Mechanisms of phytohormones in regulating arbuscular mycorrhiza development
Bonfante P, Genre A. Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?[J]. Trends in Plant Science, 2015, 20(3): 150-154. DOI:10.1016/j.tplants.2014.12.002
[2] Wang H, Wu AJ, Liu BX, Liu RJ, Chen YL. Interactions between mycorrhizal fungal diversity and plant diversity: a review[J]. Microbiology China, 2020, 47(11): 3918-3932. (in Chinese)
王浩, 吴爱姣, 刘保兴, 刘润进, 陈应龙. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报, 2020, 47(11): 3918-3932. DOI:10.13344/j.microbiol.china.190956
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220(4): 1108-1115. DOI:10.1111/nph.14976
[4] [5]Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi[J]. Plant and Cell Physiology, 2010, 51(7): 1104-1117. DOI:10.1093/pcp/pcq058
[6]Sbrana C, Giovannetti M. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae[J]. Mycorrhiza, 2005, 15(7): 539-545. DOI:10.1007/s00572-005-0362-5
[7]Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone[J]. New Phytologist, 2013, 198(1): 190-202. DOI:10.1111/nph.12146
[8]He JM, Zhang C, Dai HL, Liu H, Zhang XW, Yang J, Chen X, Zhu YY, Wang DP, Qi XF, et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice[J]. Molecular Plant, 2019, 12(12): 1561-1576. DOI:10.1016/j.molp.2019.10.015
[9]Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11(4): 252-263. DOI:10.1038/nrmicro2990
[10]Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis[J]. New Phytologist, 2011, 189(1): 347-355. DOI:10.1111/j.1469-8137.2010.03464.x
[11]Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota[J]. The Plant Cell, 2008, 20(5): 1407-1420. DOI:10.1105/tpc.108.059014
[12]Sieberer BJ, Chabaud M, Fournier J, Timmers ACJ, Barker DG. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula[J]. The Plant Journal, 2012, 69(5): 822-830. DOI:10.1111/j.1365-313X.2011.04834.x
[13]Carbonnel S, Gutjahr C. Control of arbuscular mycorrhiza development by nutrient signals[J]. Frontiers in Plant Science, 2014, 5: 462.
[14]Liao DH, Wang SS, Cui MM, Liu JH, Chen AQ, Xu GH. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis[J]. International Journal of Molecular Sciences, 2018, 19(10): 3146. DOI:10.3390/ijms19103146
[15]Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E. Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior[J]. Frontiers in Plant Science, 2018, 9: 1800. DOI:10.3389/fpls.2018.01800
[16]Hull R, Choi J, Paszkowski U. Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling[J]. Current Opinion in Plant Biology, 2021, 62: 102071. DOI:10.1016/j.pbi.2021.102071
[17]Waters MT, Gutjahr C, Bennett T, Nelson DC. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68: 291-322. DOI:10.1146/annurev-arplant-042916-040925
[18]López-Ráez JA, Fernández I, García JM, Berrio E, Bonfante P, Walter MH, Pozo MJ. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis[J]. Plant Science, 2015, 230: 59-69. DOI:10.1016/j.plantsci.2014.10.010
[19]Seto Y, Kameoka H, Yamaguchi S, Kyozuka J. Recent advances in strigolactone research: chemical and biological aspects[J]. Plant and Cell Physiology, 2012, 53(11): 1843-1853. DOI:10.1093/pcp/pcs142
[20]Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-carotene to carlactone, a strigolactone-like plant hormone[J]. Science, 2012, 335(6074): 1348-1351. DOI:10.1126/science.1218094
[21]Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, et al. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato[J]. The Plant Journal, 2010, 61(2): 300-311.
