Research progress of plant competitor
Díaz S, Kattge J, Cornelissen J H C, Wright I J, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice I C, Garnier E, Bönisch G, Westoby M, Poorter H, Reich P B, Moles A T, Dickie J, Gillison A N, Zanne A E, Chave J, Wright S J, Sheremet'ev S N, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig J S, Günther A, Falczuk V, Rüger N, Mahecha M D, Gorné L D. The global spectrum of plant form and function. Nature, 2016, 529(7585): 167-171. DOI:10.1038/nature16489
[2]Westoby M, Falster D S, Moles A T, Vesk P A, Wright I J. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33: 125-159. DOI:10.1146/annurev.ecolsys.33.010802.150452
[3]Pierce S, Negreiros D, Cerabolini B E L, Kattge J, Díaz S, Kleyer M, Shipley B, Wright S J, Soudzilovskaia N A, Onipchenko V G, van Bodegom P M, Frenette-Dussault C, Weiher E, Pinho B X, Cornelissen J H C, Grime J P, Thompson K, Hunt R, Wilson P J, Buffa G, Nyakunga O C, Reich P B, Caccianiga M, Mangili F, Ceriani R M, Luzzaro A, Brusa G, Siefert A, Barbosa N P U, Chapin III F S, Cornwell W K, Fang J Y, Fernandes G W, Garnier E, Stradic S L, Peñuelas J, Melo F P L, Slaviero A, Tabarelli M, Tampucci D. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology, 2017, 31(2): 444-457. DOI:10.1111/1365-2435.12722
[4]Díaz S, Cabido M. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 1997, 8(4): 463-474. DOI:10.2307/3237198
[5]Grime J P. Plant Strategies and Vegetation Processes. New York: John Wiley & Sons, 1979.
[6]Guo W Y, van Kleunen M, Winter M, Weigelt P, Stein A, Pierce S, Pergl J, Moser D, Maurel N, Lenzner B, Kreft H, Essl F, Dawson W, Pyšek P. The role of adaptive strategies in plant naturalization. Ecology Letters, 2018, 21(9): 1380-1389. DOI:10.1111/ele.13104
[7]Reich P B, Wright I J, Cavender-Bares J, Craine J M, Oleksyn J, Westoby M, Walters M B. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Science, 2003, 164(S3): S143-S164. DOI:10.1086/374368
[8]Grime J P, Pierce S. The Evolutionary Strategies that Shape Ecosystems. New Jersey: Wiley-Blackwell, 2012.
[9]Grime J P. Vegetation classification by reference to strategies. Nature, 1974, 250(5461): 26-31. DOI:10.1038/250026a0
[10]Grime J P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. England: John Wiley & Sons, 2001.
[11]Hodgson J G, Wilson P J, Hunt R, Grime J P, Thompson K. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 1999, 85(2): 282-294. DOI:10.2307/3546494
[12]Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 1977, 111(982): 1169-1194. DOI:10.1086/283244
[13]Grime J P, Thompson K, Hunt R, Hodgson J G, Cornelissen J H C, Rorison I H, Hendry G A F, Ashenden T W, Askew A P, Band S R, Booth R E, Bossard C C, Campbell B D, Cooper J E L, Davison A W, Gupta P L, Hall W, Hand D W, Hannah M A, Hillier S H, Hodkinson D J, Jalili A, Liu Z, Mackey J M L, Matthews N, Mowforth M A, Neal A M, Reader R J, Reiling K, Ross-Fraser W, Spencer R E, Sutton F, Tasker D E, Thorpe P C, Whitehouse J. Integrated screening validates primary axes of specialisation in plants. Oikos, 1997, 79(2): 259-281. DOI:10.2307/3546011
[14]Grime J P, Hodgson J G, Hunt R. Comparative Plant Ecology: A Functional Approach to Common British Species. London: Unwin Hyman, 1988.
