首页 分享 An overview of greenhouse gas inventory in the Chinese wetlands

An overview of greenhouse gas inventory in the Chinese wetlands

来源:花匠小妙招 时间:2024-11-10 18:20
[1]

Ramsar Convention on Wetlands. Global wetland outlook: state of the world's wetlands and their services to people. Gland, Switzerland: Ramsar Convention Secretariat, 2018.

[2]

Mitsch W J, Bernal B, Nahlik A M, Mander V, Zhang L, Anderson C J, Jørgensen S E, Brix H. Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28(4): 583-597. DOI:10.1007/s10980-012-9758-8

[3]

Frolking S, Talbot J, Jones M C, Treat C C, Kauffman J B, Tuittila E S, Roulet N. Peatlands in the Earth's 21st century climate system. Environmental Reviews, 2011, 19: 371-396. DOI:10.1139/a11-014

[4]

Rosentreter J A, Borges A V, Deemer B R, Holgerson M A, Liu S, Song C, Melack J, Raymond P A, Duarte C M, Allen G H, Olefeldt D, Poulter B, Battin T I, Eyre B D. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14(4): 225-230. DOI:10.1038/s41561-021-00715-2

[5]

Moomaw W R, Chmura G L, Davies G T, Finlayson C M, Middleton B A, Natali S M, Perry J E, Roulet N, Sutton-Grier A E. Wetlands in a changing climate: Science, policy and management. Wetlands, 2018, 38(2): 183-205. DOI:10.1007/s13157-018-1023-8

[6]

IPCC. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. (2021-08)[2022-04-20] https://www.ipcc.ch/working-group/wg1/.

[7] [8]

IPCC. 2006 IPCC guidelines for national greenhouse gas inventories. Japan: IGES, 2006.

[9]

IPCC. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetland. Switzerland: IPCC, 2014.

[10]

IPCC. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Switzerland: IPCC, 2019.

[11] [12] [13] [14]

Song C C, Yan B X, Wang Y S, Wang Y Y, Lou Y J, Zhao Z C. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin, 2003, 48(24): 2749-2753. DOI:10.1007/BF02901769

[15]

曹娜. 长白山龙岗火山群泥炭沼泽湿地CO2通量研究初探[D]. 长春: 东北师范大学, 2015.

[16] [17]

黄璞祎. 扎龙湿地CO2和CH4通量研究[D]. 哈尔滨: 东北林业大学, 2010.

[18]

苗雨青. 大兴安岭多年冻土区泥炭沼泽地——气间净碳通量交换[D]. 北京: 中国科学院大学, 2013.

[19] [20]

王亮, 周怀东, 王世岩, 毛战坡, 程东升, 吴佳鹏, 刘畅. 芦苇湿地甲烷排放时空变化规律分析. 土壤通报, 2014, 45(3): 579-584.

[21] [22] [23] [24]

Sun Z G, Jiang H H, Wang L L, Mou X J, Sun W L. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 2013, 369: 317-333. DOI:10.1007/s11104-012-1564-1

[25]

Xu X W H, Zou X Q, Cao L G, Zhamangulova N, Zhao Y F, Tang D H, Liu D W. Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in Southeast China. Ecological Engineering, 2014, 73: 469-477. DOI:10.1016/j.ecoleng.2014.09.087

[26]

Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences, 2010, 7: 1207-1221. DOI:10.5194/bg-7-1207-2010

[27] [28]

董成仁. 胶州湾滨海湿地CO2通量及源/汇功能研究[D]. 青岛: 青岛大学, 2015.

[29]

姜欢欢. 黄河口潮滩湿地系统CO2和CH4通量特征与影响机制研究[D]. 北京: 中国科学院研究生院, 2012.

[30] [31] [32] [33] [34]

殷盛来. 江苏盐城滨海湿地温室气体通量格局特征以及主要影响因子研究[D]. 南京: 南京大学, 2014.

[35]

周莉. 辽河三角洲芦苇湿地生态系统水碳通量动态及其控制机制. 北京: 中国科学院植物研究所, 2009.

[36] [37] [38]

刘东. 艾比湖地区荒漠——湿地生态系统CO2通量特征研究[D]. 乌鲁木齐: 新疆大学, 2014.

[39]

Chen H, Yao S P, Wu N, Wang Y F, Luo P, Tian J Q, Gao Y H, Sun G. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): 253-264.