[22]Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, et al. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions[J]. Journal of Experimental Botany, 2010, 61(6): 1739-1749. DOI:10.1093/jxb/erq041
[23]Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, De Maagd RA, Ruyter-Spira C, Bouwmeester HJ, et al. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis[J]. New Phytologist, 2012, 196(2): 535-547. DOI:10.1111/j.1469-8137.2012.04265.x
[24]Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, et al. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice[J]. The Plant Journal, 2012, 69(5): 906-920. DOI:10.1111/j.1365-313X.2011.04842.x
[25]Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210): 189-194. DOI:10.1038/nature07271
[26]Fonouni-Farde C, Tan S, Baudin M, Brault M, Wen JQ, Mysore KS, Niebel A, Frugier F, Diet A. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection[J]. Nature Communications, 2016, 7: 12636. DOI:10.1038/ncomms12636
[27]Liu W, Kohlen W, Lillo A, Den Camp RO, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2[J]. The Plant Cell, 2011, 23(10): 3853-3865. DOI:10.1105/tpc.111.089771
[28]Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development[J]. Plant and Cell Physiology, 2013, 54(10): 1711-1723. DOI:10.1093/pcp/pct114
[29]Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2[J]. The Plant Journal, 2012, 72(3): 512-522. DOI:10.1111/j.1365-313X.2012.05099.x
[30]Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching[J]. Nature, 2012, 483(7389): 341-344. DOI:10.1038/nature10873
[31]Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2012, 196(4): 1208-1216. DOI:10.1111/j.1469-8137.2012.04339.x
[32]Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency[J]. Molecular Plant, 2013, 6(1): 76-87. DOI:10.1093/mp/sss115
[33]Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200. DOI:10.1038/nature07272
[34]Hu ZY, Yan HF, Yang JH, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness[J]. Plant and Cell Physiology, 2010, 51(7): 1136-1142. DOI:10.1093/pcp/pcq075
[35]Wang H, Liu RJ, You MP, Barbetti MJ, Chen YL. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity[J]. Microorganisms, 2021, 9(9): 1988. DOI:10.3390/microorganisms9091988
[36]Comby M, Mustafa G, Magnin-Robert M, Randoux B, Fontaine J, Reignault P, Lounès-Hadj Sahraoui A. Arbuscular mycorrhizal fungi as potential bioprotectants against aerial phytopathogens and pests[A]//Wu QS. Arbuscular Mycorrhizas and Stress Tolerance of Plants[M]. Singapore: Springer, 2017: 195-223
[37]Howe GA. Metabolic end run to jasmonate[J]. Nature Chemical Biology, 2018, 14(2): 109-110. DOI:10.1038/nchembio.2553
[38]Hause B, Maier W, Miersch O, Kramell R, Strack D. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots[J]. Plant Physiology, 2002, 130(3): 1213-1220. DOI:10.1104/pp.006007
[39]Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices[J]. Plant Physiology, 2005, 139(3): 1401-1410. DOI:10.1104/pp.105.069054
[40]León-Morcillo RJ, Martín-Rodríguez JÁ, Vierheilig H, Ocampo JA, García-Garrido JM. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling[J]. Journal of Experimental Botany, 2012, 63(10): 3545-3558. DOI:10.1093/jxb/ers010
[41]Tejeda-Sartorius M, De La Vega OM, Délano-Frier JP. Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning[J]. Physiologia Plantarum, 2008, 133(2): 339-353. DOI:10.1111/j.1399-3054.2008.01081.x
[42]Herrera-Medina MJ, Tamayo MI, Vierheilig H, Ocampo JA, García-Garrido JM. The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato[J]. Journal of Plant Growth Regulation, 2008, 27(3): 221-230. DOI:10.1007/s00344-008-9049-4
[43]Gutjahr C, Siegler H, Haga K, Iino M, Paszkowski U. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis[J]. PLoS One, 2015, 10(4): e0123422. DOI:10.1371/journal.pone.0123422
[44]Gutjahr C, Paszkowski U. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions[J]. Molecular Plant-Microbe Interactions, 2009, 22(7): 763-772. DOI:10.1094/MPMI-22-7-0763
[45]Regvar M, Gogala N, Zalar P. Effects of jasmonic acid on mycorrhizal Allium sativum[J]. New Phytologist, 1996, 134(4): 703-707. DOI:10.1111/j.1469-8137.1996.tb04936.x
[46]Ludwig-Müller J, Bennett RN, García-Garrido JM, Piché Y, Vierheilig H. Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels[J]. Journal of Plant Physiology, 2002, 159(5): 517-523. DOI:10.1078/0176-1617-00731
[47]Kiers ET, Adler LS, Grman EL, Van Der Heijden MGA. Manipulating the jasmonate response: how do methyl jasmonate additions mediate characteristics of aboveground and belowground mutualisms?[J]. Functional Ecology, 2010, 24(2): 434-443. DOI:10.1111/j.1365-2435.2009.01625.x
[48]Blilou I, Ocampo JA, García-Garrido JM. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae[J]. Journal of Experimental Botany, 2000, 51(353): 1969-1977. DOI:10.1093/jexbot/51.353.1969
[49]Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis[J]. The Plant Cell, 2003, 15(9): 2106-2123. DOI:10.1105/tpc.014183
[50]Herrera-Medina MJ, Gagnon H, Piché Y, Ocampo JA, Garcı́a-Garrido JM, Vierheilig H. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant[J]. Plant Science, 2003, 164(6): 993-998. DOI:10.1016/S0168-9452(03)00083-9
[51]Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007[J]. Planta, 2005, 222(4): 709-715. DOI:10.1007/s00425-005-0003-4
[52]Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L. Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus[J]. New Phytologist, 2009, 184(4): 975-987. DOI:10.1111/j.1469-8137.2009.03031.x
[53]Liu CY, Zhang F, Zhang DJ, Srivastava AK, Wu QS, Zou YN. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress[J]. Scientific Reports, 2018, 8: 1978. DOI:10.1038/s41598-018-20456-4
[54]Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance[J]. Journal of Plant Physiology, 2017, 214: 134-144. DOI:10.1016/j.jplph.2017.04.012
[55]Jentschel K, Thiel D, Rehn F, Ludwig-Müller J. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization[J]. Physiologia Plantarum, 2007, 129(2): 320-333.