[15]Cerabolini B E L, Brusa G, Ceriani R M, De Andreis R, Luzzaro A, Pierce S. Can CSR classification be generally applied outside Britain?. Plant Ecology, 2010, 210: 253-261. DOI:10.1007/s11258-010-9753-6
[16]Caccianiga M, Luzzaro A, Pierce S, Ceriani R M, Cerabolini B. The functional basis of a primary succession resolved by CSR classification. Oikos, 2006, 112(1): 10-20. DOI:10.1111/j.0030-1299.2006.14107.x
[17]Pierce S, Brusa G, Vagge I, Cerabolini B E L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 2013, 27(4): 1002-1010. DOI:10.1111/1365-2435.12095
[18]Li Y Z, Shipley B. An experimental test of CSR theory using a globally calibrated ordination method. PLoS One, 2017, 12(4): e0175404. DOI:10.1371/journal.pone.0175404
[19]Hunt R, Hodgson J G, Thompson K, Bungener P, Dunnett N P, Askew A P. A new practical tool for deriving a functional signature for herbaceous vegetation. Applied Vegetation Science, 2004, 7(2): 163-170. DOI:10.1111/j.1654-109X.2004.tb00607.x
[20]Bornhofen S, Barot S, Lattaud C. The evolution of CSR life-history strategies in a plant model with explicit physiology and architecture. Ecological Modelling, 2011, 222(1): 1-10. DOI:10.1016/j.ecolmodel.2010.09.014
[21]Laughlin D C, Leppert J J, Moore M M, Sieg C H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology, 2010, 24(3): 493-501. DOI:10.1111/j.1365-2435.2009.01672.x
[22]Douma J C, Aerts R, Witte J P M, Bekker R M, Kunzmann D, Metselaar K, van Bodegom P M. A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe. Ecography, 2012, 35(4): 364-373. DOI:10.1111/j.1600-0587.2011.07068.x
[23]Pierce S, Brusa G, Sartori M, Cerabolini B E L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 2012, 109(5): 1047-1053. DOI:10.1093/aob/mcs021
[24]Hodgson J G, Santini B A, Marti G M, Pla F R, Jones G, Bogaard A, Charles M, Font X, Ater M, Taleb A, Poschlod P, Hmimsa Y, Palmer C, Wilson P J, Band S R, Styring A, Diffey C, Green L, Nitsch E, Stroud E, Romo-Díez A, de Torres Espuny L, Warham G. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?. Annals of Botany, 2017, 120(5): 633-652. DOI:10.1093/aob/mcx084
[25]Díaz S, Hodgson J G, Thompson K, Cabido M, Cornelissen J H C, Jalili A, Montserrat-Martí G, Grime J P, Zarrinkamar F, Asri Y, Band S R, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé M C, Shirvany F A, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak M R. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 2004, 15(3): 295-304. DOI:10.1111/j.1654-1103.2004.tb02266.x
[26]Freschet G T, Cornelissen J H C, van Logtestijn R S P, Aerts R. Evidence of the'plant economics spectrum' in a subarctic flora. Journal of Ecology, 2010, 98(2): 362-373. DOI:10.1111/j.1365-2745.2009.01615.x
[27]Pierce S, Bottinelli A, Bassani I, Ceriani R M, Cerabolini B E L. How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies?. Plant Ecology, 2014, 215(11): 1351-1359. DOI:10.1007/s11258-014-0392-1
[28] [29]Reich P B. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. DOI:10.1111/1365-2745.12211
[30]Silva J L A, Souza A F, Caliman A, Voigt E L, Lichston J E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecology and Evolution, 2018, 8(1): 4-12. DOI:10.1002/ece3.3547
[31]de Paula L F A, Negreiros D, Azevedo L O, Fernandes R L, Stehmann J R, Silveira F A O. Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodiversity and Conservation, 2015, 24(9): 2239-2253. DOI:10.1007/s10531-015-0904-x
[32] [33]Negreiros D, Le Stradic S, Fernandes G W, Rennó H C. CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology, 2014, 215(4): 379-388. DOI:10.1007/s11258-014-0302-6
[34]Zelnik I, Čarni A. Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecology, 2008, 9(1): 1-9. DOI:10.1556/ComEc.9.2008.1.1
[35] [36]Rosenfield M F, Müller S C, Overbeck G E. Short gradient, but distinct plant strategies: the CSR scheme applied to subtropical forests. Journal of Vegetation Science, 2019, 30(5): 984-993. DOI:10.1111/jvs.12787
