转(Li et al, 2021; 余轩等, 2021)。但关于生物多样性随植被盖度增加如何变化的研究仍较为缺乏, 制约着对荒漠化草地恢复成效的全面评估。因此, 开展荒漠地区不同恢复阶段生物多样性变化的研究, 对荒漠化生态系统恢复和生物多样性保护具有重要意义。
荒漠化地区植被恢复是植物群落演替的一种特殊形式。群落演替研究表明物种多样性一般呈先增后降的趋势(Odum, 1969; Sun et al, 2017)。荒漠化地区的相关研究表明, 在植被恢复过程中植被盖度、物种丰富度和地上、地下生物量均显著增加, 物种多样性与生物量呈正相关(吕鹏等, 2018; 康婷婷等, 2019)。然而, 在科尔沁沙地, 植被恢复早期群落物种多样性随时间增加, 到中期出现大幅下降, 而后期会再次升高并达到恢复序列上的最高点(张继义等, 2004)。也有研究发现, 草本植物的丰富度和物种多样性在植被恢复初期就达到了最大(哈文秀等, 2020)。这些不同结果表明, 生物多样性随植被恢复的变化可能受到气候区、植被类型和干扰历史等因素影响。
关于生物多样性随群落演替或植被恢复变化的研究大多仅关注物种多样性(张继义等, 2004), 而忽略了系统发育多样性和功能多样性。系统发育多样性可用于推测历史进化过程对现有群落的影响(Webb et al, 2002), 而功能多样性反映了物种在功能属性方面的差异, 是生物多样性的一个重要方面(Flynn et al, 2011)。相较于定性的植物功能属性(如生长型、叶片形状、开花期等), 叶片功能性状(如比叶面积)与植物光合固碳、水分消耗、种间互作等生态学过程联系更为紧密(Ackerly et al, 2002)。因此, 系统发育多样性和基于叶性状的功能多样性对于揭示植被恢复中的群落构建机制及生物多样性的变化规律至关重要(Qin et al, 2016; 陈博等, 2021)。目前对生物多样性的这3个维度(物种、功能、系统发育)是否在植被恢复过程中协同变化尚未取得一致结论。一些研究表明, 功能多样性一般随物种多样性的增加而增加(Bu et al, 2014; Qin et al, 2016; 杨祥祥等, 2020)。然而, 物种和系统发育多样性较高的群落也可能呈现出较低的功能多样性(Ricotta, 2005; Forest et al, 2007)。此外, 物种多样性相近群落的系统发育结构可能存在较大差异(Lavorel & Garnier, 2002)。对于单个维度的多样性以及两个维度多样性间关系的研究在不同生态系统中已有大量报道(Qin et al, 2016; 赵小娜等, 2017; 杨祥祥等, 2020; 陈博等, 2021), 但同时涉及3个维度多样性(物种、功能、系统发育)间关系的认识主要来自于森林演替(Bu et al, 2014; 陈欢欢等, 2020), 鲜有关于荒漠化地区植被恢复过程中3种多样性关系的研究报道。
毛乌素沙地地处干旱、半干旱气候过渡区, 是我国北方防沙带的关键地带。20世纪中期以来, 人类活动干扰(放牧、开垦等)引起了严重的植被退化和土地荒漠化(张新时, 1994)。20世纪末以来, 在该区域大规模实施退耕还林还草、禁牧封育等生态恢复措施, 植被覆盖度显著提高(王旭洋等, 2021)。已有研究将毛乌素沙地植被恢复过程划分为4个典型阶段(郭柯, 2000; Bai et al, 2018)。第一阶段是半固定沙地, 植被盖度较低, 植物群落受风蚀和沙埋扰动较大; 第二阶段是固定沙地, 植被盖度增加, 群落受扰动程度弱于半固定沙地; 第三阶段是结皮覆盖沙地, 群落中有大量生物土壤结皮, 植被盖度明显提升, 风蚀进一步降低; 第四阶段是草本植物覆盖沙地, 多年生禾草的盖度和优势度增大, 植物群落几乎不受风蚀影响。目前对毛乌素沙地植被恢复的研究主要集中于物种胁迫耐受对策、种群动态以及种间互作等方面(秦树高等, 2010; She et al, 2017; Bai et al, 2018, 2019)。在植被恢复早期, 灌木通过保育作用促进草本植物物种多样性, 但在植被恢复后期, 保育作用逐渐消失(Bai et al, 2018, 2019)。然而, 尚无研究系统揭示不同恢复阶段植物群落物种、功能和系统发育多样性的变化规律。
1 材料与方法
1.1 研究区概况
本研究在宁夏盐池毛乌素沙地生态系统国家定位观测研究站(37°42'31" N, 107°13'37" E, 海拔1,530 m, 以下简称“盐池研究站”)开展, 研究区位于毛乌素沙漠的南部边缘, 属温带半干旱大陆性气候, 1954-2020年年均温8.4℃, 年均降水量293 mm, 其中80%的降水集中在6-9月。土壤以风沙土为主, 土壤容重为1.54 ± 0.08 g/cm3, pH值在7.8-8.8之间(Jia et al, 2018)。研究区为典型的内陆沙丘生态系统, 现存生境类型非常明显, 主要包括半固定沙地、固定沙地、结皮覆盖沙地和草本植物覆盖沙地。沙地类型是由植被盖度决定的(半固定沙地植被盖度在10%-30%间; 固定沙地植被盖度 ≥ 30%), 在植被恢复良好的固定沙地上(植被盖度 > 50%), 地表大部分覆盖有生物土壤结皮, 随着植被的恢复, 地表有机物的分解和土壤肥力增加, 以多年生草本为主的草本植物逐渐发育并在固定沙地上占主导地位(植被盖度 > 65%) (郭柯, 2000; 闫峰和丛日春, 2015; She et al, 2017; Bai et al, 2018)。目前, 研究区植被类型以沙地灌丛和草地为主。优势灌木主要有油蒿(Artemisia ordosica)、杨柴(Hedysarum laeve)和柠条(Caragana korshinskii)等, 盖度在30%-70%之间; 优势草本植物主要有赖草(Leymus secalinus)、白草(Pennisetum centrasiaticum)和沙生针茅(Stipa glareosa)等。
1.2 野外调查和植物功能性状测定
野外调查和采样于2020年7-9月进行。根据植被盖度选择半固定沙地(D1)、固定沙地(D2)、结皮覆盖沙地(D3)和草本植物覆盖沙地(D4)作为4个植被不同恢复阶段(附录1)。每个恢复阶段设置3-5个间隔不小于20 m的样地(20 m × 20 m), 每个样地内设置4-5个5 m × 5 m的小样方, 记录灌木种名、高度、株数、盖度等; 选取4个1 m × 1 m的小样方, 记录草本种名、高度、盖度等。在每个20 m × 20 m样地内用“梅花5点法”采集0-30 cm土层的土壤, 混合后用于土壤全碳、全氮、全磷含量的测定。采用元素分析仪(Vario Max CN Element analyzer, Elementar, Germany)测定土壤的全碳、全氮含量, 用NaOH熔融-钼锑抗比色法测定土壤全磷含量。