[56]Hause B, Mrosk C, Isayenkov S, Strack D. Jasmonates in arbuscular mycorrhizal interactions[J]. Phytochemistry, 2007, 68(1): 101-110. DOI:10.1016/j.phytochem.2006.09.025
[57]Liu CY, Srivastava AK, Wu QS. Effect of auxin inhibitor and AMF inoculation on growth and root morphology of trifoliate orange (Poncirus trifoliata) seedlings[J]. Indian Journal of Agricultural Sciences, 2014, 84(11): 1342-1346.
[58]Hanlon MT, Coenen C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation[J]. New Phytologist, 2011, 189(3): 701-709. DOI:10.1111/j.1469-8137.2010.03567.x
[59]Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2014, 166(1): 281-292. DOI:10.1104/pp.114.246595
[60]Liao DH, Chen X, Chen AQ, Wang HM, Liu JJ, Liu JL, Gu M, Sun SB, Xu GH. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis[J]. Plant and Cell Physiology, 2015, 56(4): 674-687. DOI:10.1093/pcp/pcu212
[61]Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2009, 151(2): 809-819. DOI:10.1104/pp.109.141879
[62]Vineyard L, Elliott A, Dhingra S, Lucas JR, Shaw SL. Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells[J]. The Plant Cell, 2013, 25(2): 662-676. DOI:10.1105/tpc.112.107326
[63]Nick P, Han MJ, An G. Auxin stimulates its own transport by shaping actin filaments[J]. Plant Physiology, 2009, 151(1): 155-167. DOI:10.1104/pp.109.140111
[64]Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity[J]. Genes & Development, 2006, 20(20): 2902-2911.
[65]Foo E. Auxin influences strigolactones in pea mycorrhizal symbiosis[J]. Journal of Plant Physiology, 2013, 170(5): 523-528. DOI:10.1016/j.jplph.2012.11.002
[66]Guillotin B, Etemadi M, Audran C, Bouzayen M, Bécard G, Combier JP. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom)[J]. New Phytologist, 2017, 213(3): 1124-1132. DOI:10.1111/nph.14246
[67]Ortu G, Balestrini R, Pereira PA, Becker JD, Küster H, Bonfante P. Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions[J]. Molecular Plant, 2012, 5(4): 951-954. DOI:10.1093/mp/sss027
[68]García-Garrido JM, León-Morcillo RJ, Martín-Rodríguez JÁ, Ocampo-Bole JA. Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations[J]. Molecular Plant-Microbe Interactions, 2010, 23(5): 651-664. DOI:10.1094/MPMI-23-5-0651
[69]Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, et al. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices[J]. New Phytologist, 2002, 154(2): 501-507. DOI:10.1046/j.1469-8137.2002.00388.x
[70]Foo E, Ross JJ, Jones WT, Reid JB. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins[J]. Annals of Botany, 2013, 111(5): 769-779. DOI:10.1093/aob/mct041
[71]Martín-Rodríguez JÁ, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM. Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots[J]. Physiologia Plantarum, 2015, 154(1): 66-81. DOI:10.1111/ppl.12274
[72]Martín-Rodríguez JÁ, Huertas R, Ho-Plágaro T, Ocampo JA, Turečková V, Tarkowská D, Ludwig-Müller J, García-Garrido JM. Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato[J]. Frontiers in Plant Science, 2016, 7: 1273.