[37]Catorci A, Vitanzi A, Tardella F M. Variations in CSR strategies along stress gradients in the herb layer of submediterranean forests (central Italy). Plant Ecology and Evolution, 2011, 144(3): 299-306. DOI:10.5091/plecevo.2011.621
[38] [39]Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 1998, 199(2): 213-227. DOI:10.1023/A:1004327224729
[40]Frenette-Dussault C, Shipley B, Léger J F, Meziane D, Hingrat Y. Functional structure of an arid steppe plant community reveals similarities with Grime's C-S-R theory. Journal of Vegetation Science, 2012, 23(2): 208-222. DOI:10.1111/j.1654-1103.2011.01350.x
[41]Pierce S, Luzzaro A, Caccianiga M, Ceriani R M, Cerabolini B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology, 2007, 95(4): 698-706. DOI:10.1111/j.1365-2745.2007.01242.x
[42]Cerabolini B, Pierce S, Luzzaro A, Ossola A. Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecology, 2010, 207(2): 333-345. DOI:10.1007/s11258-009-9677-1
[43]Moog D, Kahmen S, Poschlod P. Application of CSR- and LHS- strategies for the distinction of differently managed grasslands. Basic and Applied Ecology, 2005, 6(2): 133-143. DOI:10.1016/j.baae.2005.01.005
[44]Colasanti R L, Hunt R, Askew A P. A self-assembling model of resource dynamics and plant growth incorporating plant functional types. Functional Ecology, 2001, 15(5): 676-687. DOI:10.1046/j.0269-8463.2001.00556.x
[45]Wonkka C L, Lafon C W, Hutton C M, Joslin A J. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos, 2013, 122(2): 209-222. DOI:10.1111/j.1600-0706.2012.20346.x
[46]Kopecký M, Hédl R, Szabó P. Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 2013, 50(1): 79-87. DOI:10.1111/1365-2664.12010
[47]Cross E L, Green P T, Morgan J W. A plant strategy approach to understand multidecadal change in community assembly processes in Australian grassy woodlands. Journal of Ecology, 2015, 103(5): 1300-1307. DOI:10.1111/1365-2745.12448
[48]Timmermann A, Damgaard C, Strandberg M T, Svenning J C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. Journal of Applied Ecology, 2015, 52(1): 21-30. DOI:10.1111/1365-2664.12374
[49] [50]Vicente J R, Pinto A T, Araújo M B, Verburg P H, Lomba A, Randin C F, Guisan A, Honrado J P. Using Life Strategies to Explore the Vulnerability of Ecosystem Services to Invasion by Alien Plants. Ecosystems, 2013, 16(4): 678-693. DOI:10.1007/s10021-013-9640-9
[51]Fratte M D, Bolpagni R, Brusa G, Caccianiga M, Pierce S, Zanzottera M, Cerabolini B E L. Alien plant species invade by occupying similar functional spaces to native species. Flora, 2019, 257: 151419. DOI:10.1016/j.flora.2019.151419
[52]Bakker J, Wilson S. Competitive abilities of introduced and native grasses. Plant Ecology, 2001, 157(2): 119-127. DOI:10.1023/A:1013972403293
[53] [54]Wilson J B, Lee W G. C-S-R triangle theory: community-level predictions, tests, evaluation of criticisms, and relation to other theories. Oikos, 2000, 91(1): 77-96. DOI:10.1034/j.1600-0706.2000.910107.x
[55] [56]Kraft N J B, Adler P B, Godoy O, James E C, Fuller S, Levine J M. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 2015, 29(5): 592-599. DOI:10.1111/1365-2435.12345
[57]Stokes C J, Archer S R. Niche differentiation and neutral theory: an integrated perspective on shrub assemblages in a parkland savanna. Ecology, 2010, 91(4): 1152-1162. DOI:10.1890/08-1105.1
[58]Wennekes P L, Rosindell J, Etienne R S. The neutral-niche debate: a philosophical perspective. Acta Biotheoretica, 2012, 60(3): 257-271. DOI:10.1007/s10441-012-9144-6
[59] [60]Mason N W H, de Bello F, Doležal J, Lepš J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 2011, 99(3): 788-796. DOI:10.1111/j.1365-2745.2011.01801.x
[61]Maire V, Gross N, Börger L, Proulx R, Wirth C, Pontes L D S, Soussana J F, Louault F. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 2012, 196(2): 497-509. DOI:10.1111/j.1469-8137.2012.04287.x
[62]Spasojevic M J, Suding K N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology, 2012, 100(3): 652-661. DOI:10.1111/j.1365-2745.2011.01945.x
[63]Bernard-Verdier M, Navas M L, Vellend M, Violle C, Fayolle A, Garnier E. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 2012, 100(6): 1422-1433. DOI:10.1111/1365-2745.12003
