如何使用yolov8训练使用——马铃薯病害检测数据集,共8000张,voc或yolo格式标注 土豆数据集病害检测
马铃薯病害检测数据集,包含受损马铃薯、缺陷马铃薯、病菌马铃薯、正常马铃薯、发芽马铃薯,共8000张,voc或yolo格式标注
马铃薯病害检测数据集
数据集描述
该数据集包含8000张马铃薯的图片及其对应的标注,标注格式为VOC或YOLO。数据集分为五类:受损马铃薯、缺陷马铃薯、病菌马铃薯、正常马铃薯、发芽马铃薯。每个标注文件包含了每张图片中马铃薯的位置信息。
数据集结构
假设数据集的目录结构如下:
深色版本
potato_disease_dataset/
├── images/
│ ├── train/
│ ├── valid/
│ ├── test/
├── labels/
│ ├── train/
│ ├── valid/
│ ├── test/
数据集统计
图片总数:8000张
标注总数:根据实际标注情况确定
类别数:5
类别名称:
损坏马铃薯 (damaged_potato)
缺陷马铃薯 (defective_potato)
病菌马铃薯 (diseased_potato)
正常马铃薯 (healthy_potato)
发芽马铃薯 (sprouted_potato)
配置文件
创建一个配置文件 potato_disease.yaml,内容如下:
yaml
深色版本
path: potato_disease_dataset # 数据集路径
train: images/train # 训练集图像路径
val: images/valid # 验证集图像路径
test: images/test # 测试集图像路径
nc: 5 # 类别数
names: [‘damaged_potato’, ‘defective_potato’, ‘diseased_potato’, ‘healthy_potato’, ‘sprouted_potato’] # 类别名称
训练模型
使用YOLOv8进行训练的代码如下:
环境准备
确保已安装以下软件包:
Python
PyTorch
Ultralytics
你可以使用pip安装它们:
bash
深色版本
pip install torch torchvision
pip install ultralytics
训练模型
python
深色版本
from ultralytics import YOLO
加载预训练模型
model = YOLO(‘yolov8n.pt’)
训练模型
results = model.train(
data=‘potato_disease.yaml’, # 数据集配置文件
epochs=100, # 训练轮数
imgsz=640, # 图像尺寸
batch=16, # 批量大小
name=‘potato_disease_detection’ # 实验名称
)
模型评估
训练完成后,可以使用以下命令评估模型在验证集上的性能:
python
深色版本
评估模型
results = model.val(data=‘potato_disease.yaml’, imgsz=640)
可视化结果
你可以使用以下代码来可视化模型的预测结果:
python
深色版本
import cv2
import torch
from ultralytics import YOLO
加载训练好的模型
model = YOLO(‘runs/detect/potato_disease_detection/weights/best.pt’)
读取测试图像
image_path = ‘potato_disease_dataset/images/test/image1.jpg’
image = cv2.imread(image_path)
进行预测
results = model(image)
可视化预测结果
for result in results:
boxes = result.boxes.xyxy # 获取边界框
confidences = result.boxes.conf # 获取置信度
class_ids = result.boxes.cls # 获取类别ID
for box, confidence, class_id in zip(boxes, confidences, class_ids): x1, y1, x2, y2 = map(int, box) label = f'{["damaged_potato", "defective_potato", "diseased_potato", "healthy_potato", "sprouted_potato"][int(class_id)]} {confidence:.2f}' color = (0, 255, 0) # 绿色 cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) 123456
显示图像
cv2.imshow(‘Prediction’, image)
cv2.waitKey(0)
cv2.destroyAllWindows()
改进策略
为了提高模型的性能,可以尝试以下改进策略:
数据增强:
使用更多的数据增强技术,如随机裁剪、旋转、翻转等。
使用MixUp、CutMix等高级数据增强方法。
模型架构改进:
替换主干网络,例如使用ResNet、EfficientNet等更强大的主干网络。
引入注意力机制,如SENet、CBAM等。
使用更高效的特征融合方法,如BiFPN、ASFF等。
优化器和学习率调度:
尝试不同的优化器,如AdamW、RMSprop等。
使用更复杂的学习率调度策略,如Cosine Annealing、OneCyclePolicy等。
损失函数:
尝试不同的损失函数,如Focal Loss、Dice Loss等。
正则化:
使用Dropout、L2正则化等技术防止过拟合。
多尺度训练:
在不同尺度的图像上进行训练,提高模型的泛化能力。
集成学习:
训练多个模型,然后进行集成,提高整体性能。
示例代码
以下是一个示例代码,展示如何在训练时应用一些常见的改进策略:
python
深色版本
from ultralytics import YOLO
import albumentations as A
from albumentations.pytorch import ToTensorV2
定义数据增强
transform = A.Compose([
A.RandomCrop(width=450, height=450),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Cutout(num_holes=8, max_h_size=64, max_w_size=64, fill_value=0, p=0.5),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2()
])
加载预训练模型
model = YOLO(‘yolov8n.pt’)
训练模型
results = model.train(
data=‘potato_disease.yaml’, # 数据集配置文件
epochs=100, # 训练轮数
imgsz=640, # 图像尺寸
batch=16, # 批量大小
name=‘potato_disease_detection_improved’, # 实验名称
augment=True, # 使用数据增强
transform=transform # 自定义数据增强
)
总结
以上步骤涵盖了从数据集准备到模型训练、评估和可视化的完整流程,并提供了一些常见的改进策略。
相关知识
基于YOLOv8的苹果树叶病害检测研究(附源码+数据集+可部署安装)
【yolo数据集】花朵数据集yolo
使用YOLOv8训练该数据集农业害虫检测数据集 农业虫害数据集.该数据集的害虫类别共为三类,该数据集共4010张JPG图片,标签文件为xml格式,4010个。
基于深度学习的植物病害检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
植物病虫害检测数据集 7800张 病虫害 带标注 voc yolo
YOLO目标检测——棉花病虫害检测数据集下载分享【含对应voc、coco和yolo三种格式标签】
基于深度学习的植物叶片病害识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
如何使用这个玉米病虫害检测数据集进行YOLOv5模型的训练 玉米虫害数据集 4类
基于深度学习的玉米病虫害检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
【果树林木病虫害数据集】 果树病虫害检测 林木叶片病虫害识别 计算机视觉(含数据集)
网址: 如何使用yolov8训练使用——马铃薯病害检测数据集,共8000张,voc或yolo格式标注 土豆数据集病害检测 https://www.huajiangbk.com/newsview1226018.html
上一篇: 土豆花图片 |
下一篇: 马铃薯——一种什么植物(探究马铃 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039