[73]Ghachtouli NE, Martin-Tanguy J, Paynot M, Gianinazzi S. First-report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment[J]. FEBS Letters, 1996, 385(3): 189-192. DOI:10.1016/0014-5793(96)00379-1
[74] Wang Q, Yang FP, Zhang XH, Xiao W, Dong R. Research progress on DELLA protein in higher plants[J]. Molecular Plant Breeding, 2019, 17(10): 3231-3240. (in Chinese)
王倩, 杨凤萍, 张秀海, 肖伟, 董然. 高等植物中DELLA蛋白的研究进展[J]. 分子植物育种, 2019, 17(10): 3231-3240. DOI:10.13271/j.mpb.017.003231
Yu N, Luo DX, Zhang XW, Liu JZ, Wang WX, Jin Y, Dong WT, Liu JY, Liu H, Yang WB, et al. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants[J]. Cell Research, 2014, 24(1): 130-133. DOI:10.1038/cr.2013.167
[76]Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis[J]. PNAS, 2013, 110(51): E5025-E5034.
[77]Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, et al. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching[J]. Current Biology, 2016, 26(8): 987-998. DOI:10.1016/j.cub.2016.01.069
[78]Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus[J]. Plant Physiology, 2015, 167(2): 545-557. DOI:10.1104/pp.114.247700
[79]Floss DS, Gomez SK, Park HJ, MacLean AM, Müller LM, Bhattarai KK, Lévesque-Tremblay V, Maldonado-Mendoza IE, Harrison MJ. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1[J]. Current Biology, 2017, 27(8): 1206-1212. DOI:10.1016/j.cub.2017.03.003
[80]Gutjahr C, Parniske M. Cell biology: control of partner lifetime in a plant-fungus relationship[J]. Current Biology, 2017, 27(11): R420-R423. DOI:10.1016/j.cub.2017.04.020
[81]Seto Y, Yasui R, Kameoka H, Tamiru M, Cao MM, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, et al. Strigolactone perception and deactivation by a hydrolase receptor DWARF14[J]. Nature Communications, 2019, 10: 191. DOI:10.1038/s41467-018-08124-7
[82]Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, et al. Molecular mechanism of strigolactone perception by DWARF14[J]. Nature Communications, 2013, 4: 2613. DOI:10.1038/ncomms3613
[83]Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, et al. Regulation of strigolactone biosynthesis by gibberellin signaling[J]. Plant Physiology, 2017, 174(2): 1250-1259. DOI:10.1104/pp.17.00301
[84]Wu YL, Dor E, Hershenhorn J. Strigolactones affect tomato hormone profile and somatic embryogenesis[J]. Planta, 2017, 245(3): 583-594. DOI:10.1007/s00425-016-2625-0
[85]Rabie GH. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater[J]. Mycorrhiza, 2005, 15(3): 225-230. DOI:10.1007/s00572-004-0345-y
[86]Bompadre MJ, Fernández Bidondo L, Silvani VA, Colombo RP, Pérgola M, Pardo AG, Godeas AM. Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions[J]. Symbiosis, 2015, 65(2): 55-63. DOI:10.1007/s13199-015-0318-2
[87]Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula[J]. The Plant Journal, 2011, 65(4): 622-633. DOI:10.1111/j.1365-313X.2010.04447.x
[88]Laffont C, Rey T, André O, Novero M, Kazmierczak T, Debellé F, Bonfante P, Jacquet C, Frugier F. The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen[J]. PLoS One, 2015, 10(1): e0116819. DOI:10.1371/journal.pone.0116819
[89]Cosme M, Wurst S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco[J]. Soil Biology and Biochemistry, 2013, 57: 436-443. DOI:10.1016/j.soilbio.2012.09.024
[90]Cosme M, Ramireddy E, Franken P, Schmülling T, Wurst S. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2016, 26(7): 709-720. DOI:10.1007/s00572-016-0706-3
[91]Jones JMC, Clairmont L, Macdonald ES, Weiner CA, Emery RJN, Guinel FC. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels[J]. Journal of Experimental Botany, 2015, 66(13): 4047-4059. DOI:10.1093/jxb/erv201