[64]Verheijen L M, Aerts R, Bönisch G, Kattge J, Van Bodegom P M. Variation in trait trade-offs allows differentiation among predefined plant functional types: implications for predictive ecology. New Phytologist, 2016, 209(2): 563-575. DOI:10.1111/nph.13623
[65]Rosado B H P, de Mattos E A. On the relative importance of CSR ecological strategies and integrative traits to explain species dominance at local scales. Functional Ecology, 2017, 31(10): 1969-1974. DOI:10.1111/1365-2435.12894
[66]Grime J P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 2006, 17(2): 255-260. DOI:10.1111/j.1654-1103.2006.tb02444.x
[67]Cerabolini B E L, Pierce S, Verginella A, Brusa G, Ceriani R M, Armiraglio S. Why are many anthropogenic agroecosystems particularly species-rich?. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2016, 150(3): 550-557. DOI:10.1080/11263504.2014.987848
[68]Chase J M. Community assembly: when should history matter?. Oecologia,, 2003, 136(4): 489-498. DOI:10.1007/s00442-003-1311-7
[69]Purschke O, Schmid B C, Sykes M T, Poschlod P, Michalski S G, Durka W, Kühn I, Winter M, Prentice H C. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. Journal of Ecology, 2013, 101(4): 857-866. DOI:10.1111/1365-2745.12098
[70]Li Y Z, Shipley B. Community divergence and convergence along experimental gradients of stress and disturbance. Ecology, 2018, 99(4): 775-781. DOI:10.1002/ecy.2162
[71]Barba-Escoto L, Ponce-Mendoza A, García-Romero A, Calvillo-Medina R P. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. Journal of Vegetation Science, 2019, 30(2): 375-385. DOI:10.1111/jvs.12732
[72]Kelemen A, Tóthmérész B, Valkó O, Miglécz T, Deák B, Török P. New aspects of grassland recovery in old-fields revealed by trait-based analyses of perennial-crop-mediated succession. Ecology and Evolution, 2017, 7(7): 2432-2440. DOI:10.1002/ece3.2869
[73]Prévosto B, Kuiters L, Bernhardt-Römermann M, Dölle M, Schmidt W, Hoffmann M, Van Uytvanck J, Bohner A, Kreiner D, Stadler J, Klotz S, Brandl R. Impacts of land abandonment on vegetation: successional pathways in european habitats. Folia Geobotanica, 2011, 46(4): 303-325. DOI:10.1007/s12224-010-9096-z
[74]Pywell R F, Bullock J M, Roy D B, Warman L, Walker K J, Rothery P. Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology, 2003, 40(1): 65-77. DOI:10.1046/j.1365-2664.2003.00762.x
[75] [76]Paušič A, Čarni A. Functional Response traits and plant community strategy indicate the stage of secondary succession. Hacquetia, 2012, 11(2): 209-225. DOI:10.2478/v10028-012-0010-5
[77]Mori A S, Cornelissen J H C, Fujii S, Okada K I, Isbell F. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nature Communications, 2020, 11(1): 4547. DOI:10.1038/s41467-020-18296-w
[78]Freschet G T, Aerts R, Cornelissen J H C. A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26(1): 56-65. DOI:10.1111/j.1365-2435.2011.01913.x
[79]Handa I T, Aerts R, Berendse F, Berg M P, Bruder A, Butenschoen O, Chauvet E, Gessner M O, Jabiol J, Makkonen M, McKie B G, Malmqvist B, Peeters E T H M, Scheu S, Schmid B, van Ruijven J, Vos V C A, Hättenschwiler S. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509(7499): 218-221. DOI:10.1038/nature13247
[80]Cornwell W K, Cornelissen J H C, Amatangelo K, Dorrepaal E, Eviner V T, Godoy O, Hobbie S E, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested H M, Santiago L S, Wardle D A, Wright I J, Aerts R, Allison S D, Van Bodegom P, Brovkin V, Chatain A, Callaghan T V, Díaz S, Garnier E, Gurvich D E, Kazakou E, Klein J A, Read J, Reich P B, Soudzilovskaia N A, Vaieretti M V, Westoby M. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11(10): 1065-1071. DOI:10.1111/j.1461-0248.2008.01219.x
[81]Grasset C, Delolme C, Arthaud F, Bornette G. Carbon allocation in aquatic plants with contrasting strategies: the role of habitat nutrient content. Journal of Vegetation Science, 2015, 26(5): 946-955. DOI:10.1111/jvs.12298
[82]Zhang F Y, Quan Q, Song B, Sun J, Chen Y J, Zhou Q P, Niu S L. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow. Scientific Reports, 2017, 7(1): 15193. DOI:10.1038/s41598-017-15580-6