在4个植被不同恢复阶段内共调查到48种植物, 隶属16科40属(附录2)。在每个恢复阶段内每种植物选取3-5株大小一致的植株, 在每株植物随机选取5枚完全展开的成熟新叶, 将采集到的48种植物的叶片样本带回实验室, 用电子游标卡尺测量叶片厚度(leaf thickness, LT, mm), 拍照后用ImageJ软件(https://imagej.net/Welcome)计算叶面积。叶面积与叶片厚度相乘得到叶体积。将叶片放入水中, 在5℃的黑暗环境中储藏12 h, 取出后迅速用吸水纸吸去叶片表面的水分, 在电子天平上称重, 获得叶饱和鲜重。然后将样品在75℃下烘干48 h后称重, 获得叶干重, 计算比叶面积(叶面积/叶干重, specific leaf area, SLA, cm2/g)、叶片干物质含量(叶干重/叶饱和鲜重, leaf dry matter content, LDMC, mg/g)、叶片密度(叶干重/叶体积, leaf density, LD, g/cm3)。
1.3 数据处理1.3.1 系统发育树构建将样地中出现的物种按照被子植物分类系统III (APG III) (APG, 2009)整理成科/属/种的格式后, 通过phylomatic软件(http://www.phylodiversity.net/phylomatic)得到物种间进化关系, 再用R软件的branching程序包构建物种系统发育树。
1.3.2 功能性状的系统发育信号检测群落系统发育关系是影响功能性状种间变异的重要因素, 通常认为亲缘关系越近, 物种间性状差异越小。因此, 在功能性状种间变异研究中需先检验功能性状是否表现出系统发育信号(程毅康等, 2019)。采用布朗运动(Brownian Motion)进化模型的K值(Blomberg et al, 2003)检验调查样地中所有物种4种功能性状的系统发育信号强度: K = 1对应布朗运动进化模型, 表明功能性状结构和系统发育结构没有关系; K < 1表示功能性状表现出的系统发育信号比按布朗运动进化模型进化弱, 即群落系统发育和功能性状结构并不完全一致; K > 1表示功能性状表现出强烈的系统发育信号, 说明功能性状结构和系统发育结构具有一致性, 即功能性状表现出系统发育保守性(王诗韵等, 2020)。
1.3.3 多样性指数计算首先计算样方中每个物种的重要值, 用于确定不同恢复阶段优势种组成(重要值 > 5%):
选取3个常用指数来表征物种α多样性, 即Patrick丰富度指数(S)、Shannon-Wiener多样性指数(H)和Pielou均匀度指数(J) (Hill, 1973)。
NRI=−1×MPDs−MPDmdsSD(MPDmds)
(3)
NTI=−1×MNTDs−MNTDmdsSD(MPDmds)
(4)
式中, MPDs和MNTDs分别表示实际观测的MPD值和群落内亲缘关系最近种间的平均系统发育距离, MPDmds和MNTDmds分别表示999个零模型模拟下随机群落的MPD值和最近相邻系统发育距离的平均值, SD为标准差。若NRI > 0, NTI > 0, 则系统发育结构聚集, 表明亲缘关系近的物种倾向于在同一个群落中出现; 若NRI < 0, NTI < 0, 则系统发育结构发散, 表明群落中存在较多亲缘关系较远的物种; 若NRI = 0, NTI = 0, 则表明群落的系统发育结构是随机的(Webb et al, 2002)。
β = (b + c)/(a + b + c)
(5)
植物群落的物种、功能以及系统发育α多样性指数分别用R软件的程序包vegan、FD和picnate计算, β多样性指数用程序包BAT计算。所有多样性数据均符合方差齐性(Bartlett方差齐性检验)。采用单因素方差分析比较不同恢复阶段间物种、功能和系统发育α多样性是否存在显著性差异。采用Tukey’s HSD法进行多重比较。采用Pearson相关系数分析多样性指数间的关系。所有统计分析的显著水平设定为P < 0.05。
2 结果
2.1 不同恢复阶段土壤养分特征及群落物种组成
表1 毛乌素沙地植被不同恢复阶段植物群落特征及土壤总碳、氮、磷含量(平均值 ± 标准误差)
Table 1
Restoration phases植被盖度
Vegetation
cover (%)土壤全碳含量
Soil total C content (g/kg)土壤全氮含量
Soil total N content (g/kg)土壤全磷含量
Soil total P content (g/kg)土壤氮磷比
Soil N : P土壤碳氮比
Soil C : N优势种
Dominant species半固定沙地 Semi-fixed dunes (D1), n = 326.30 ± 1.84a0.92 ± 0.03a0.05 ± 0.01a0.20 ± 0.01a0.24 ± 0.03a20.14 ± 2.40a杨柴、赖草、油蒿、草木樨状黄耆、沙生针茅、虫实、沙米 Hedysarum leave, Leymus secalinus, Artemisia ordosica, Astragalus melilotoides, Stipa glareosa, Corispermum hyssopifolium, Agriophyllum squarrosum固定沙地 Fixed dunes (D2), n = 434.55 ± 2.00b1.56 ± 0.19b0.08 ± 0.00ab0.21 ± 0.00b0.40 ± 0.02a18.76 ± 2.23a油蒿、柠条、赖草、草木樨状黄耆、阿尔泰狗娃花、乳浆大戟 Artemisia ordosica, Caragana korshinskii, Leymus secalinus, Astragalus melilotoides, Heteropappus altaicus, Euphorbia esula结皮覆盖沙地 Fixed dunes covered with crusts (D3), n = 455.33 ± 1.74c2.55 ± 0.09c0.15 ± 0.02bc0.28 ± 0.02b0.53 ± 0.07ab17.88 ± 2.73a油蒿、白草、地稍瓜、杨柴、阿尔泰狗娃花 Artemisia ordosica, Pennisetum centrasiaticum, Cynanchum thesioides, Hedysarum leave, Heteropappus altaicus草本植物覆盖沙地 Fixed dunes with herbs (D4), n = 569.19 ± 1.24d3.14 ± 0.20d0.23 ± 0.04c0.31 ± 0.03b0.75 ± 0.13b15.09 ± 2.22a油蒿、沙木蓼、阿尔泰狗娃花、沙柳、杨柴、白草、赖草、鹅绒藤 Artemisia ordosica, Atraphaxis bracteata, Heteropappus altaicus, Salix cheilophila, Hedysarum leave, Pennisetum centrasiaticum, Leymus secalinus, Cynanchum chinense
不同小写字母表示各阶段间差异显著(P < 0.05)。
Different lowercases indicate significant differences among restoration phases (P < 0.05).