[40]

Ding W X, Cai Z C, Wang D X. Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment, 2004, 38(5): 751-759. DOI:10.1016/j.atmosenv.2003.10.016

[41]

Hao Y B, Cui X Y, Wang Y F, Mei X R, Kang X M, Wu N, Luo P, Zhu D. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands, 2011, 31(2): 413-422. DOI:10.1007/s13157-011-0151-1

[42]

Song W M, Wang H, Wang G H, Chen L T, Jin Z N, Zhuang Q L, He J S. Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1475-1490. DOI:10.1002/2015JG003043

[43]

Wei D, Xu R, Tarchen T, Dai D X, Wang Y S, Wang Y L. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level. Journal of Geophysical Research: Biogeosciences, 2015, 120(9): 1741-1750. DOI:10.1002/2015JG002974

[44]

李丽. 若尔盖自然湿地CH4排放及不同利用方式下温室气体通量估算[D]. 北京: 北京林业大学, 2011.

[45] [46] [47] [48] [49]

姜楠. 芦苇湿地生态系统碳通量的测定与土壤碳通量的贡献分析[D]. 上海: 华东师范大学, 2016.

[50]

黎明. 天鹅洲湿地生态系统CO2通量动态变化及其影响因子评价[D]. 北京: 中国科学院研究生院, 2007.

[51] [52]

马安娜. 崇西湿地的甲烷释放及封碳效应[D]. 上海: 华东师范大学, 2011.

[53]

王江涛. 崇明东滩滨海围垦区芦苇湿地CO2通量特征[D]. 上海: 华东师范大学, 2015.

[54] [55] [56]

朱丽丽. 鄱阳湖典型苔草湿地CH4释放特征[D]. 南昌: 江西师范大学, 2013.

[57]

Cheng X L, Luo Y Q, Xu Q, Lin G H, Zhang Q F, Chen J K, Li B. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant and Soil, 2009, 327: 85-94.

[58]

Liu Y H, Wang L X, Bao S M, Liu H M, Yu J B, Wang Y, Shao H B, Ouyang Y, An S Q. Effects of different vegetation zones on CH4 and N2O emissions in coastal wetlands: a model case study. The Scientific World Journal, 2014, 2014: 412183.

[59]

Shao X X, Sheng X C, Wu M, Wu H, Ning X. Influencing factors of methane emission dynamics at different water depths in Hangzhou Bay reed wetland, China. Environmental Progress & Sustainable Energy, 2017, 36(5): 1301-1307.

[60]

Wang D Q, Chen Z L, Xu S Y. Methane emission from Yangtze estuarine wetland, China. Journal of Geophysical Research: Biogeosciences, 2009, 114: G02011.

[61]

崔胜辉. 秋茄红树林湿地甲烷动态与环境因子相互关系的研究[D]. 厦门: 厦门大学, 1998.

[62]

鄂焱. 闽江口互花米草湿地甲烷与二氧化碳通量研究[D]. 福州: 福建师范大学, 2010.

[63]

郭海强. 长江河口湿地碳通量的地面监测及遥感模拟研究[D]. 上海: 复旦大学, 2010.

[64] [65] [66]

廖稷. 闽江河口芦苇湿地甲烷和二氧化碳排放通量分析[D]. 福州: 福建师范大学, 2010.

[67] [68] [69]

王蒙. 杭州湾滨海湿地CH4、N2O、CO2排放通量及其影响因素研究[D]. 北京: 中国林业科学研究院, 2014.

[70]

严燕儿. 基于遥感模型和地面观测的河口湿地碳通量研究[D]. 上海: 复旦大学, 2009.

[71] [72]

姚顺. 闽江河口咸草湿地甲烷与二氧化碳排放及主要环境因子分析[D]. 福州: 福建师范大学, 2010.

[73] [74] [75] [76] [77] [78] [79]

Xiao D R, Deng L, Kim D G, Huang C B, Tian K. Carbon budgets of wetland ecosystems in China. Global Change Biology, 2019, 25(6): 2061-2076. DOI:10.1111/gcb.14621

[80] [81]

傅伯杰. 中国生态系统变化及效应. 北京: 高等教育出版社, 2019.