[83]Jenkins D G, Pierce S. General allometric scaling of net primary production agrees with plant adaptive strategy theory and has tipping points. Journal of Ecology, 2017, 105(4): 1094-1104. DOI:10.1111/1365-2745.12726
[84] [85]Hooper D U, Chapin III F S, Ewel J J, Hector A, Inchausti P, Lavorel S, Lawton J H, Lodge D M, Loreau M, Naeem S, Schmid B, Setälä H, Symstad A J, Vandermeer J, Wardle D A. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. DOI:10.1890/04-0922
[86] [87]Grime J P. Competitive exclusion in herbaceous vegetation. Nature, 1973, 242(5396): 344-347. DOI:10.1038/242344a0
[88]Kelemen A, Török P, Valkó O, Miglécz T, Tóthmérész B. Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science, 2013, 24(6): 1195-1203. DOI:10.1111/jvs.12027
[89] [90]Lin H, Cao M, Stoy P C, Zhang Y P. Assessing self-organisation of plant communities-A thermodynamic approach. Ecological Modelling, 2009, 220(6): 784-790. DOI:10.1016/j.ecolmodel.2009.01.003
[91] [92]Clewell A F, Aronson J. Motivations for the restoration of ecosystems. Conservation Biology, 2006, 20(2): 420-428. DOI:10.1111/j.1523-1739.2006.00340.x
[93]Abrahams C. Climate change and lakeshore conservation: a model and review of management techniques. Hydrobiologia, 2008, 613(1): 33-43. DOI:10.1007/s10750-008-9470-5
[94]He X D, Gao Y B, Ren A Z. Role of wind-sand disturbance in the formation and development of Tamarix taklamakanensis community. Acta Botanica Sinica, 2003, 45(11): 1285-1290.
[95]Herben T, Klimešová J, Chytrý M. Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 2018, 32(3): 799-808. DOI:10.1111/1365-2435.13011
[96]Sonnier G, Shipley B, Navas M L. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 2010, 21(6): 1014-1024. DOI:10.1111/j.1654-1103.2010.01210.x
[97]Wang J, Zhang C Y, Yang H, Mou C X, Mo L, Luo P. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau. Land Degradation & Development, 2018, 29(9): 2920-2931.
[98]Herben T, Klimešová J, Chytrý M. Philip Grime's fourth corner: are there plant species adapted to high disturbance and low productivity?. Oikos, 2018, 127(8): 1125-1131. DOI:10.1111/oik.05090
[99]Laughlin D C. The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 2014, 102(1): 186-193. DOI:10.1111/1365-2745.12187
[100]Miller A D, Roxburgh S H, Shea K. How frequency and intensity shape diversity-disturbance relationships. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5643-5648. DOI:10.1073/pnas.1018594108
[101] [102]Huston M A. Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology, 2014, 95(9): 2382-2396. DOI:10.1890/13-1397.1
[103]Walker A P, McCormack M L, Messier J, Myers-Smith I H, Wullschleger S D. Trait covariance: the functional warp of plant diversity?. New Phytologist, 2017, 216(4): 976-980. DOI:10.1111/nph.14853
[104]Westoby M, Wright I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 2003, 135(4): 621-628. DOI:10.1007/s00442-003-1231-6
[105]Kleyer M, Minden V. Why functional ecology should consider all plant organs: an allocation- based perspective. Basic and Applied Ecology, 2015, 16(1): 1-9. DOI:10.1016/j.baae.2014.11.002
[106]Cornelissen J H C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia, 1999, 118(2): 248-255. DOI:10.1007/s004420050725
[107]Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161. DOI:10.1111/j.1365-2435.2012.02020.x
[108]Eriksson O, Jakobsson A. Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evolutionary Ecology, 1999, 13(4): 411-423. DOI:10.1023/A:1006729311664
[109]Salguero-Gómez R. Applications of the fast-slow continuum and reproductive strategy framework of plant life histories. New Phytologist, 2017, 213(4): 1618-1624. DOI:10.1111/nph.14289
[110]Dayrell R L C, Arruda A J, Pierce S, Negreiros D, Meyer P B, Lambers H, Silveira F A O. Ontogenetic shifts in plant ecological strategies. Functional Ecology, 2018, 32(12): 2730-2741. DOI:10.1111/1365-2435.13221
[111]Moles A T, Westoby M. Seed size and plant strategy across the whole life cycle. Oikos, 2006, 113(1): 91-105. DOI:10.1111/j.0030-1299.2006.14194.x