新窗口打开|下载CSV
2.2 功能性状的系统发育信号
表2 毛乌素沙地植被不同恢复阶段4个叶片功能性状的系统发育信号
Table 2
* P < 0.05.
新窗口打开|下载CSV
2.3 不同恢复阶段物种、功能和系统发育α多样性
在不同恢复阶段, 结皮覆盖沙地植物群落的物种多样性指数及物种丰富度指数显著低于其他3个阶段(图1A, B), 而4个阶段的物种均匀度指数没有显著差异(图1C)。结皮覆盖沙地的功能丰富度显著低于其他3个阶段(图1D), 而功能均匀度指数和RaoQ二次熵指数在4个恢复阶段无显著差异(图1E, F)。系统发育多样多样性指数的变化趋势与物种多样性和功能丰富度变化一致(图1G)。MPD和NRI在不同恢复阶段间无显著差异(图1H, I)。群落的系统发育结构在后3个阶段均趋于发散(NRI < 0; D2: NTI = -0.37, D3: NTI = -0.23, D4: NTI = -0.40), 且随植被恢复, 发散程度先减后增, 半固定沙地植物群落两种系统发育结构指数结果表现不一致(NRI = -0.48; NTI = 1.00)。
图1
图1 毛乌素沙地植被不同恢复阶段植物群落物种、功能及系统发育α多样性比较(平均值 ± 标准误差)。n: 样本量; D1: 半固定沙地; D2: 固定沙地; D3: 结皮覆盖沙地; D4: 草本植物覆盖沙地。不同小写字母表示组间差异显著(P < 0.05)。
Fig. 1 Species, functional and phylogenetic α-diversity of plant communities at different phases of vegetation restoration in the Mu Us sandy grassland (mean ± SE). n, The sample size; D1, Semi-fixed dunes; D2, Fixed dunes; D3, Fixed dunes covered with crusts; D4, Fixed dunes with herbs. Different lowercases indicate significant differences (P < 0.05).
2.4 不同恢复阶段物种、功能和系统发育β多样性
毛乌素沙地植被恢复过程中4个不同阶段间群落的物种组成、功能属性及系统进化均存在差异(图2)。在不同恢复阶段转变中, D1-D2阶段间的物种、功能和系统发育β多样性指数均最大, 说明从半固定沙地到固定沙地, 群落间物种组成、功能属性以及系统进化更替最快, 群落间差异最大。在所有恢复阶段间, D1-D4阶段间的3种指数均最大, 说明半固定沙地和草本植物覆盖沙地群落间物种组成、功能属性和系统发育关系差异最大。并且随着阶段间隔的增加, β多样性指数均呈上升趋势(图2), 说明随着群落的恢复, 物种组成、功能属性和系统发育关系均发生持续变化。
图2
图2 毛乌素沙地植被不同恢复阶段植物群落的物种、功能和系统发育β多样性。D1、D2、D3和D4的含义见图1。
Fig. 2 Species, functional and phylogenetic β-diversity of plant communities across restoration phases in the Mu Us sandy grassland. D1, D2, D3 and D4 are the same as in Fig. 1.
2.5 多样性指数间的相关性分析
毛乌素沙地不同恢复阶段群落物种多样性(H、S)与功能丰富度指数FRic、RaoQ指数和PD指数均显著正相关, 且FRic、RaoQ指数与PD指数显著正相关(表3)。Shannon-Wiener多样性指数与S和J间显著相关, 即物种丰富度和均匀度均对物种多样性具有显著贡献。功能多样性指数间(FRic、FEve、RaoQ)表现出较高的协同性(表3)。NRI和NTI与物种多样性(S、H、J)以及功能多样性指数(FRic、FEve、RaoQ)之间均无显著相关性。
表3 毛乌素沙地植被不同恢复阶段植物群落α多样性指数间的Pearson相关系数
Table 3
Species diversityS0.77**J0.48*‒0.12功能多样性
Functional diversityFRic0.85**0.89***0.17FEve0.160.33‒0.160.34*RaoQ0.53*0.75***‒0.120.78***0.60*系统发育多样性
Phylogenetic diversityPD0.78***0.95***‒0.080.82***0.310.70**MPD‒0.23‒0.420.49*‒0.27‒0.21‒0.26‒0.46*NRI‒0.140.005‒0.41‒0.110.18‒0.040.04‒0.85***NTI0.200.15‒0.050.21‒0.36‒0.0.80.05‒0.390.32
H: Shannon-Wiener多样性指数; S: Patrick丰富度指数; J: Pielou均匀度指数; FRic: 功能丰富度指数; FEve: 功能均匀度指数; RaoQ: RaoQ二次熵指数; PD: 系统发育多样性指数; MPD: 平均谱系距离指数; NRI: 净亲缘关系指数; NTI: 净最近亲缘关系指数; * P < 0.05; ** P < 0.01; *** P < 0.001。
H, Shannon-Wiener diversity index; S, Species richness; J, Species evenness; FRic, Functional richness; FEve, Functional evenness; RaoQ, RaoQ quadratic entropy; PD, Phylogenetic diversity; MPD, Mean phylogenetic distance; NRI, Net relatedness index; NTI, Net nearest taxa index; * P < 0.05; ** P < 0.01; *** P < 0.001.
