基于CA
摘要:
病害侵袭是制约核桃优质发展的重要因素之一,为实现田间智能化病害识别,设计了一款核桃病害识别模型。该模型采用Mobilenet-V2作为基础网络骨架,在倒残差结构中添加坐标注意力机制,解决特征提取时位置信息缺失的问题。此外,设计混合迁移的训练方式,将跨域迁移和域内迁移相结合,避免单独迁移学习的不良影响。结果表明:1)混合迁移对模型提升效果最佳,准确率最高提升18.57百分点。2)模型平均识别准确率为96.97%,模型参数量为3.95 M,内存占有量为10.50 MB,相较于Mobilenet-V3-Large、ShuffulNet-V2和EfficientNet-V2-S,识别准确率分别提升4.39百分点、6.63百分点和4.31百分点,且保持较少的参数量与内存占有量。3)与SE(squeeze-and-excitation)模块、CBAM(convolutional block attention module)模块相比,坐标注意力机制更能提升模型对感兴趣区域的关注度。因此,该模型可用于开发安卓应用程序并部署于移动端,为核桃病害智能识别提供新方法。
关键词: 核桃病害, 坐标注意力机制, 混合迁移, 安卓应用程序
Abstract:
Disease invasion is one of the important factors restricting the high-quality development of walnut. In order to realize intelligent disease identification in the field, this study designed a walnut disease identification model. The model used Mobilenet-V2 as the basic network skeleton, and added a coordinate attention mechanism to the inverted residual structure to make up for the lack of location information during feature extraction. In addition, this study designed a mixed transfer training method, which combined cross-domain and intra-domain to avoid the adverse effects of separate transfer learning. The results showed that: 1) The mixed transfer had the best effect on improving the model, and the highest accuracy rate was increased by 18.57 percentage points. 2) The average identification accuracy of the model was 96.97%, the model parameter size was 3.95 M, and the memory occupancy was 10.50 MB. Compared with Mobilenet-V3-Large, ShuffulNet-V2 and EfficientNet-V2-S, the identification accuracy was increased by 4.39, 6.63 and 4.31 percentage points, respectively, and the parameter size and memory occupation were keep small. 3) Compared with SE (squeeze-and-excitation) and CBAM (convolutional block attention module), the coordinate attention mechanism could improve the model’s attention to the region of interest. Therefore, the model could be used to develop an Android application and deploy it on the mobile terminal, and provide a new method for intelligent identification of walnut disease.
Key words: walnut disease, coordinate attention mechanism, mixed transfer, Android application
中图分类号:
S436.6
相关知识
基于CA模型的上海九段沙互花米草和芦苇种群扩散动态
基于SK
基于电化学传感器的病原微生物即时检测技术研究
基于改进ResNet
高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca~(2+)
基于银川平原地下水质的叶菜水培营养液配方研究
成都双流国际机场股份有限公司基于人脸识别的旅客智慧服务系统维护保养项目招标公告
神刊CA,AI和肿瘤:临床挑战与应用
基于粗糙集和BP神经网络的棉花病害识别
基于CAN总线的大棚温湿度监控系统的设计
网址: 基于CA https://www.huajiangbk.com/newsview1278547.html
上一篇: 核桃常见病害无公害防治技术 |
下一篇: 核桃树坐不住果怎么办 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039