首页 分享 用python绘制太阳花

用python绘制太阳花

来源:花匠小妙招 时间:2025-01-11 22:37

作者:Costas Andreou 机器之心编译 参与:Jamin、张倩

【我原创的Python绘图专题,今天没改好,我改好后尽快发出来】

看这优美的舞姿

c7241fc127354b36aa8e3cf835174b1e.gif

数据暴增的年代,数据科学家、分析师在被要求对数据有更深的理解与分析的同时,还需要将结果有效地传递给他人。如何让目标听众更直观地理解?当然是将数据可视化啊,而且最好是动态可视化。 本文将以线型图、条形图和饼图为例,系统地讲解如何让你的数据图表动起来

ae73b5d2269a72796ed4f71a8c60e768.gif

这些动态图表是用什么做的? 接触过数据可视化的同学应该对 Python 里的 Matplotlib 库并不陌生。它是一个基于 Python 的开源数据绘图包,仅需几行代码就可以帮助开发者生成直方图、功率谱、条形图、散点图等。这个库里有个非常实用的扩展包——FuncAnimation,可以让我们的静态图表动起来。 FuncAnimation 是 Matplotlib 库中 Animation 类的一部分,后续会展示多个示例。如果是首次接触,你可以将这个函数简单地理解为一个 While 循环,不停地在 “画布” 上重新绘制目标数据图。 如何使用 FuncAnimation? 这个过程始于以下两行代码:

import matplotlib.animation as anianimator = ani.FuncAnimation(fig, chartfunc, interval = 100)

从中我们可以看到 FuncAnimation 的几个输入:

fig 是用来 「绘制图表」的 figure 对象;

chartfunc 是一个以数字为输入的函数,其含义为时间序列上的时间;

interval 这个更好理解,是帧之间的间隔延迟,以毫秒为单位,默认值为 200。

这是三个关键输入,当然还有更多可选输入,感兴趣的读者可查看原文档,这里不再赘述。 下一步要做的就是将数据图表参数化,从而转换为一个函数,然后将该函数时间序列中的点作为输入,设置完成后就可以正式开始了。 在开始之前依旧需要确认你是否对基本的数据可视化有所了解。也就是说,我们先要将数据进行可视化处理,再进行动态处理。 按照以下代码进行基本调用。另外,这里将采用大型流行病的传播数据作为案例数据(包括每天的死亡人数)。

import matplotlib.animation as aniimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdurl = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'df = pd.read_csv(url, delimiter=',', header='infer')df_interest = df.loc[    df['Country/Region'].isin(['United Kingdom', 'US', 'Italy', 'Germany'])    & df['Province/State'].isna()]df_interest.rename(    index=lambda x: df_interest.at[x, 'Country/Region'], inplace=True)df1 = df_interest.transpose()df1 = df1.drop(['Province/State', 'Country/Region', 'Lat', 'Long'])df1 = df1.loc[(df1 != 0).any(1)]df1.index = pd.to_datetime(df1.index)

绘制三种常见动态图表 绘制动态线型图

c151cf3a15982b4813cb026e5753d886.gif

如下所示,首先需要做的第一件事是定义图的各项,这些基础项设定之后就会保持不变。它们包括:创建 figure 对象,x 标和 y 标,设置线条颜色和 figure 边距等:

import numpy as npimport matplotlib.pyplot as pltcolor = ['red', 'green', 'blue', 'orange']fig = plt.figure()plt.xticks(rotation=45, ha="right", rotation_mode="anchor") #rotate the x-axis valuesplt.subplots_adjust(bottom = 0.2, top = 0.9) #ensuring the dates (on the x-axis) fit in the screenplt.ylabel('No of Deaths')plt.xlabel('Dates')

接下来设置 curve 函数,进而使用 .FuncAnimation 让它动起来:

def buildmebarchart(i=int):    plt.legend(df1.columns)    p = plt.plot(df1[:i].index, df1[:i].values) #note it only returns the dataset, up to the point i    for i in range(0,4):        p[i].set_color(color[i]) #set the colour of each curveimport matplotlib.animation as anianimator = ani.FuncAnimation(fig, buildmebarchart, interval = 100)plt.show()

动态饼状图

1b02656fe3930f8cf92c6f34ac9f9830.gif

可以观察到,其代码结构看起来与线型图并无太大差异,但依旧有细小的差别。

import numpy as npimport matplotlib.pyplot as pltfig,ax = plt.subplots()explode=[0.01,0.01,0.01,0.01] #pop out each slice from the piedef getmepie(i):    def absolute_value(val): #turn % back to a number        a  = np.round(val/100.*df1.head(i).max().sum(), 0)        return int(a)    ax.clear()    plot = df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value, label='',explode = explode, shadow = True)    plot.set_title('Total Number of Deathsn' + str(df1.index[min( i, len(df1.index)-1 )].strftime('%y-%m-%d')), fontsize=12)import matplotlib.animation as anianimator = ani.FuncAnimation(fig, getmepie, interval = 200)plt.show()

主要区别在于,动态饼状图的代码每次循环都会返回一组数值,但在线型图中返回的是我们所在点之前的整个时间序列。返回时间序列通过 df1.head(i) 来实现,而. max()则保证了我们仅获得最新的数据,因为流行病导致死亡的总数只有两种变化:维持现有数量或持续上升。

df1.head(i).max()

动态条形图 创建动态条形图的难度与上述两个案例并无太大差别。在这个案例中,作者定义了水平和垂直两种条形图,读者可以根据自己的实际需求来选择图表类型并定义变量栏。

fig = plt.figure()bar = ''def buildmebarchart(i=int):    iv = min(i, len(df1.index)-1) #the loop iterates an extra one time, which causes the dataframes to go out of bounds. This was the easiest (most lazy) way to solve this :)    objects = df1.max().index    y_pos = np.arange(len(objects))    performance = df1.iloc[[iv]].values.tolist()[0]    if bar == 'vertical':        plt.bar(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])        plt.xticks(y_pos, objects)        plt.ylabel('Deaths')        plt.xlabel('Countries')        plt.title('Deaths per Country n' + str(df1.index[iv].strftime('%y-%m-%d')))    else:        plt.barh(y_pos, performance, align='center', color=['red', 'green', 'blue', 'orange'])        plt.yticks(y_pos, objects)        plt.xlabel('Deaths')        plt.ylabel('Countries')animator = ani.FuncAnimation(fig, buildmebarchart, interval=100)plt.show()

在制作完成后,存储这些动态图就非常简单了,可直接使用以下代码:

animator.save(r'C:tempmyfirstAnimation.gif')

感兴趣的读者如想获得详细信息可参考:https://matplotlib.org/3.1.1/api/animation_api.html。 原文链接:https://towardsdatascience.com/learn-how-to-create-animated-graphs-in-python-fce780421afe

相关知识

用Python绘制玫瑰花
python绘制花
用python turtle绘制一朵玫瑰花
python 绘制一个四瓣花图
用python绘制玫瑰花的代码
[Art & Science] 用python绘制3D花(二)
用python绘制满天星动态,用python画满天星花朵
Python:绘制樱花树
Python turtle学习笔记(包含太阳花的绘制,玫瑰花的绘制)
Python用turtle库绘制图形——漂亮的玫瑰

网址: 用python绘制太阳花 https://www.huajiangbk.com/newsview1545066.html

所属分类:花卉
上一篇: 国外超火的8个免费制图软件大推荐
下一篇: 【EXCEL】给数据添加图表(数

推荐分享