新窗口打开|下载CSV
3 讨论
3.1 功能性状的系统发育信号
毛乌素沙地植被不同恢复阶段群落中4个功能性状的K值均小于1, 且除叶片厚度外其余功能性状并无显著的系统发育信号(表2), 说明系统发育对群落叶功能性状种间变异影响较弱。这与王诗韵等(2020)在新疆艾比湖流域典型荒漠生态系统的研究结果一致。植物功能性状系统发育信号较弱可能由不同原因导致。首先, 功能性状和系统发育关系在物种尺度并不能完美地一一对应(程毅康等, 2019), 且通过系统发育关系只能间接判断群落中物种功能性状相似性, 并不涵盖物种的所有功能性状信息, 因此不能将物种系统发育关系和功能性状相似性直接匹配在一起(Swenson, 2013)。其次, 荒漠生境较为严酷, 植物对干旱、贫瘠、高温和强光的长期适应会导致部分亲缘关系较远的物种发生趋同进化(郝姝珺等, 2019; 王诗韵等, 2020)。鉴于毛乌素沙地较高的水分、养分胁迫, 植物叶片的功能性状可能主要受环境因素的影响(如环境筛选), 而系统发育的信号较弱。
3.2 不同恢复阶段群落的物种多样性、功能多样性和系统发育多样性
植物群落演替伴随着多样性变化。一种观点认为, 随着群落演替, 多样性不断增大(吴彦等, 2004); 另一种观点认为, 在演替初期到中期多样性增大, 达到峰值后在演替后期呈降低趋势(Odum, 1969)。本研究中, 多样性随植被恢复(半固定沙地到固定沙地)先增大, 而在结皮覆盖沙地阶段, 3类多样性指数均显著下降(图1)。Bai等(2018)在毛乌素沙地的研究也发现结皮覆盖沙地的草本植物的丰富度最低。有研究表明生物土壤结皮会影响土壤水热环境、理化性质和土壤微生物群落组成, 进而影响植物的存活和生长(Bai et al, 2018)。较厚的结皮层也可能将植物的种子与土壤隔离, 导致种子萌发率降低、群落多样性下降(Li et al, 2005)。另有研究表明灌丛对草本植物的促进作用会随着结皮盖度的增加而减弱, 从而导致草本植物多样性降低(Bai et al, 2019)。随着植被恢复, 地表有机物的分解和土壤肥力增加, 提高了草本植物的竞争能力(郭柯, 2000), 为草本植物的种子萌发、存活、生长和繁殖创造了条件, 植物多样性会再次升高。草本植物覆盖沙地的3类多样性指数与半固定沙地和固定沙地间无显著差异, 可能是由于研究的空间尺度较小, 而样地的选择也可能存在一定的不确定性, 所以长期观测以及大尺度的研究是非常必要的。此外, 由于沙地水分、养分的限制, 生物多样性并不可能一直升高, 何时会达到恢复序列上的最高点仍需进一步研究。
生态位理论和中性理论是群落构建的两大理论, 前者强调生境过滤、竞争排斥等确定性过程在群落构建中的作用, 而后者认为繁殖体扩散等随机过程是群落构建的主导因素(Tilman,1982; Hubbell, 2001)。在本研究中, 系统发育结构在不同恢复阶段均表现出非随机结构(图1I)。半固定沙地中两种系统发育指数结果不一致(NRI = -0.48; NTI = 1.00), 可能是由于半固定沙地中物种种类较少, 群落受生境过滤与竞争排斥的综合作用, 聚集和发散趋势同时存在(陈博等, 2021)。群落系统发育结构在后3个阶段趋于发散(NRI < 0, NTI < 0), 表明竞争排斥过程在群落构建中起主导作用。在植被恢复初期, 能够通过环境筛选而首先定植的植物多为扩散能力和胁迫耐受性较强、生长较快的先锋物种, 但这些物种对水分、养分等资源竞争能力较弱; 随着植被恢复, 部分先锋物种受到后期近缘种的竞争排斥, 种间生态位分化加强, 最终导致系统发育结构发散(郝姝珺等, 2019)。总体来看, 生境筛选和竞争排斥等生态位分化过程可能在毛乌素沙地植被恢复过程中起重要作用。
β多样性表征沿环境梯度物种的更替速率, 两个群落间共有种越少, β多样性就越高, 物种替代速率越大(马佳明等, 2021)。在不同恢复阶段转变中, 半固定沙地到固定沙地的β多样性指数均最高(图2)。这两个阶段间种子扩散限制较小, 其植物群落差异可能主要由生境条件差异导致。半固定沙地受风蚀和沙埋扰动较大, 群落组成结构较为简单, 而固定沙地地表稳定性、土壤有机质和养分含量均显著提高, 使得更多物种能够定植。随恢复阶段间隔增加, 物种、功能和系统发育β多样性整体上表现出逐渐增加的趋势(图2), 这与前人研究结果一致(张淼淼等, 2016; Piroozi et al, 2018), 表明植被恢复过程中生境条件和物种组成持续发生变化。
3.3 毛乌素沙地植物群落物种多样性、功能多样性和系统发育多样性间的关系
本研究显示, 功能多样性指数(FRic、RaoQ)与物种丰富度和Shannon-Wiener多样性指数呈显著正相关(表3), 这与前人在沙地(杨祥祥等, 2020)、草地(Hu et al, 2014)和森林(薛倩妮等, 2015)中的研究结果一致。功能多样性强调群落中植物在资源获取、更新繁衍、环境耐受等多个功能性状轴信息的差异, 反映了共存物种的互补与冗余(程毅康等, 2019)。计算功能多样性指数的功能性状选择原则是充分体现群落中植物对环境资源的获取能力, 叶片是植物获取转化光能及制造有机物的重要器官, 叶片厚度代表植物抗干扰和高投入的能力, 比叶面积是衡量物种生长状况和光能利用效率的重要指标, 叶片干物质含量主要反映植物营养元素的保持能力, 而叶片密度反映了植物的防御策略(郝姝珺等, 2019)。群落中各个物种的功能性状不完全相同, 因此物种多样性增加时, 功能特征值分布范围增大, 进而使得群落功能多样性增大(Peco et al, 2012)。系统发育多样性与S和H间呈显著正相关, 而与Pielou均匀度指数间无显著相关性, 陈博等(2021)的研究结果也得出相似结论, 可能是由于恢复后期群落中稀有种数多于优势种数, 而S、H指数对于稀有种更加敏感(马克平等, 1995), 使得PD与S和H间呈显著正相关。此外, PD与FRic和RaoQ指数呈正相关, 说明功能丰富度和离散度与系统发育多样性协同变化。总体来看, 物种多样性指数在一定程度上可用于评估和预测植被恢复过程中功能和系统发育多样性的变化。
综上, 本研究发现, 在毛乌素沙地植被恢复序列中, 结皮覆盖沙地的物种多样性、功能丰富度和系统发育多样性均显著低于其他3个阶段, 而其他3个恢复阶段间无显著差异。在不同恢复阶段转变中, 半固定沙地到固定沙地的群落物种组成、功能属性及系统发育关系更替最快, 群落间差异最大; 群落相似性随恢复阶段间隔增加而降低, 表明植被恢复过程中, 物种组成、功能属性和系统发育关系持续发生变化。物种多样性、功能多样性及系统发育多样性之间紧密相关, 因此在一定程度上物种多样性可较为准确地度量生物多样性。植被恢复过程中群落构建总体上受生境筛选、竞争排斥等生态位过程主导。但本文主要选取的是叶功能性状, 涉及的研究尺度及研究时间有限, 对全面反映毛乌素沙地生物多样性有一定局限性, 在未来的研究中, 可进一步扩大功能性状的选取和空间尺度, 同时结合定位长期观测来验证现有的结论。
致谢
感谢魏宁宁、靳川和韩聪在外业调查和取样工作中提供的帮助。
附录 Supplementary Material
Appendix 1 Plant communities at different phases of vegetation restoration in the Mu Us sandy grassland
Appendix 2 Plant community composition at different phases of vegetation restoration in the Mu Us sandy grassland
参考文献
[1]
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002)
Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses
Oecologia, 130, 449-457.DOI:10.1007/s004420100805 PMID:28547053 [本文引用: 1]
We examined variation in leaf size and specific leaf area (SLA) in relation to the distribution of 22 chaparral shrub species on small-scale gradients of aspect and elevation. Potential incident solar radiation (insolation) was estimated from a geographic information system to quantify microclimate affinities of these species across north- and south-facing slopes. At the community level, leaf size and SLA both declined with increasing insolation, based on average trait values for the species found in plots along the gradient. However, leaf size and SLA were not significantly correlated across species, suggesting that these two traits are decoupled and associated with different aspects of performance along this environmental gradient. For individual species, SLA was negatively correlated with species distributions along the insolation gradient, and was significantly lower in evergreen versus deciduous species. Leaf size exhibited a negative but non-significant trend in relation to insolation distribution of individual species. At the community level, variance in leaf size increased with increasing insolation. For individual species, there was a greater range of leaf size on south-facing slopes, while there was an absence of small-leaved species on north-facing slopes. These results demonstrate that analyses of plant functional traits along environmental gradients based on community level averages may obscure important aspects of trait variation and distribution among the constituent species.