[92]Geil RD, Peterson LR, Guinel FC. Morphological alterations of pea (Pisum sativum cv. Sparkle) arbuscular mycorrhizas as a result of exogenous ethylene treatment[J]. Mycorrhiza, 2001, 11(3): 137-143. DOI:10.1007/s005720100120
[93]Geil RD, Guinel FC. Effects of elevated substrate-ethylene on colonization of leek (Allium porrum) by the arbuscular mycorrhizal fungus Glomus aggregatum[J]. Canadian Journal of Botany, 2002, 80(2): 114-119. DOI:10.1139/b01-135
[94]Zsögön A, Lambais MR, Benedito VA, De Oliveira Figueira AV, Peres LEP. Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants[J]. Scientia Agricola, 2008, 65(3): 259-267. DOI:10.1590/S0103-90162008000300006
[95]Fracetto GGM, Peres LEP, Mehdy MC, Lambais MR. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts[J]. Symbiosis, 2013, 60(3): 155-167. DOI:10.1007/s13199-013-0251-1
[96]Fracetto GGM, Peres LEP, Lambais MR. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development[J]. Archives of Microbiology, 2017, 199(5): 787-798. DOI:10.1007/s00203-017-1354-5
[97]Varma Penmetsa R, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations[J]. The Plant Journal, 2008, 55(4): 580-595. DOI:10.1111/j.1365-313X.2008.03531.x
[98]De Los Santos RT, Vierheilig H, Ocampo JA, García-Garrido JM. Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants[J]. Plant Signaling & Behavior, 2011, 6(5): 755-758.
[99]De Los Santos RT, Molinero-Rosales N, Ocampo JA, García-Garrido JM. Ethylene alleviates the suppressive effect of phosphate on arbuscular mycorrhiza formation[J]. Journal of Plant Growth Regulation, 2016, 35(3): 611-617. DOI:10.1007/s00344-015-9570-1
[100]Ludwig-Müller J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi[A]//Koltai H, Kapulnik Y. Arbuscular Mycorrhizas: Physiology and Function[M]. Dordrecht, Netherlands: Springer, 2010: 169-190
[101]Charpentier M, Sun J, Wen JQ, Mysore KS, Oldroyd GED. Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex[J]. Plant Physiology, 2014, 166(4): 2077-2090. DOI:10.1104/pp.114.246371
[102]Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo-Bote JA, García Garrido JM. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza[J]. New Phytologist, 2007, 175(3): 554-564. DOI:10.1111/j.1469-8137.2007.02107.x
[103]Martín-Rodríguez JÁ, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM. Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents[J]. Journal of Plant Physiology, 2010, 167(8): 606-613. DOI:10.1016/j.jplph.2009.11.014
[104]Martín-Rodríguez JÁ, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi[J]. New Phytologist, 2011, 190(1): 193-205. DOI:10.1111/j.1469-8137.2010.03610.x
[105]López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, et al. Does abscisic acid affect strigolactone biosynthesis?[J]. New Phytologist, 2010, 187(2): 343-354. DOI:10.1111/j.1469-8137.2010.03291.x
[106]Torres-Vera R, García JM, Pozo MJ, López-Ráez JA. Do strigolactones contribute to plant defence?[J]. Molecular Plant Pathology, 2014, 15(2): 211-216. DOI:10.1111/mpp.12074
[107]Singh AP, Savaldi-Goldstein S. Growth control: brassinosteroid activity gets context[J]. Journal of Experimental Botany, 2015, 66(4): 1123-1132. DOI:10.1093/jxb/erv026
[108]Tofighi C, Khavari-Nejad RA, Najafi F, Razavi K, Rejali F. Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat[J]. Journal of Plant Nutrition, 2017, 40(8): 1091-1098. DOI:10.1080/01904167.2016.1263332
[109]Foo E, McAdam EL, Weller JL, Reid JB. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea[J]. Journal of Experimental Botany, 2016, 67(8): 2413-2424. DOI:10.1093/jxb/erw047
[110]Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation[J]. The Plant Journal, 2014, 78(5): 877-889. DOI:10.1111/tpj.12515
[111]Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza[J]. Plant Signaling & Behavior, 2014, 9(10): e970426.
