首页 分享 激素在植物冷胁迫应答中的角色

激素在植物冷胁迫应答中的角色

来源:花匠小妙招 时间:2024-11-13 04:32

参考文献

[1] 邓江明, 简令成. 植物抗冻机理研究新进展: 抗冻基因表达及其功能 [J]. 植物学通报, 2001, 18(5): 521-530
[2] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms [J]. Annual Review of Plant Biology, 1999, 50(1): 571-599
[3] Kosová K, Prášil I T, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Ture c ˇ ková V, Rol c ˇ ik J, Pešek B. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra [J]. Journal of Plant Physiology, 2012, 169(6): 567-576
[4] Dong C J, Li L, Shang Q M, Liu X Y, Zhang Z G. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber ( Cucumis sativus L.) seedlings [J]. Planta, 2014, 240(4): 687-700
[5] Pál M, Janda T, Szalai G. Abscisic acid may alter the salicylic acid‐related abiotic stress response in maize [J]. Journal of Agronomy and Crop Science, 2011, 197(5): 368-377
[6] Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/dre binding factor1 cascade and freezing tolerance in arabidopsis [J]. The Plant Cell Online, 2013, 25(8): 2907-2924
[7] 陈伟, 苏新国, 郜海燕, 杨震峰. 低温对桃果实采后冷害及其内源激素的影响 [J]. 核农学报, 2013, 27(8): 1173-1178
[8] Aghdam M S, Asghari M, Khorsandi O, Mohayeji M. Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment [J]. Journal of Food Science and Technology, 2014, 51(10): 2815-2820
[9] Scott I M, Clarke S M, Wood J E, Mur L A. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis [J]. Plant Physiology, 2004, 135(2): 1040-1049
[10] Zhang Y, Zhang M, Yang H. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage [J]. Food Chemistry, 2015, 174: 558-563
[11] Kang H M, Saltveit M E. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid [J]. Physiologia Plantarum, 2002, 115(4): 571-576
[12] Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants [J]. Plant Growth Regulation, 2000, 30(2): 157-161
[13] Taşgín E, Atící Ö, Nalbantoǧlu B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves [J].Plant Growth Regulation, 2003, 41(3):231-236
[14] Horváth E, Pál M, Szalai G, Páldi E, Janda T. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants [J]. Biologia Plantarum, 2007, 51(3): 480-487
[15] Miura K, Ohta M. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation [J]. Journal of Plant Physiology, 2010, 167(7): 555-560
[16] Wang L, Tsuda K, Truman W, Sato M, Nguyen L V, Katagiri F, Glazebrook J. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling [J]. The Plant Journal, 2011, 67(6): 1029-1041
[17] Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414(6863): 562-565
[18] Kim Y, Park S, Gilmour S J, Thomashow M F. Roles of CAMTA transcription factors and salicylic acid in configuring the low‐temperature transcriptome and freezing tolerance of Arabidopsis [J]. The Plant Journal, 2013, 75(3): 364-376
[19] Melotto M, Underwood W, Koczan J, Nomura K, He S Y. Plant stomata function in innate immunity against bacterial invasion [J]. Cell, 2006, 126(5): 969-980
[20] Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants [J]. Annual Review of Plant Biology, 2010, 61: 621-649
[21] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in arabidopsis [J]. Molecular Cell, 2004, 15(1): 141-152
[22] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6 [J]. The Plant Journal, 2000, 24(5): 655-665
[23] Huang X, Chen M H, Yang L T, Li Y R, Wu J M. Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress [J]. Sugar Tech, 2015, 17(1): 59-64
[24] Shinkawa R, Morishita A, Amikura K, Machida R, Murakawa H, Kuchitsu K, Ishikawa M. Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice [J]. BMC Research Notes, 2013, 6(1): 351
[25] Hong J H, Seah S W, Xu J. The root of ABA action in environmental stress response [J]. Plant Cell Reports, 2013, 32(7): 971-983
[26] Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jürgens G, Paul Knox J, Wang M H. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem [J]. The Plant Journal, 2010, 64(5): 764-774
[27] Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants [J]. Journal of Experimental Botany, 2004, 55(395): 225-236
[28] Ishitani M, Xiong L, Stevenson B, Zhu J-K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways [J]. The Plant Cell Online, 1997, 9(11): 1935-1949
[29] Knight H, Zarka D G, Okamoto H, Thomashow M F, Knight M R. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element [J]. Plant Physiology, 2004, 135(3): 1710-1717