[2]
Angiosperm Phylogeny Group APG (2009)An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III
Botanical Journal of the Linnean Society, 161, 105-121.DOI:10.1111/j.1095-8339.2009.00996.x URL [本文引用: 1]
[3]
Bai YX, She WW, Michalet R, Zheng J, Qin SG, Zhang YQ (2018)
Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem
Applied Vegetation Science, 21, 595-606.DOI:10.1111/avsc.12388 URL [本文引用: 6]
[4]
Bai YX, Zhang YQ, Michalet R, She WW, Jia X, Qin SG (2019)
Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient
Basic and Applied Ecology, 38, 1-12.DOI:10.1016/j.baae.2019.06.001 URL [本文引用: 3]
[5]
Blomberg SP, Garland T Jr, Ives AR (2003)
Testing for phylogenetic signal in comparative data: Behavioral traits are more labile
Evolution, 57, 717-745.PMID:12778543 [本文引用: 1]
The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal alpha = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformations, one based on the Ornstein-Uhlenbeck (OU) model of stabilizing selection, the other based on a new model in which character evolution can accelerate or decelerate (ACDC) in rate (e.g., as may occur during or after an adaptive radiation). Maximum likelihood estimation of the OU (d) and ACDC (g) parameters can serve as tests for phylogenetic signal because an estimate of d or g near zero implies that a phylogeny with little hierarchical structure (a star) offers a good fit to the data. Transformations that improve the fit of a tree to comparative data will increase power to detect phylogenetic signal and may also be preferable for further comparative analyses, such as of correlated character evolution. Application of the methods to data from the literature revealed that, for trees with 20 or more species, 92% of traits exhibited significant phylogenetic signal (randomization test), including behavioral and ecological ones that are thought to be relatively evolutionarily malleable (e.g., highly adaptive) and/or subject to relatively strong environmental (nongenetic) effects or high levels of measurement error. Irrespective of sample size, most traits (but not body size, on average) showed less signal than expected given the topology, branch lengths, and a Brownian motion model of evolution (i.e., K was less than one), which may be attributed to adaptation and/or measurement error in the broad sense (including errors in estimates of phenotypes, branch lengths, and topology). Analysis of variance of log K for all 121 traits (from 35 trees) indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits. In addition, physiological traits (corrected for body size) showed less signal than did body size itself. For trees with 20 or more species, the estimated OU (25% of traits) and/or ACDC (40%) transformation parameter differed significantly from both zero and unity, indicating that a hierarchical tree with less (or occasionally more) structure than the original better fit the data and so could be preferred for comparative analyses.
[6]
Bu WS, Zang RG, Ding Y (2014)
Functional diversity increases with species diversity along successional gradient in a secondary tropical lowland rainforest
Tropical Ecology, 55, 393-401.[本文引用: 2]
[7]
Chen B, Jiang L, Xie ZY, Li YD, Li JX, Li MJ, Wei CS, Xing C, Liu JF, He ZS (2021)
Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamii natural forest
Biodiversity Science, 29, 439-448. (in Chinese with English abstract)DOI:10.17520/biods.2020399 [本文引用: 4]
Aims: Environmental heterogeneity of forest gaps leads to variation in taxonomic and phylogenetic diversity of trees in these areas. Studying tree diversity in different sizes of forest gap communities can help to reveal the mechanisms that drive the formation and maintenance of biodiversity. This study took Castanopsis kawakamiigaps as the research object, and aimed to reveal the relationship between the taxonomic and phylogenetic diversity of plants and its environmental influence factors.
Methods: We examined different sizes of forest gaps in a Castanopsis kawakamii natural forest as to study the taxonomic and phylogenetic diversity of plants, and used a generalized linear model (GLM) to explore the environmental factors driving the community assembly.
