深度学习实战——木薯叶图像识别与分类项目
摘要
本文主要通过使用的PaddlePaddle用于实现的图像分类的目标的。并设计与优化的相关的模型。该问题主要来源是的:Cassava Leaf Disease Classification | Kaggle
问题背景
作为非洲第二大碳水化合物供应国,木薯是小农种植的重要粮食安全作物,因为它可以承受恶劣的条件。撒哈拉以南非洲至少有80%的家庭农场都种植这种淀粉状的根,但病毒性疾病是单产低下的主要根源。借助数据科学,可以识别常见疾病,以便对其进行治疗。 现有的疾病检测方法要求农民寻求政府资助的农业专家的帮助,以目视检查和诊断植物。这遭受了劳动密集,供应不足和成本高的困扰。另一个挑战是,针对农民的有效解决方案必须在明显的约束下表现良好,因为非洲农民可能只能使用低带宽的移动质量相机。 在本次比赛中,我们引入了在乌干达定期调查期间收集的21,367张带标签图像的数据集。大多数图像都是从农民那里采集的花园照片拍摄的,并由国家作物资源研究所(NaCRRI)的专家与坎帕拉的马克雷雷大学的AI实验室合作进行注释。这是最现实地表示农民在现实生活中需要诊断的格式。 您的任务是将每个木薯图像分类为四个疾病类别或第五个类别,指示健康的叶子。在您的帮助下,农民可能能够快速识别出患病的植物,从而有可能在遭受不可弥补的损害之前挽救他们的作物。
原始数据
模型的数据的制作
将tain.csv转为的txt文件"""
@version: 1.0
@author: xjl
@file: csv_to_txt.py
@time: 2021/3/5 11:37
"""
import pandas as pd
import os
def csv_to_txt(csv_file, txt_file,abs_path):
if not os.path.exists(csv_file):
print('Not that files:%s' % csv_file)
else:
data = pd.read_csv(csv_file, encoding='utf-8')
with open(txt_file, 'a+', encoding='utf-8') as f:
for line in data.values:
newdata=abs_path+str(line[0]) + ' ' + str(line[1]) + 'n'
f.write(newdata)
if __name__ == '__main__':
path=os.path.abspath('.').replace('','/')
csv_file = path+r"/train.csv"
txt_file =path+ r"/train.txt"
abs_path=path+r"/train_images/"
csv_to_txt(csv_file, txt_file,abs_path)
将data.txt文件化为了训练集、验证集"""
@version: 1.0
@author: xjl
@file: split_date.py
@time: 2021/3/5 11:53
"""
import random
import os
"""
随机按比例拆分数据
"""
def split(all_list, shuffle=False, ratio=0.8):
num = len(all_list)
offset = int(num * ratio)
if num == 0 or offset < 1:
return [], all_list
if shuffle:
random.shuffle(all_list)
train = all_list[:offset]
test = all_list[offset:]
return train, test
def write_split(film, train, test):
infilm = open(film, 'r', encoding='utf-8')
tainfilm = open(train, 'w', encoding='utf-8')
testfilm = open(test, 'w', encoding='utf-8')
li = []
for datas in infilm.readlines():
datas = datas.replace('n', '')
li.append(datas)
traindatas, testdatas = split(li, shuffle=True, ratio=0.8)
for traindata in traindatas:
tainfilm.write(traindata + 'n')
for testdata in testdatas:
testfilm.write(testdata + 'n')
infilm.close()
tainfilm.close()
testfilm.close()
if __name__ == "__main__":
path = os.path.abspath('.').replace('', '/')
data_path=path+r"/train.txt"
train_path=path+r"/train_list.txt"
test_path=path+r"/val_list.txt"
write_split(data_path, train_path,test_path)
建立基于的Paddle的深度模型
1采用的是ResNet50_vd的一个网络模型的结构
mode: 'train'# 当前所处的模式,支持训练与评估模式
ARCHITECTURE:
name: 'ResNet50_vd'# 模型结构,可以通过这个这个名称,使用模型库中其他支持的模型
checkpoints: ""
pretrained_model: ""# 预训练模型,因为这个配置文件演示的是不加载预训练模型进行训练,因此配置为空。
model_save_dir: "./output/"# 模型保存的路径
classes_num: 4# 类别数目,需要根据数据集中包含的类别数目来进行设置
total_images: 17117# 训练集的图像数量,用于设置学习率变换策略等。
save_interval: 1# 保存的间隔,每隔多少个epoch保存一次模型
validate: True# 是否进行验证,如果为True,则配置文件中需要包含VALID字段
valid_interval: 1# 每隔多少个epoch进行验证
epochs: 100# 训练的总得的epoch数量
topk: 4# 除了top1 acc之外,还输出topk的准确率,注意该值不能大于classes_num
image_shape: [3, 224, 224]# 图像形状信息
LEARNING_RATE:# 学习率变换策略,目前支持Linear/Cosine/Piecewise/CosineWarmup
function: 'Cosine'
params:
lr: 0.0125
OPTIMIZER:# 优化器设置
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.00001
TRAIN:# 训练配置
batch_size: 32# 训练的batch size