[112]Rüger N, Comita L S, Condit R, Purves D, Rosenbaum B, Visser M D, Wright S J, Wirth C. Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community. Ecology Letters, 2018, 21(7): 1075-1084. DOI:10.1111/ele.12974
[113]Pierce S, Vagge I, Brusa G, Cerabolini B E L. The intimacy between sexual traits and Grime's CSR strategies for orchids coexisting in semi-natural calcareous grassland at the Olive Lawn. Plant Ecology, 2014, 215(5): 495-505. DOI:10.1007/s11258-014-0318-y
[114]Albert C H, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W. On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 2012, 121(1): 116-126. DOI:10.1111/j.1600-0706.2011.19672.x
[115]Tautenhahn S, Grün-Wenzel C, Jung M, Higgins S, Römermann C. On the relevance of intraspecific trait variability-a synthesis of 56 dry grassland sites across Europe. Flora, 2019, 254: 161-172. DOI:10.1016/j.flora.2019.03.002
[116] [117]Giupponi L. Intraspecific variation in functional strategy and leaf shape of Campanula elatinoides reveals adaptation to climate. Flora, 2020, 268: 151605. DOI:10.1016/j.flora.2020.151605
[118]May R L, Warner S, Wingler A. Classification of intra-specific variation in plant functional strategies reveals adaptation to climate. Annals of Botany, 2017, 119(8): 1343-1352. DOI:10.1093/aob/mcx031
[119]Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M. Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened Dianthus species in the montane steppes of northeastern Iran. Scientific Reports, 2020, 10(1): 11774. DOI:10.1038/s41598-020-68618-7
[120]Jung V, Violle C, Mondy C, Hoffmann L, Muller S. Intraspecific variability and trait-based community assembly. Journal of Ecology, 2010, 98(5): 1134-1140. DOI:10.1111/j.1365-2745.2010.01687.x
[121]Astuti G, Ciccarelli D, Roma-Marzio F, Trinco A, Peruzzi L. Narrow endemic species Bellevalia webbiana shows significant intraspecific variation in tertiary CSR strategy. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2019, 153(1): 12-18. DOI:10.1080/11263504.2018.1435576
[122] [123]Rosado B H P, Matos I S, de A Amorim T. A matter of scale and traits: a comment on 'On the need for phylogenetic "corrections" in functional trait-based approaches' by de Bello et al. (2015). Folia Geobotanica, 2016, 51(4): 383-387. DOI:10.1007/s12224-016-9255-y
[124] [125]de Bello F, Berg M P, Dias A T C, Diniz-Filho J A F, Götzenberger L, Hortal J, Ladle R J, Lepš J. On the need for phylogenetic 'corrections' in functional trait-based approaches. Folia Geobotanica, 2015, 50(4): 349-357. DOI:10.1007/s12224-015-9228-6
[126] [127]Munoz F, Violle C, Cheptou P O. CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stress-tolerance is related to mixed mating. Oikos, 2016, 125(9): 1296-1303. DOI:10.1111/oik.02328
[128]Cornwell W K, Westoby M, Falster D S, FitzJohn R G, O'Meara B C, Pennell M W, McGlinn D J, Eastman J M, Moles A T, Reich P B, Tank D C, Wright I J, Aarssen L, Beaulieu J M, Kooyman R M, Leishman M R, Miller E T, Niinemets V, Oleksyn J, Ordonez A, Royer D L, Smith S A, Stevens P F, Warman L, Wilf P, Zanne A E. Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102(2): 345-356. DOI:10.1111/1365-2745.12208
相关知识
Research progress in the mechanism of rhizosphere micro
Research progress in the control of plant diseases by the combination of Bacillus and fungicides
Research progress on remediation of pollutants in soil using plant
Research Progress in Genomics and Breeding of Peanut
Research Progress on Response of Hemerocallis to Abiotic Stresses
Research Progress and Propect of Mustard Breeding
Research progress in phytoremediation of heavy
Research Progress in Genomics and Multi
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Progress of research into the effects of native grassland management practices on plant disease
网址: Research progress of plant competitor https://www.huajiangbk.com/newsview1238794.html
上一篇: 西瓜的高产种植技术及管理要点 |
下一篇: 狼毒的种群生态与繁殖生物学研究进 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039