Results: We found that the plant species and plant abundance in large gaps (> 200 m2) were higher than those of medium gaps ([50 m2, 100 m2)), small gaps ([30 m2, 50 m2)) and non-gaps (100 m2). The phylogenetic community structure of the large gaps tends to diverge, while that of the medium gaps, small gaps and non-gaps were affected by the combined effect of habitat filtering and competitive exclusion. The phylogenetic community diversity index (PD) was significantly positively correlated with species richness (SR), Margalef index and Shannon-Wiener index, which is related to the higher species composition of sparse species than dense species in forest gaps. Overall, forest gap size had a significantly positive effect on species diversity, and the soil total nitrogen content had a significantly positive effect on community phylogenetic diversity and phylogenetic structure.
Conclusion: The formation of forest gaps increase the taxonomic and phylogenetic diversity of trees in natural forests, with gap size and soil total nitrogen jointly driving tree diversity in these natural forest gaps.
[陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声 (2021)
格氏栲天然林林窗植物物种多样性与系统发育多样性
生物多样性, 29, 439-448.]DOI:10.17520/biods.2020399 [本文引用: 4]
林窗环境异质性导致群落物种多样性与系统发育多样性(phylogenetic diversity, PD)存在差异, 研究不同大小的林窗中群落的物种多样性与系统发育多样性有助于揭示林下生物多样性的形成及维持机制。本文以格氏栲(Castanopsis kawakamii)天然林为研究对象, 通过Pearson相关性分析与广义线性模型探讨了林窗内物种多样性与系统发育多样性间的相互关系及其环境影响因素。结果表明: (1)大林窗(面积 > 200 m2)植物种类及多度均高于中林窗(50 m2 ≤ 面积 < 100 m2)、小林窗(30 m2 ≤ 面积 < 50 m2)和非林窗(面积 = 100 m2)。大林窗群落系统发育结构趋于发散, 中、小林窗和非林窗群落系统发育结构受到生境过滤和竞争排斥综合作用。(2)群落系统发育多样性指数与物种丰富度(species richness, SR)、Margalef丰富度指数和Shannon-Wiener指数均呈显著正相关, 这与林窗内稀有种种类组成多于优势种有关。(3)林窗面积对物种多样性存在显著正效应; 土壤全氮含量对系统发育多样性和系统发育结构存在显著正效应。林窗形成提高了格氏栲天然林群落物种多样性和系统发育多样性, 林窗面积与土壤全氮共同驱动了格氏栲天然林林窗物种多样性和系统发育多样性的变化。
[8]
Chen HH, Xu GX, Ma FQ, Liu S, Zhang MM, Cao XW, Chen J, Zhao GD, Yang HG, Shi ZM (2020)
Phylogenetic structure of undergrowth layers across subalpine dark coniferous forests and their post-harvesting secondary forests in western Sichuan
Scientia Silvae Sinicae, 56(7), 1-11. (in Chinese with English abstract)[本文引用: 1]
[陈欢欢, 许格希, 马凡强, 刘顺, 张淼淼, 曹向文, 陈健, 赵广东, 杨洪国, 史作民 (2020)
川西亚高山暗针叶林及其采伐次生林林下分层谱系结构
林业科学, 56(7), 1-11.][本文引用: 1]
[9]
Cheng YK, Zhang H, Wang X, Long WX, Li C, Fang YS, Fu MQ, Zhu KX (2019)
Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly
Chinese Journal of Plant Ecology, 43, 217-226. (in Chinese with English abstract)DOI:10.17521/cjpe.2019.0003 URL [本文引用: 3]
[程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新 (2019)
功能多样性和谱系多样性对热带云雾林群落构建的影响
植物生态学报, 43, 217-226.]DOI:10.17521/cjpe.2019.0003 [本文引用: 3]
近年来, 功能多样性和谱系多样性为探究群落构建机制提供了新方法。为了更准确地了解海南岛高海拔热带云雾林群落构建机制, 该研究以海南岛霸王岭热带云雾林为对象, 测定7个环境因子和13个植物功能性状。利用主成分分析(PCA)筛选环境因子, 以霸王岭、尖峰岭和黎母山热带云雾林分布物种建立区域物种库, 结合模型, 分析Rao二次熵(RaoQ)和平均成对谱系距离(MPD)变化对植物群落构建的影响。结果表明: 林冠开阔度、土壤全磷含量和坡度是影响植物群落构建的关键环境因子。多数功能性状的系统发育信号很低且不显著, 说明热带云雾林群落的系统发育关系与功能性状随历史进程变化不一致。RaoQ和MPD的实际观测值都显著低于期望值, 且其标准效应值与土壤磷含量显著相关, 说明生境过滤是驱动热带云雾林群落构建的关键因子, 土壤磷含量是群落构建的关键环境筛。
[11]
Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011)
Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships
Ecology, 92, 1573-1581.PMID:21905424 [本文引用: 1]
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.
[12]
Forest F, Grenyer R, Rouget M, Jonathan Davies T, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007)
Preserving the evolutionary potential of floras in biodiversity hotspots
Nature, 445, 757-760.DOI:10.1038/nature05587 URL [本文引用: 1]
[13]
Guo K (2000)
Cyclic succession of Artemisia ordosica Krasch community in the Mu Us sandy grassland
Acta Phytoecologica Sinica, 24, 243-247. (in Chinese with English abstract)[本文引用: 3]
[郭柯 (2000)
毛乌素沙地油蒿群落的循环演替
植物生态学报, 24, 243-247.][本文引用: 3]
[14]
Ha WX, Xiao GY, Cao JH, Liu YG, Cui M, Zhou JX (2020)
Species composition and diversity of plant community at different restoration stages of karst graben basin
Chinese Journal of Ecology, 39, 36-45. (in Chinese with English abstract)[本文引用: 1]
[哈文秀, 肖桂英, 曹建华, 刘玉国, 崔明, 周金星 (2020)
喀斯特断陷盆地区不同恢复阶段群落物种组成与多样性特征
生态学杂志, 39, 36-45.][本文引用: 1]
[15]
Hao SJ, Li XY, Hou MM, Zhao XH (2019)
Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China
Chinese Journal of Plant Ecology, 43, 208-216. (in Chinese with English abstract)DOI:10.17521/cjpe.2018.0295 URL [本文引用: 3]
[郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海 (2019)
长白山温带森林不同演替阶段群落功能性状的空间变化
植物生态学报, 43, 208-216.]DOI:10.17521/cjpe.2018.0295 [本文引用: 3]
群落构建机制研究是生态学研究的热点。长白山自然保护区拥有完整的原始阔叶红松林生态系统, 近年来随着物种多样性丧失愈发严重, 对该地区开展群落构建机制研究显得尤为重要。该研究以长白山不同演替阶段的3块5.2 hm 2固定监测样地(次生杨桦林、次生针阔混交林、原始椴树红松林)为研究对象, 通过采集样地内主要树种的6个关键功能性状(叶面积、比叶面积、叶片厚度、叶氮含量、叶磷含量、最大树高), 分析不同空间尺度下(5 m × 5 m, 10 m × 10 m, 20 m × 20 m, 30 m × 30 m, 40 m × 40 m, 50 m × 50 m和60 m × 60 m)及不同演替阶段群落性状空间值的变化, 结合零模型的模拟结果对长白山温带森林演替过程中的群落构建机制进行讨论。结果表明: 种库大小对于研究结果具有重要影响。在较大的种库下, 环境过滤作用影响显著。而在样地水平进行研究时, 演替早期和中期, 群落性状空间值与零模型模拟值无显著差异, 在演替的晚期, 群落性状空间值显著高于零模型模拟值。结合多个群落功能多样性指数分析发现, 环境过滤和竞争作用共同决定该地区顶级群落的物种组成。在演替早期大量物种迁入, 群落内物种间存在强烈的资源竞争, 而随着演替进行, 部分物种逐渐被竞争排除出群落, 群落中的物种呈现明显的生态位分化, 竞争作用是维持物种共存的主要机制。
[18]
Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography, pp. 340-348.