num_workers: 0# 每个trainer(1块GPU上可以视为1个trainer)的进程数量
file_list: "./dataset/cassava-leaf-disease-classification/train_list.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0# 数据打散的种子
transforms:# 训练图像的数据预处理
- DecodeImage:# 解码
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:# 随机裁剪
size: 224
- RandFlipImage:# 随机水平翻转
flip_code: 1
- NormalizeImage: # 归一化
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:# 通道转换
VALID:# 验证配置,validate为True时有效
batch_size: 20# 验证集batch size
num_workers: 0# 每个trainer(1块GPU上可以视为1个trainer)的进程数量
file_list: "./dataset/cassava-leaf-disease-classification/val_list.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0# 数据打散的种子
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
1零基础训练-不加载预训练模型的训练:训练的步数和没有加入参数的调整。训练完成后,验证集上的精度为63.668%。
训练参数的设置
mode: 'train'
ARCHITECTURE:
name: 'ResNet50_vd'
checkpoints: ""
pretrained_model: ""
model_save_dir: "./output/"
classes_num: 4
total_images: 17117
save_interval: 1
validate: True
valid_interval: 1
epochs: 100
topk: 4
image_shape: [3, 224, 224]
LEARNING_RATE:
function: 'Cosine'
params:
lr: 0.0125
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.00001
TRAIN:
batch_size: 32
num_workers: 0
file_list: "./dataset/cassava-leaf-disease-classification/train.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
VALID:
batch_size: 20
num_workers: 0
file_list: "./dataset/cassava-leaf-disease-classification/val_list.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
-c ./configs/quick_start/ResNet50_vd.yaml
采用预训练的模型的方式的
ResNet101_vd_ssld_pretrained.pdparams获取:
python tools/download.py -a ResNet101_vd_ssld_pretrained -p ./pretrained -d True
模型的获取:
https://paddleclas.readthedocs.io/zh_CN/latest/models/models_intro.html
mode: 'train'
ARCHITECTURE:
name: 'ResNet101_vd'
pretrained_model: "./pretrained/ResNet101_vd_ssld_pretrained"
model_save_dir: "./output/"
classes_num: 4
total_images: 17117
save_interval: 1
validate: True
valid_interval: 1
epochs: 200
topk: 4
image_shape: [3, 224, 224]
use_mix: True
ls_epsilon: 0.1
LEARNING_RATE:
function: 'Cosine'
params:
lr: 0.1
OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
regularizer:
function: 'L2'
factor: 0.000100
TRAIN:
batch_size: 32
num_workers: 0
file_list: "./dataset/cassava-leaf-disease-classification/train_list.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
mix:
- MixupOperator:
alpha: 0.2
VALID:
batch_size: 32
num_workers: 0
file_list: "./dataset/cassava-leaf-disease-classification/val_list.txt"
data_dir: "./dataset/cassava-leaf-disease-classification/train_images/"
shuffle_seed: 0
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:

模型的优化与设计
博文参考
相关知识
基于深度学习的农作物病害图像识别技术进展
深度学习实战:AlexNet实现花图像分类
【深度学习】 图像识别实战 102鲜花分类(flower 102)实战案例
opencv深度学习昆虫识别系统图像识别 python
深度学习项目:AI农作物病虫害识别与防治教程
基于深度学习的农作物病虫害图像识别技术研究进展
【机器学习】鸢尾花分类:机器学习领域经典入门项目实战
基于YOLOv8深度学习的橙子病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类
【花卉识别系统】Python+卷积神经网络算法+人工智能+深度学习+图像识别+算法模型
基于深度迁移学习的农业病害图像识别
网址: 深度学习实战——木薯叶图像识别与分类项目 https://www.huajiangbk.com/newsview484039.html
上一篇: 拥有 9 个园艺花卉类国际登录权 |
下一篇: Aa花语紫罗兰永恒 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039