首页 分享 A review of the regulation of plant root system architecture by rhizosphere microorganisms

A review of the regulation of plant root system architecture by rhizosphere microorganisms

来源:花匠小妙招 时间:2024-12-21 11:27
[1]Bailey P H J, Currey J D, Fitter A H.The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana.Journal of Experimental Botany, 2002, 53(367) : 333–340.DOI:10.1093/jexbot/53.367.333 [2]Lynch J.Root architecture and plant productivity.Plant Physiology, 1995, 109(1) : 7–13. [3]屈志强, 刘连友, 吕艳丽.沙生植物构型及其与抗风蚀能力关系研究综述.生态学杂志, 2011, 30(2) : 357–362. [4]杨小林, 张希明, 李义玲, 李绍才, 孙海龙.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略.植物生态学报, 2008, 32(6) : 1268–1276. [5]Cichy K A, Snapp S S, Kirk W W.Fusarium root rot incidence and root system architecture in grafted common bean lines.Plant and Soil, 2007, 300(1/2) : 233–244. [6]Norman J R, Atkinson D, Hooker J E.Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae.Plant and Soil, 1996, 185(2) : 191–198.DOI:10.1007/BF02257524 [7]Aloni R, Aloni E, Langhans M, Ullrich C I.Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism.Annals of Botany, 2006, 97(5) : 883–893.DOI:10.1093/aob/mcl027 [8]Beebe S E, Rojas-Pierce M, Yan X L, Blair M W, Pedraza F, Muñoz F, Tohme J, Lynch J P.Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean.Crop Science, 2006, 46(1) : 413–423.DOI:10.2135/cropsci2005.0226 [9]Hishi T.Heterogeneity of individual roots within the fine root architecture:causal links between physiological and ecosystem functions.Journal of Forest Research, 2007, 12(2) : 126–133.DOI:10.1007/s10310-006-0260-5 [10]刘灵, 廖红, 王秀荣, 严小龙.磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系.应用生态学报, 2008, 19(3) : 564–568. [11]Bingham I J, Wu L H.Simulation of wheat growth using the 3D root architecture model SPACSYS:validation and sensitivity analysis.European Journal of Agronomy, 2011, 34(3) : 181–189.DOI:10.1016/j.eja.2011.01.003 [12]Mooney S J, Pridmore T P, Helliwell J, Bennett M J.Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil.Plant and Soil, 2012, 352(1/2) : 1–22. [13] Fang S Q, Clark R, Liao H. 3D Quantification of plant root architecture in situ//Mancuso S, ed. Measuring Roots:A Updated Approach. New York:Springer, 2012:135-148. [14]Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I.Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus:root morphology, growth, and mineral nutrition of olive plants.Scientia Agricola, 2013, 70(3) : 185–194.DOI:10.1590/S0103-90162013000300007 [15]Krome K, Rosenberg K, Dickler C, Kreuzer K, Ludwig-Müller J, Ullrich-Eberius C, Scheu S, Bonkowski M.Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants.Plant and Soil, 2010, 328(1/2) : 191–201. [16]Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa Hi, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.Nature Genetics, 2013, 45(9) : 1097–1102.DOI:10.1038/ng.2725 [17]王秋菊, 李明贤, 赵宏亮, 迟力勇.控水灌溉对水稻根系生长影响的试验研究.中国农学通报, 2008, 24(8) : 206–208. [18]杨永辉, 武继承, 吴普特, 黄占斌, 赵西宁, 管秀娟, 何方.保水剂用量对小麦不同生育期根系生理特性的影响.应用生态学报, 2011, 22(1) : 73–78. [19]Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B.Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials.European Journal of Agronomy, 2012, 38 : 54–63.DOI:10.1016/j.eja.2011.12.003 [20]姜春光, 卢树昌, 陈清.模拟不同降雨条件对日光温室填闲作物糯玉米产量、根系生长及养分吸收的影响.北方园艺, 2011(17) : 71–75. [21]华元刚, 林清火, 罗微, 茶正早, 林钊沐.氮素供应对橡胶树根系生长的影响.中国农学通报, 2006, 22(6) : 421–424. [22]乔云发, 韩晓增.长期定量施肥对大豆根系形态和根瘤性状的影响.大豆科学, 2011, 30(1) : 119–122. [23]张承林, 付子轼.水分胁迫对荔枝幼树根系与梢生长的影响.果树学报, 2005, 22(4) : 339–342. [24]李锦华, 陈积山, 田福平, 常根柱.苜蓿根系构型研究展望//2007年中国草学会青年工作委员会学术研讨会论文集.北京:中国草学会青年工作委员会, 2007 : 126–129. [25]单立山, 李毅, 董秋莲, 耿东梅.红砂根系构型对干旱的生态适应.