Princeton University Press,
Princeton.
[本文引用: 1]
[19]
Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018)
Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland
Agricultural and Forest Meteorology, 259, 250- 259.DOI:10.1016/j.agrformet.2018.05.009 URL [本文引用: 1]
[20]
Kang TT, Li Z, Gao YC (2019)
Effectiveness of ecological restoration in the mountain-oasis-desert system of northwestern arid area of China
Acta Ecologica Sinica, 39, 7418-7431. (in Chinese with English abstract)[本文引用: 1]
[康婷婷, 李增, 高彦春 (2019)
西北干旱区山地-绿洲-荒漠系统生态恢复综合效益评估
生态学报, 39, 7418-7431.][本文引用: 1]
[22]
Li CJ, Fu BJ, Wang S, Stringer LC, Wang YP, Li ZD, Liu YX, Zhou WX (2021)
Drivers and impacts of changes in China’s drylands
Nature Reviews Earth & Environment, 2, 858- 873.[本文引用: 1]
[23]
Li XR, Jia XH, Long LQ, Zerbe S (2005)
Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China)
Plant and Soil, 277, 375-385.DOI:10.1007/s11104-005-8162-4 URL [本文引用: 1]
[24]
Lü P, Zuo XA, Yue XY, Zhang J, Zhao SL, Cheng QP (2018)
Temporal changes of vegetation characteristics during the long-term grazing exclusion in Horqin Sandy Land
Chinese Journal of Ecology, 37, 2880-2888. (in Chinese with English abstract)[本文引用: 1]
[吕鹏, 左小安, 岳喜元, 张晶, 赵生龙, 程清平 (2018)
科尔沁沙地封育过程中植被特征的动态变化
生态学杂志, 37, 2880-2888.][本文引用: 1]
[25]
Ma JM, Lu GQ, Zhao P, Yu Y, Gu JC (2021)
Study on species diversity under different forest types in Chongling watershed
Forestry and Ecological Sciences, 36, 111-118. (in Chinese with English abstract)[本文引用: 1]
[马佳明, 陆贵巧, 赵鹏, 于跃, 谷建才 (2021)
崇陵流域不同林分类型下物种多样性研究
林业与生态科学, 36, 111-118.][本文引用: 1]
[26]
Ma KP, Huang JH, Yu SL, Chen LZ (1995)
Plant community diversity in Dongling Mountain, Beijing, China. II. Species richness, evenness and species diversities
Acta Ecologica Sinica, 15, 268-277. (in Chinese with English abstract)[本文引用: 1]
[马克平, 黄建辉, 于顺利, 陈灵芝 (1995)
北京东灵山地区植物群落多样性的研究. II. 丰富度、均匀度和物种多样性指数
生态学报, 15, 268-277.][本文引用: 1]
[28]
Odum EP (1969)
The strategy of ecosystem development
Science, 164, 262-270.[本文引用: 2]
[29]
Peco B, Carmona CP, de Pablos I, Azcárate FM (2012)
Effects of grazing abandonment on functional and taxonomic diversity of Mediterranean grasslands
Agriculture, Ecosystems & Environment, 152, 27-32.DOI:10.1016/j.agee.2012.02.009 URL [本文引用: 1]
[30]
Piroozi N, Kohandel A, Jafari M, Tavili A, Farizhendi GM (2018)
Plant alpha and beta diversity in relation to spatial distribution patterns in different plant community types
Pakistan Journal of Botany, 50, 2317-2323.[本文引用: 1]
[32]
Qin H, Zhang YB, Dong G, Zhang F (2019)
Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China
Chinese Journal of Plant Ecology, 43, 762-773. (in Chinese with English abstract)DOI:10.17521/cjpe.2018.0088 URL [本文引用: 1]
[秦浩, 张殷波, 董刚, 张峰 (2019)
山西关帝山森林群落物种、谱系和功能多样性海拔格局
植物生态学报, 43, 762-773.]DOI:10.17521/cjpe.2018.0088 [本文引用: 1]
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βrepl和βrich分别表现出单峰格局和“U”形格局, 而草本植物βrepl和βrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。
[33]
Qin SG, Wu B, Zhang YQ (2010)
A review of above-ground interactions in silvopasture systems
Acta Ecologica Sinica, 30, 3616-3627. (in Chinese with English abstract)[本文引用: 1]
[秦树高, 吴斌, 张宇清 (2010)
林草复合系统地上部分种间互作关系研究进展
生态学报, 30, 3616-3627.][本文引用: 1]
[35]
She WW, Bai YX, Zhang YQ, Qin SG, Liu Z, Wu B (2017)
Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments
Frontiers in Plant Science, 8, 1933.DOI:10.3389/fpls.2017.01933 URL [本文引用: 2]
[36]
Sun CL, Chai ZZ, Liu GB, Xue S (2017)
Changes in species diversity patterns and spatial heterogeneity during the secondary succession of grassland vegetation on the Loess Plateau, China
Frontiers in Plant Science, 8, 1465.[本文引用: 1]
[38]
Tilman D (1982) Resource Competition and Community Structure.
Princeton University Press,
Princeton.