[30] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes & Development, 2003, 17(8): 1043-1054
[31] Lee S J, Kang J Y, Park H J, Kim M D, Bae M S, Choi H I, Kim S Y. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity [J]. Plant Physiology, 2010, 153(2): 716-727
[32] Soitamo A J, Piippo M, Allahverdiyeva Y, Battchikova N, Aro E M. Light has a specific role in modulating Arabidopsis gene expression at low temperature [J]. BMC Plant Biology, 2008, 8(1): 13
[33] Furukawa J, Abe Y, Mizuno H, Matsuki K, Sagawa K, Kojima M, Sakakibara H, Iwai H, Satoh S. Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra [J]. Plant Root, 2011, 5: 56-62
[34] Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice [J]. Journal of Experimental Botany, 2012, 63(18): 6467-6480
[35] Imai R, Ali A, Pramanik M H R, Nakaminami K, Sentoku N, Kato H. A distinctive class of spermidine synthase is involved in chilling response in rice [J]. Journal of Plant Physiology, 2004, 161(7): 883-886
[36] 韦弟, 李杨瑞, 邸南南, 卜朝阳, 闭志强. 乙烯利提高香蕉幼苗抗寒性的生理效应[J]. 热带作物学报, 2009, 30(10): 1447-1451
[37] Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of ethylene-induced transcription of defense genes [J]. Plant and Cell Physiology, 2000, 41(11): 1187-1192
[38] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element [J]. The Plant Cell Online, 1995, 7(2): 173-182
[39] Kizis D, Lumbreras V, Pagès M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress [J]. FEBS Letters, 2001, 498(2): 187-189
[40] 张秋平, 杨宇红, 茆振川, 陈国华, 谢丙炎. 辣椒乙烯反应转录因子基因 CaJERF 1 的克隆及诱导表达 [J]. 园艺学报, 2012, 39(4): 705-712
[41] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis [J]. Plant Molecular Biology, 2010, 73(3): 241-249
[42] Zhang Z, Zhang H, Quan R, Wang X C, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco [J]. Plant Physiology, 2009, 150(1): 365-377
[43] Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis [J]. The Plant Cell Online, 2012, 24(6): 2578-2595
[44] Avanci N, Luche D, Goldman G, Goldman M. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction [J]. Genetics and Molecular Research, 2010, 9(1): 484-505
[45] 金鹏, 吕慕雯, 孙萃萃, 郑永华, 孙明. MeJA 与低温预贮对枇杷冷害和活性氧代谢的影响 [J]. 园艺学报, 2012, 39(2): 461-468
[46] Bhardwaj P K, Mala D, Kumar S. 2-Cys peroxiredoxin responds to low temperature and other cues in Caragana jubata, a plant species of cold desert of Himalaya [J]. Molecular Biology Reports, 2014, 41(5): 2951-2961
[47] Sponsel V M, Hedden P. Gibberellin biosynthesis and inactivation[M]//Davies P J. Plant Hormones. Dordrecht: Springer Science Business Media, 2010: 63-94
[48] Sun T P. Gibberellin signal transduction in stem elongation & leaf growth[M]//Davies P J. Plant Hormones. London: Springer Dordrecht Heidelberg, 2010: 308-328
[49] Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism [J]. The Plant Cell Online, 2008, 20(8): 2117-2129
[50] Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance [J]. Journal of Experimental Botany, 2013, 64(7): 1849-1862
[51] Zhang F, Wan X Q, Zhang H Q, Liu G L, Jiang M Y, Pan Y Z, Chen Q B. The effect of cold stress on endogenous hormones and CBF 1 homolog in four contrasting bamboo species[J]. Journal of Forest Research, 2012, 17(1): 72-78
[52] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23): 3194-3205
[53] Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis [J]. The Plant Cell Online, 2004, 16(6): 1365-1377
[54] Jeon J, Kim J. Arabidopsis response regulator1 and arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling [J]. Plant Physiology, 2013, 161(1): 408-424
[55] Jeon J, Kim N Y, Kim S, Kang N Y, Novák O, Ku S J, Cho C, Lee D J, Lee E J, Strnad M. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis [J]. Journal of Biological Chemistry, 2010, 285(30): 23371-23386
[56] Xia J, Zhao H, Liu W, Li L, He Y. Role of cytokinin and salicylic acid in plant growth at low temperatures [J]. Plant Growth Regulation, 2009, 57(3): 211-221

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

国家高技术研究发展计划项目(2013AA102607),黑龙江省科技攻关项目(GA15B105-1),哈尔滨师范大学硕士研究生创新科研项目(HSDSSCX2015-07)

{{custom_fund}}

相关知识

植物激素在临床中的应用
Nature重磅IF 94.4!!最新综述植物激素对非生物胁迫响应的调节机制
植物抗寒的适应机制
《生命世界》:植物的激素网络
植物激素在花药培养中的作用
植物激素在棉花生殖生长中的作用
生物学院团队在植物免疫应答中的PTI
植物激素功能及其在生物系统中的相互作用,The Plant Journal
植物响应非生物胁迫的分子机制
综述 | 多组学方法在解析植物适应温度胁迫的

网址: 激素在植物冷胁迫应答中的角色 https://www.huajiangbk.com/newsview529584.html

所属分类:花卉
上一篇: (江苏专版)2019版高考生物二
下一篇: 生石花怎么分株图解 分株时间及繁

推荐分享