中国沙漠, 2012, 32(5) : 1283–1290. [26]Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison R J, Blatt M R, Amtmann A.EZ-Rhizo:integrated software for the fast and accurate measurement of root system architecture.The Plant Journal, 2009, 57(5) : 945–956.DOI:10.1111/tpj.2009.57.issue-5 [27]Fita A, Nuez F, Picó B.Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L.Euphytica, 2011, 181(3) : 323–339.DOI:10.1007/s10681-011-0432-z [28]Postma J A, Jaramillo R E, Lynch J P.Towards modeling the function of root traits for enhancing water acquisition by crops//Response of Crops to Limited Water:Understanding and Modeling Water Stress Effects on Plant Growth Processes.America:American Society of Agronomy, 2008 : 251–275. [29] Lynch J P. Root architecture and nutrient acquisition//BassiriRad H, ed. Nutrient Acquisition by Plants:An Ecological Perspective. Berlin:Springer, 2005:147-183. [30]Zhang Y L, Duan Y H, Shen Q R.Screening of physiological indices for response of rice to nitrate.Acta Pedologica Sinica, 2004, 41(4) : 571–576. [31]Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S.Responses of root architecture development to low phosphorus availability:a review.Annals of Botany, 2013, 112(2) : 391–408.DOI:10.1093/aob/mcs285 [32]Li Z X, Xu C Z, Li K P, Yan S, Qu X, Zhang J R.Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.BMC Plant Biology, 2012, 12(1) : 89–89.DOI:10.1186/1471-2229-12-89 [33]张旭丽, 李洪.玉米根系与环境条件的关系.山西农业科学, 2010, 38(7) : 120–122. [34]Lequeux H, Hermans C, Lutts S, Verbruggen N.Response to copper excess in Arabidopsis thaliana:Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile.Plant Physiology and Biochemistry, 2010, 48(8) : 673–682.DOI:10.1016/j.plaphy.2010.05.005 [35]Yao Q, Wang L R, Zhu H H, Chen J Z.Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings.Scientia Horticulturae, 2009, 121(4) : 458–461.DOI:10.1016/j.scienta.2009.03.013 [36]Gutjahr C, Casieri L, Paszkowski U.Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling.New Phytologist, 2009, 182(4) : 829–837.DOI:10.1111/j.1469-8137.2009.02839.x [37]Lopez L D, Shantharaj D, Liu L, Bais H, Yu J Y.Robust image-based 3D modeling of root architecture.Computer Graphics International, 2011 : 1–10. [38]Nichols S N, Crush J R, Woodfield D R.Effects of inbreeding on nodal root system morphology and architecture of white clover (Trifolium repens L.).Euphytica, 2007, 156(3) : 365–373.DOI:10.1007/s10681-007-9386-6 [39]Wu Q S, Zou Y N, Huang Y M.The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings.Fungal Ecology, 2013, 6(1) : 37–43.DOI:10.1016/j.funeco.2012.09.002 [40] Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. London:Academic Press.2010. [41]Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I.The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon.Symbiosis, 2013, 59(2) : 65–76.DOI:10.1007/s13199-012-0191-1 [42]Aranda E, Scervino J M, Godoy P, Reina R, Ocampo J A, Wittich R M, García-Romera I.Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions.Environmental Pollution, 2013, 181 : 182–189.DOI:10.1016/j.envpol.2013.06.034 [43]Yao Q, Zhu H H, Chen J Z, Christie P.Influence of an arbuscular mycorrhizal fungus on competition for phosphorus between sweet orange and a leguminous herb.Journal of Plant Nutrition, 2005, 28(12) : 2179–2192.DOI:10.1080/01904160500323537 [44]Cruz C, Green J J, Watson C A, Wilson F, Martins-Loução M A.Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity.Mycorrhiza, 2004, 14(3) : 177–184.DOI:10.1007/s00572-003-0254-5 [45]黄京华, 刘青, 李晓辉, 曾任森, 骆世明.丛枝菌根真菌诱导玉米根系形态变化及其机理.