[112]Ross JJ, Reid JB. Internode length in Pisum. The involvement of ethylene with the gibberellin-insensitive erectoides phenotype[J]. Physiologia Plantarum, 1986, 67(4): 673-679. DOI:10.1111/j.1399-3054.1986.tb05076.x
[113]Tanaka S, Hashimoto K, Kobayashi Y, Yano K, Maeda T, Kameoka H, Ezawa T, Saito K, Akiyama K, Kawaguchi M. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus[J]. Communications Biology, 2022, 5: 43. DOI:10.1038/s42003-021-02967-5
[114]López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation[J]. New Phytologist, 2008, 178(4): 863-874. DOI:10.1111/j.1469-8137.2008.02406.x
[115]Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites[J]. Planta, 2007, 225(4): 1031-1038. DOI:10.1007/s00425-006-0410-1
[116]Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites[J]. Planta, 2007, 227(1): 125-132. DOI:10.1007/s00425-007-0600-5
[117]Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?[J]. Annals of Botany, 2014, 113(1): 19-33. DOI:10.1093/aob/mct258
[118]Yoneyama K, Xie XN, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?[J]. Planta, 2012, 235(6): 1197-1207. DOI:10.1007/s00425-011-1568-8
[119]Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant, Cell & Environment, 2016, 39(2): 441-452.
[120]Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants[J]. Journal of Plant Physiology, 2013, 170(1): 47-55. DOI:10.1016/j.jplph.2012.08.020
[121]Landgraf R, Schaarschmidt S, Hause B. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms[J]. Plant, Cell & Environment, 2012, 35(7): 1344-1357.
[122]Chagnon PL, Bradley RL. The relative importance of host vigor and hormonal response to pathogens in controlling the development of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2015, 83: 40-42. DOI:10.1016/j.soilbio.2015.01.005
[123]Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis[J]. PLoS One, 2020, 15(10): e0240886. DOI:10.1371/journal.pone.0240886
[124]Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses[J]. New Phytologist, 2015, 205(4): 1431-1436. DOI:10.1111/nph.13252
[125]Zhang C, He JM, Dai HL, Wang G, Zhang XW, Wang C, Shi JC, Chen X, Wang DP, Wang ET. Discriminating symbiosis and immunity signals by receptor competition in rice[J]. PNAS, 2021, 118(16): e2023738118. DOI:10.1073/pnas.2023738118
[126]Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy[J]. Current Biology, 2011, 21(14): 1204-1209. DOI:10.1016/j.cub.2011.06.044
[127] Wang H, Fang Y, Liu RJ, Chen YL. Recent advances in the studies of nutrient transportation, metabolism, utilization and regulation in arbuscular mycorrhizas[J]. Plant Physiology Journal, 2018, 54(11): 1645-1658. (in Chinese)
王浩, 方燕, 刘润进, 陈应龙. 丛枝菌根中养分转运、代谢、利用与调控研究的最新进展[J]. 植物生理学报, 2018, 54(11): 1645-1658. DOI:10.13592/j.cnki.ppj.2018.0346
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Von Röpenack-Lahaye E, Wang TL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi[J]. eLife, 2017, 6: e29107. DOI:10.7554/eLife.29107
[129]Pimprikar P, Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development[J]. Plant and Cell Physiology, 2018, 59(4): 678-695. DOI:10.1093/pcp/pcy024
[130]Jiang YN, Xie QJ, Wang WX, Yang J, Zhang XW, Yu N, Zhou Y, Wang ET. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis[J]. Molecular Plant, 2018, 11(11): 1344-1359. DOI:10.1016/j.molp.2018.09.006
[131]Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant[J]. Science, 2017, 356(6343): 1175-1178. DOI:10.1126/science.aan0081
相关知识
Effect, mechanisms and application of arbuscular mycorrhizal fungi for biological control of Fusarium oxysporum
Functions of arbuscular mycorrhizal fungi and dark septate endophytes in ecological restoration
Molecular mechanisms of RPD3 family members in regulating plant development and environmental responses
Efficient propagation of arbuscular mycorrhizal fungal propagules
Effect of inoculation with arbuscular mycorrhizal fungi on root
Mechanisms of alternative splicing in regulating plant flowering: a review
丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用
Progress on the mechanism of hormones regulating plant flower formation
Advances in research on floral meristem determinacy mechanisms in plants
Phytoremediation of heavy metal contaminated soils by plant growth
网址: Mechanisms of phytohormones in regulating arbuscular mycorrhiza development https://www.huajiangbk.com/newsview593062.html
上一篇: PNAS | 根际植保素合成调控 |
下一篇: 第九章 植物的成花生理 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039