[本文引用: 1]
[39]
Wang SY, Lü GH, Jiang LM, Wang HF, Li Y, Wang JL (2020)
Multi-scale analysis on functional diversity and phylogenetic diversity of typical plant community in Ebinur Lake
Ecology and Environmental Sciences, 29, 889-900. (in Chinese with English abstract)[本文引用: 3]
[王诗韵, 吕光辉, 蒋腊梅, 王恒方, 李岩, 王金龙 (2020)
不同尺度下艾比湖典型植物群落功能多样性和系统发育多样性研究
生态环境学报, 29, 889-900.][本文引用: 3]
[40]
Wang XY, Li YL, Lian J, Duan YL, Wang LL (2021)
Relationship between vegetation coverage and climate change in semiarid sandy land and the significance to ecological construction
Journal of Desert Research, 41, 183-194. (in Chinese with English abstract)[本文引用: 1]
[王旭洋, 李玉霖, 连杰, 段育龙, 王立龙 (2021)
半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义
中国沙漠, 41, 183-194.][本文引用: 1]
[41]
Webb CO, Ackerly DD, Kembel SW (2008)
Phylocom: Software for the analysis of phylogenetic community structure and trait evolution
Bioinformatics, 24, 2098-2100.DOI:10.1093/bioinformatics/btn358 URL [本文引用: 1]
[43]
Wu Y, Liu Q, He H, Lin B (2004)
Dynamics of species diversity in artificial restoration process of subalpine coniferous forest
Chinese Journal of Applied Ecology, 15, 1301-1306. (in Chinese with English abstract)[本文引用: 1]
[吴彦, 刘庆, 何海, 林波 (2004)
亚高山针叶林人工恢复过程中物种多样性变化
应用生态学报, 15, 1301-1306.][本文引用: 1]
[44]
Xue QN, Yan M, Bi RC (2015)
Functional diversity research of tree and shrub layers in forest communities of the Wulu Mountains Nature Reserve in Shanxi, China
Acta Ecologica Sinica, 35, 7023-7032. (in Chinese with English abstract)[本文引用: 1]
[薛倩妮, 闫明, 毕润成 (2015)
山西五鹿山森林群落木本植物功能多样性
生态学报, 35, 7023-7032.][本文引用: 1]
[45]
Yan F, Cong RC (2015)
Study on classification progress and cataloging system of sandy land in China
Geographical Research, 34, 455-465. (in Chinese with English abstract)[本文引用: 1]
[闫峰, 丛日春 (2015)
中国沙地分类进展及编目体系
地理研究, 34, 455-465.][本文引用: 1]
[46]
Yang XX, Li MQ, He XD, You WX, Yu D, Zhang CH, Chen N (2020)
Effects of functional diversity on species diversity of plant communities in sandy land
Acta Scientiarum Naturalium Universitatis Nankaiensis, 53(4), 75-80. (in Chinese with English abstract)[本文引用: 3]
[杨祥祥, 李梦琦, 何兴东, 尤万学, 余殿, 张彩华, 陈娜 (2020)
沙地植物群落功能多样性对物种多样性的影响
南开大学学报(自然科学版), 53(4), 75- 80.][本文引用: 3]
[47]
Yu X, Wang X, Wu T, Wang QX, Ma Y, Xie L, Song NP (2021)
Relationship between restoration of plant diversity and soil habitat in desert steppe
Acta Ecologica Sinica, 41, 8516-8524. (in Chinese with English abstract)[本文引用: 1]
[余轩, 王兴, 吴婷, 王启学, 马昀, 谢莉, 宋乃平 (2021)
荒漠草原植物多样性恢复与土壤生境的关系
生态学报, 41, 8516-8524.][本文引用: 1]
[48]
Zhang JY, Zhao HL, Zhang TH, Zhao XY (2004)
Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land
Acta Phytoecologica Sinica, 28, 86-92. (in Chinese with English abstract)[本文引用: 2]
[张继义, 赵哈林, 张铜会, 赵学勇 (2004)
科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态
植物生态学报, 28, 86-92.]DOI:10.17521/cjpe.2004.0013 [本文引用: 2]
#已删除的
[49]
Zhang MM, Qin H, Wang Y, Zhang F (2016)
Beta diversity of wetland vegetation in the middle and upper reaches of the Fenhe River watershed
Acta Ecologica Sinica, 36, 3292-3299. (in Chinese with English abstract)[本文引用: 1]
[张淼淼, 秦浩, 王烨, 张峰 (2016)
汾河中上游湿地植被β多样性
生态学报, 36, 3292-3299.][本文引用: 1]
[50]
Zhang XS (1994)
Principles and optimal models for development of Maowusu sandy grassland
Acta Phytoecologica Sinica, 18, 1-16. (in Chinese with English abstract)[本文引用: 1]
[张新时 (1994)
毛乌素沙地的生态背景及其草地建设的原则与优化模式
植物生态学报, 18, 1-16.][本文引用: 1]
本文全面分析了毛乌素沙地生态过渡带的自然环境、植被的现状和历史变迁过程,以定性和定量相结合的方法阐述了环境和植被之间的动态关系,在此基础上提出了该地区草地建设的原则及优化生态模式,其中包括:水分平衡原则,半固定沙丘持续发展原则,网带状种植原则,滩地草、农、林复合系统模式、软梁半人工草地复合系统模式和硬梁天然草地放牧系统模式。
[51]
Zhao XN, Qin H, Zhang F (2017)
Diversity of forest communities in the upstream and middle reaches of the Wenyu River watershed, Shanxi
Acta Ecologica Sinica, 37, 1093-1102. (in Chinese with English abstract)[本文引用: 1]
[赵小娜, 秦浩, 张峰 (2017)
山西文峪河上中游森林群落多样性
生态学报, 37, 1093-1102.][本文引用: 1]
相关知识
群落系统发育多样性和功能性状多样性对青藏高原高寒草甸植物群落生产力的影响
三江平原湿地典型植物群落物种多样性研究
岳麓山植物群落数量分类、生物多样性及群落动态特征研究
不同植被类型植物物种多样性
未来城市绿化主要方向——恢复地带性植物群落
松材线虫病除治迹地自然恢复过程中物种多样性的动态变化
植物多样性的重要性范文
物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例
丽江拉市海高原湿地植被群落分布格局及植物多样性研究
植物多样性保护
网址: 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性 https://www.huajiangbk.com/newsview176934.html
上一篇: 花卉颜色多样性与变异的研究进展 |
下一篇: 小五台北黄花菜群落物种多样性研究 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039