玉米科学, 2013, 21(3) : 131–135. [46]Yao Q, Lin F X, Chen J Z, Lei X T, Zhu H H.Responses of citrus seedlings and a leguminous herb, Stylosanthes gracilis, to arbuscular mycorrhizal fungal inoculation.Acta Horticulturae, 2008, 773 : 63–67. [47]Yuan L H.Effects of arbuscular mycorrhizal fungi on Elaeagnus mollis diels seedlings' growth and root.American-Eurasian Journal of Agricultural & Environmental Science, 2015, 15(2) : 177–183. [48]Wu Q S, Zou Y N, He X H, Luo P.Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings.Plant Growth Regulation, 2011, 65(2) : 273–278.DOI:10.1007/s10725-011-9598-6 [49]Thilagar G, Bagyaraj D J.Influence of different arbuscular mycorrhizal fungi on growth and yield of chilly.Proceedings of the National Academy of Sciences, India Section B:Biological Sciences, 2015, 85(1) : 71–75.DOI:10.1007/s40011-013-0262-y [50]袁丽环, 闫桂琴, 朱志敏.丛枝菌根(AM)真菌对翅果油树幼苗根系的影响.西北植物学报, 2009, 29(3) : 580–585. [51]Wu Q S, He X H, Zou Y N, Liu C Y, Xiao J, Li Y.Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines.Plant Growth Regulation, 2012, 68(1) : 27–35.DOI:10.1007/s10725-012-9690-6 [52]Gutjahr C, Paszkowski U.Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis.Frontiers in Plant Science, 2013, 4 : 204–204. [53]江夏, 陈伟立, 徐春香, 朱红惠, 姚青.丛枝菌根真菌和磷水平对番茄幼苗侧根形成的影响.应用生态学报, 2015, 26(4) : 1186–1192. [54]Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter A H.Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.).Annals of Botany, 1991, 68(2) : 135–141. [55]Padilla I M G, Encina C L.Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill. plants.Scientia Horticulturae, 2005, 106(3) : 360–369.DOI:10.1016/j.scienta.2005.05.001 [56]Vallino M, Fiorilli V, Bonfante P.Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability.Plant, Cell & Environment, 2014, 37(3) : 557–572. [57]Yao Q, Zhu H H, Chen J Z.Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation.Scientia Horticulturae, 2005, 105(1) : 145–151.DOI:10.1016/j.scienta.2005.01.003 [58]张艺灿, 赵思, 邹英宁, 吴强盛.丛枝菌根真菌对限根栽培枳生长和根系构型的影响.湖北农业科学, 2014(11) : 2588–2590. [59]Orfanoudakis M, Wheeler C T, Hooker J E.Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa.Mycorrhiza, 2010, 20(2) : 117–126.DOI:10.1007/s00572-009-0271-0 [60]Wu Q S, Zou Y N.Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress.Scientia Horticulturae, 2010, 125(3) : 289–293.DOI:10.1016/j.scienta.2010.04.001 [61]何跃军, 钟章成.水分胁迫和接种丛枝菌根对香樟幼苗根系形态特征的影响.西南大学学报:自然科学版, 2012, 34(4) : 33–39. [62]王如岩, 于水强, 张金池, 丛日亮, 王群, 陈丽莎, 司登宇.水分胁迫下菌根真菌对滇柏(Cupressus duclouxiana Hichel)幼苗生长和养分吸收的影响.中国岩溶, 2011, 30(3) : 313–319. [63]Zhao R X, Guo W, Bi N, Guo J Y, Wang L X, Zhao J, Zhang J.Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress.Applied Soil Ecology, 2015, 88 : 41–49. [64]Wu Q S, Zou Y N, He X H.Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress.Acta Physiologiae Plantarum, 2010, 32(2) : 297–304.DOI:10.1007/s11738-009-0407-z [65]Langer I, Syafruddin S, Steinkellner S, Puschenreiter M, Wenzel W W.Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization.Plant and Soil,, 2010, 332(1/2) : 339–355. [66]Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P.Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis.European Journal of Plant Pathology, 2005, 111(3) : 279–288.DOI:10.1007/s10658-004-4585-7 [67]姚青, 朱红惠, 羊宋贞.丛枝菌根真菌对香蕉试管苗植株生长和矿质营养吸收的影响.果树学报, 2004, 21(5) : 425–428. [68]Druege U, Xylaender M, Zerche S, Von Alten H.Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants.Mycorrhiza, 2006, 17(1) : 67–72.DOI:10.1007/s00572-006-0074-5 [69]陈可, 孙吉庆, 刘润进, 李敏.丛枝菌根真菌对西瓜嫁接苗生长和根系防御性酶活性的影响.应用生态学报, 2013, 24(1) : 135–141. [70]唐超, 李敏, 刘永举, 刘润进.单一及复合AM真菌初侵染对番茄苗的生理影响.中国农学通报, 2013, 29(13) : 114–119. [71]王如岩, 于水强, 张金池, 周垂帆, 陈莉莎.干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响.南京林业大学学报:自然科学版, 2012, 36(6) : 23–27. [72]Stevens K J, Wall C B, Janssen J A.Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata L., grown under three levels of water availability.Mycorrhiza, 2011, 21(4) : 279–288.DOI:10.1007/s00572-010-0334-2 [73]Endlweber K, Scheu S.Interactions between mycorrhizal fungi and Collembola:effects on root structure of competing plant species.Biology and Fertility of Soils, 2007, 43(6) : 741–749.DOI:10.1007/s00374-006-0157-7 [74]Lu N, Zhou X, Cui M, Yu M, Zhou J X, Qin Y S, Li Y.Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions.Forests, 2015, 6(3) : 767–747. [75]Urcoviche R C, Gazim Z C, Dragunski D C, Barcellos F G, Alberton O.Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus.Industrial Crops and Products, 2015, 67 : 103–107.DOI:10.1016/j.indcrop.2015.01.016 [76]Hafeez F Y, Safdar M E, Chaudhry A U, Malik K A.Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton.Australian Journal of Experimental Agriculture, 2004, 44(6) : 617–622.DOI:10.1071/EA03074 [77]Catoira R, Timmers A C, Maillet F, Galera C, Penmetsa R V, Cook D, Denarie J, Gough C.The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling.Development, 2001, 128(9) : 1507–1518. [78]Barea J M, Tobar R M, Azcón-Aguilar C.Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa.New Phytologist, 1996, 134(2) : 361–369.DOI:10.1111/nph.1996.134.issue-2 [79]Desbrosses G, Queruel N, Poitout A, Touraine B.Fixing and non-fixing rhizobia affect Arabidopsis root architecture by interfering with the auxin signaling pathway.Molecular Microbial Ecology of the Rhizosphere, 2013, 1-2 : 327–333. [80]Wang X R, Pan Q, Chen F X, Yan X L, Liao H.Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P.Mycorrhiza, 2011, 21(3) : 173–181.DOI:10.1007/s00572-010-0319-1 [81]Nosheen A, Bano A, Ullah F, Farooq U, Yasmin H, Hussain I.Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.).African Journal of Biotechnology, 2011, 10(59) : 12639–12649. [82]Babalola O O.Beneficial bacteria of agricultural importance.Biotechnology Letters, 2010, 32(11) : 1559–1570.DOI:10.1007/s10529-010-0347-0 [83]Lugtenberg B J J, Chin-A-Woeng T F C, Bloemberg G V.Microbe-plant interactions:principles and mechanisms.Antonie Van Leeuwenhoek, 2002, 81(1/4) : 373–383. [84]Remans T, Thijs S, Truyens S, Weyens N, Schellingen K, Keunen E, Gielen H, Cuypers A, Vangronsveld J.Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth.Annals of Botany, 2012, 110(2) : 239–252.DOI:10.1093/aob/mcs105 [85]Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B.Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria.Plant Science, 2008, 175(1/2) : 178–189. [86]Dobbelaere S, Croonenborghs A, Thys A, Broek A V, Vanderleyden J.Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat.Plant and Soil, 1999, 212(2) : 153–162.DOI:10.1023/A:1004658000815 [87]Shahzad S M, Khalid A, Arshad M, Tahir J, Mahmood T.Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture.European Journal of Soil Biology, 2010, 46(5) : 342–347.DOI:10.1016/j.ejsobi.2010.05.007 [88]Zemrany H E, Czarnes S, Hallett P D, Alamercery S, Bally R, Monrozier L J.Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1.Plant and Soil, 2007, 291(1/2) : 109–118. [89]German M A, Burdman S, Okon Y, Kigel J.Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes.Biology and Fertility of Soils, 2000, 32(3) : 259–264.DOI:10.1007/s003740000245 [90]Gutiérrez-Luna F M, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz H R, Macías-Rodríguez L.Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission.Symbiosis, 2010, 51(1) : 75–83.DOI:10.1007/s13199-010-0066-2 [91]Gamalero E, Trotta A, Massa N, Copetta A, Martinotti M G, Berta G.Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition.Mycorrhiza, 2004, 14(3) : 185–192.DOI:10.1007/s00572-003-0256-3 [92]Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T.Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum):specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d.Biocontrol, 2010, 55(4) : 561–572.DOI:10.1007/s10526-010-9285-y [93]Landeweert R, Hoffland E, Finlay R D, Kuyper T W, van Breemen N.Linking plants to rocks:ectomycorrhizal fungi mobilize nutrients from minerals.Trends in Ecology & Evolution, 2001, 16(5) : 248–254. [94]Baldrian P.Ectomycorrhizal fungi and their enzymes in soils:is there enough evidence for their role as facultative soil saprotrophs?.Oecologia, 2009, 161(4) : 657–660.DOI:10.1007/s00442-009-1433-7 [95]Courty P E, Buée M, Diedhiou A G, Frey-Klett P, Le Tacon F, Rineau F, Turpault M P, Uroz S, Garbaye J.The role of ectomycorrhizal communities in forest ecosystem processes:new perspectives and emerging concepts.Soil Biology and Biochemistry, 2010, 42(5) : 679–698.DOI:10.1016/j.soilbio.2009.12.006 [96]吴小芹, 郑玲, 叶建仁.黑松三种菌根苗根系构型差异及其与生长的关系.生态学报, 2009, 29(10) : 5493–5499. [97]Calvaruso C, Turpault M P, Frey-Klett P.Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees:a budgeting analysis.Applied and Environmental Microbiology, 2006, 72(2) : 1258–1266.DOI:10.1128/AEM.72.2.1258-1266.2006 [98]Palfner G, Canseco M I, Casanova-Katny A.Post-fire seedlings of Nothofagus alpina in Southern Chile show strong dominance of a single ectomycorrhizal fungus and a vertical shift in root architecture.Plant and Soil, 2008, 313(1/2) : 237–250. [99]Pena R, Simon J, Rennenberg H, Polle A.Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought.Environmental and Experimental Botany, 2013, 87 : 207–217.DOI:10.1016/j.envexpbot.2012.11.005 [100]Kawaguchi Y, Nishiuchi T, Kodama H, Nakano T, Nishimura K, Shimamura K, Yamaguchi K, Kuchitsu K, Shinshi H, Suzuki K.Fungal elicitor-induced retardation and its restoration of root growth in tobacco seedlings.Plant Growth Regulation, 2012, 66(1) : 59–68.DOI:10.1007/s10725-011-9629-3 [101]Nibau C, Gibbs D J, Coates J C.Branching out in new directions:the control of root architecture by lateral root formation.New Phytologist, 2008, 179(3) : 595–614.DOI:10.1111/nph.2008.179.issue-3 [102] Gruber V, Zahaf O, Diet A, de Zélicourt A, de Lorenzo L, Crespi M. Impact of the environment on root architecture in dicotyledoneous plants//de Oliveira A C, Varshney R K, eds. Root Genomics. Berlin Heidelberg:Springer, 2011:113-132. [103]Fusconi A.Regulation of root morphogenesis in arbuscular mycorrhizae:what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?.Annals of Botany, 2014, 113(1) : 19–33. [104]Taylor B H, Scheuring C F.A molecular marker for lateral root initiation:the RSI-1gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia.Molecular and General Genetics, 1994, 243(2) : 148–157. [105]Smith D L, Fedoroff N V.LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis.The Plant Cell, 1995, 7(6) : 735–745.DOI:10.1105/tpc.7.6.735 [106]江盼盼, 宋述尧, 赵春波, 张传伟.三种丛枝菌根真菌对辣椒根系生长的影响及效应分析.中国蔬菜, 2010(6) : 58–62. [107]Uga Y, Okuno K, Yano M.Dro1, a major QTL involved in deep rooting of rice under upland field conditions.Journal of Experimental Botany, 2011, 62(8) : 2485–2494.DOI:10.1093/jxb/erq429 [108]Marchant A, Bhalerao R, Casimiro I, Ekl f J, Casero P J, Bennett M, Sandberg G.AUX1promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling.The Plant Cell, 2002, 14(3) : 589–597.DOI:10.1105/tpc.010354 [109]Hanlon M T, Coenen C.Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation.New Phytologist, 2011, 189(3) : 701–709.DOI:10.1111/j.1469-8137.2010.03567.x [110]Kaldorf M, Ludwig-Müller J.AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis.Physiologia Plantarum, 2000, 109(1) : 58–67.DOI:10.1034/j.1399-3054.2000.100109.x [111]Abeer H, Abd-Allah E F, Alqarawi A A, Alwhibi MS, Alenazi M M, Egamberdieva D, Ahmad P.Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L.Pakistan Journal of Botany, 2015, 47(1) : 327–340. [112]Patten C L, Glick B R.Role of Pseudomonas putida indoleacetic acid in development of the host plant root system.Applied and Environmental Microbiology, 2002, 68(8) : 3795–3801.DOI:10.1128/AEM.68.8.3795-3801.2002 [113]Jiang Y, Wu Y, Xu W S, Cheng Y H, Chen J D, Xu L, Hu F, Li H X.IAA-producing bacteria and bacterial-feeding nematodes promote Arabidopsis thaliana root growth in natural soil.European Journal of Soil Biology, 2012, 52 : 20–26.DOI:10.1016/j.ejsobi.2012.05.003 [114]Fukaki H, Tameda S, Masuda H, Tasaka M.Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis.The Plant Journal, 2002, 29(2) : 153–168. [115]Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T.Auxin-mediated cell cycle activation during early lateral root initiation.The Plant Cell, 2002, 14(10) : 2339–2351.DOI:10.1105/tpc.004960 [116]Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y D, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque M P, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones J D G, Taylor C G, Schachtman D P, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett M J.The auxin influx carrier LAX3 promotes lateral root emergence.Nature Cell Biology, 2008, 10(8) : 946–954.DOI:10.1038/ncb1754 [117]Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Begon M, Rodriguez H, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M.Cytokinins act directly on lateral root founder cells to inhibit root initiation.The Plant Cell, 2007, 19(12) : 3889–3900.DOI:10.1105/tpc.107.055863 [118]Riefler M, Novak O, Strnad M, Schmülling T.Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism.The Plant Cell, 2006, 18(1) : 40–54.DOI:10.1105/tpc.105.037796 [119]Li X, Mo X R, Shou H X, Wu P.Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.Plant and Cell Physiology, 2006, 47(8) : 1112–1123.DOI:10.1093/pcp/pcj082 [120]He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y.AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development.The Plant Journal, 2005, 44(6) : 903–916.DOI:10.1111/tpj.2005.44.issue-6 [121]Gou J Q, Strauss S H, Tsai C J, Fang K, Chen Y R, Jiang X N, Busov V B.Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones.The Plant Cell, 2010, 22(3) : 623–639.DOI:10.1105/tpc.109.073239 [122]Bao F, Shen J J, Brady S R, Muday G K, Asami T, Yang Z B.Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis.Plant Physiology, 2004, 134(4) : 1624–1631.DOI:10.1104/pp.103.036897 [123]Hong J H, Seah S W, Xu J.The root of ABA action in environmental stress response.Plant Cell Reports, 2013, 32(7) : 971–983.DOI:10.1007/s00299-013-1439-9 [124]Souček P, Klíma P, Reková A, Brzobohatý B.Involvement of hormones and KNOXI genes in early Arabidopsis seedling development.Journal of Experimental Botany, 2007, 58(13) : 3797–3810.DOI:10.1093/jxb/erm236 [125]Echevarría-Machado I, Escobedo-GM R M, Larqué-Saavedra A.Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid.Plant Physiology and Biochemistry, 2007, 45(6/7) : 501–507. [126] Koltai H, Prandi C. Strigolactones:biosynthesis, synthesis and functions in plant growth and stress responses//Tran L S P, Pal S, eds. Phytohormones:A Window to Metabolism, Signaling and Biotechnological Applications. New York:Springer, 2014:265-288. [127]Fukaki H, Tasaka M.Hormone interactions during lateral root formation.Plant Molecular Biology, 2009, 69(4) : 437–449.DOI:10.1007/s11103-008-9417-2 [128]王彬, 张金政, 刘新, 李敏, 刘润进.丛枝菌根真菌诱导植物信号物质研究进展.微生物学通报, 2010, 37(2) : 263–268. [129]Ortíz-Castro R, Contreras-Cornejo H A, Macías-Rodríguez L, López-Bucio J.The role of microbial signals in plant growth and development.Plant Signaling & Behavior, 2009, 4(8) : 701–712. [130]Herder G D, Van Isterdael G, Beeckman T, De Smet I.The roots of a new green revolution.Trends in Plant Science, 2010, 15(11) : 600–607.DOI:10.1016/j.tplants.2010.08.009 [131]Karasawa T, Hodge A, Fitter A H.Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.Plant, Cell & Environment, 2012, 35(4) : 819–828. [132]Schroeder M S, Janos D P.Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.Mycorrhiza, 2005, 15(3) : 203–216.DOI:10.1007/s00572-004-0324-3 [133]López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo M F, Simpson J, Herrera-Estrella L.Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.Plant Physiology, 2002, 129(1) : 244–256.DOI:10.1104/pp.010934 [134]Tian H, Drijber R A, Li X L, Miller D N, Wienhold B J.Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).Mycorrhiza, 2013, 23(6) : 507–514.DOI:10.1007/s00572-013-0491-1 [135]Mantelin S, Desbrosses G, Larcher M, Tranbarger T J, Cleyet-Marel J C, Touraine B.Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp.Planta, 2006, 223(3) : 591–603.DOI:10.1007/s00425-005-0106-y [136]Zhang H M, Forde B G.An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.Science, 1998, 279(5349) : 407–409.DOI:10.1126/science.279.5349.407 [137]Boukcim H, Plassard C.Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis.Journal of Plant Physiology, 2003, 160(10) : 1211–1218.DOI:10.1078/0176-1617-00973 [138]Eissenstat D M, Kucharski J M, Zadworny M, Adams T S, Koide R T.Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.New Phytologist, 2015, 208(1) : 114–124.DOI:10.1111/nph.13451 [139]Willaume M, Pagès L.Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens).Annals of Botany, 2011, 107(4) : 653–662.DOI:10.1093/aob/mcq270 [140]Bago B, Pfeffer P E, Shachar-Hill Y.Carbon metabolism and transport in arbuscular mycorrhizas.Plant Physiology, 2000, 124(3) : 949–958.DOI:10.1104/pp.124.3.949 [141]吴强盛, 袁芳英, 费永俊, 李莉, 黄咏明, 刘春艳.丛枝菌根真菌对白三叶根系构型和糖含量的影响.草业学报, 2014, 23(1) : 199–204. [142]Birhane E, Kuyper T W, Sterck F J, Bongers F.Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia.Forest Ecology and Management, 2010, 260(12) : 2160–2169.DOI:10.1016/j.foreco.2010.09.010 [143]Bhushan G, Sharma S K, Kumar S, Bisht A, Das R, Singh A P.Effect of plant growth promoting rhizobacteria and fungi on growth of urd bean (Vigna mungo).Ethiopian International Journal of Multidisciplinary Research, 2015, 2(3) : 13–18. [144]Badar R, Nisa Z, Ibrahim S.Supplementation of P with rhizobial inoculants to improve growth of peanut plants.International Journal of Applied Research, 2015, 1(4) : 19–23. [145]Belimov A A, Dodd I C, Safronova V I, Shaposhnikov A I, Azarova T S, Makarova N M, Davies W J, Tikhonovich I A.Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum).Annals of Applied Biology, 2015, 167(1) : 11–25.DOI:10.1111/aab.2015.167.issue-1

相关知识

Research progress on assembly of plant rhizosphere microbial community
Research progress in the mechanism of rhizosphere micro
根系构型研究进展:功能、影响因子和研究方法
Research Progress of Rhizosphere Microorganisms Related to Tomato Bacterial Wilt Resistance
Isolation and efficient strain screening of microorganisms from peanut rhizosphere
Application of aquatic plant
植物根系分泌物与根际微生物交互作用机制研究进展
Enlightenment from microbiome research towards biocontrol of plant disease
Advances in regulation and function of the bacterial type Ⅵ secretion system
植物激素ABA调控植物根系生长的研究进展

网址: A review of the regulation of plant root system architecture by rhizosphere microorganisms https://www.huajiangbk.com/newsview1217007.html

所属分类:花卉
上一篇: 我国60年来土壤养分循环微生物机
下一篇: 土壤研究所

推荐分享