[82]

Ding W X, Cai Z C. Methane emission from natural wetlands in China: summary of years 1995-2004 studies. Pedosphere, 2007, 17(4): 475-486. DOI:10.1016/S1002-0160(07)60057-5

[83]

Chen H, Zhu Q A, Peng C H, Wu N, Wang Y F, Fang X Q, Jiang H, Xiang W H, Chang J, Deng X W, Yu G R. Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Global Change Biology, 2013, 19(1): 19-32. DOI:10.1111/gcb.12034

[84]

Zhu Q A, Peng C H, Chen H, Fang X Q, Liu J X, Jiang H, Yang Y Z, Yang G. Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 2015, 24(8): 959-972. DOI:10.1111/geb.12307

[85]

Xu X F, Tian H Q. Methane exchange between marshland and the atmosphere over China during 1949-2008. Global Biogeochemical Cycles, 2012, 26(2): GB2006.

[86]

Li T, Zhang W, Zhang Q, Lu Y, Wang G, Niu Z, Raivonen M, Vesala T. Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: from 1950 to 2010. Biogeosciences, 2015, 12(23): 6853-6868. DOI:10.5194/bg-12-6853-2015

[87]

Zhu Q, Peng C, Liu J, Jiang H, Fang X, Chen H, Niu Z, Gong P, Lin G, Wang M, Wang H, Yang Y, Chang J, Ge Y, Xiang W, Deng X, He J S. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 2016, 6: 38020. DOI:10.1038/srep38020

[88]

Chen G C, Ye Y, Lu C Y. Seasonal variability of leaf litter removal by crabs in a Kandelia candel mangrove forest in Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 2008, 79(4): 701-706. DOI:10.1016/j.ecss.2008.06.012

[89]

Ren H, Chen H, Li Z A, Han W D. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and Soil, 2010, 327: 279-291. DOI:10.1007/s11104-009-0053-7

[90]

Tong C, Wang W Q, Zeng C S, Marrs R. Methane (CH4) emission from a tidal marsh in the Min River Estuary, Southeast China. Journal of Environmental Science and Health, Part A, 2010, 45(4): 506-516. DOI:10.1080/10934520903542261

[91]

Zhang J P, Shen C D, Ren H, Wang J, Han W D. Estimating change in sedimentary organic carbon content during mangrove restoration in Southern China using carbon isotopic measurements. Pedosphere, 2012, 22(1): 58-66. DOI:10.1016/S1002-0160(11)60191-4

[92]

Fu C C, Li Y, Zeng L, Zhang H B, Tu C, Zhou Q, Xiong K X, Wu J P, Duarte C M, Christie P, Luo Y M. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology, 2021, 27(1): 202-214. DOI:10.1111/gcb.15348

[93]

Lu W Z, Xiao J F, Liu F, Zhang Y, Liu C A, Lin G H. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology, 2017, 23(3): 1180-1198. DOI:10.1111/gcb.13424

[94] [95]

Li Y, Kang E Z, Song B, Wang J S, Zhang X D, Wang J Z, Li M, Yan L, Yan Z Q, Zhang K R, Wu H D, Kang X M. Soil salinity and nutrients availability drive patterns in bacterial community and diversity along succession gradient in the Yellow River Delta. Estuarine, Coastal and Shelf Science, 2021, 262: 107621. DOI:10.1016/j.ecss.2021.107621

[96] [97] [98] [99] [100]

Huang Y, Sun W J, Zhang W, Yu Y Q, Su Y H, Song C C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology, 2010, 16(2): 680-695. DOI:10.1111/j.1365-2486.2009.01976.x

[101]

Song C C, Xu X F, Tian H Q, Wang Y Y. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang plain, northeastern China. Global Change Biology, 2009, 15(3): 692-705. DOI:10.1111/j.1365-2486.2008.01821.x

[102]

Yao Z S, Wolf B, Chen W W, Butterbach-Bahl K, Brüggemann N, Wiesmeier M, Dannenmann M, Blank B, Zheng X H. Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 2010, 331: 341-359.

[103] [104]

神祥金, 姜明, 吕宪国, 刘兴土, 刘波, 张佳琦, 王宪伟, 佟守正, 雷光春, 王升忠, 仝川, 范航清, 田昆, 王晓龙, 胡远满, 谢永宏, 马牧源, 张树文, 曹春香, 王志臣. 中国草本沼泽植被地上生物量及其空间分布格局. 中国科学: 地球科学, 2021, 51(8): 1306-1316.

[105] [106]

Yan L, Zhang X D, Wu H D, Kang E Z, Li Y, Wang J Z, Yan Z Q, Zhang K R, Kang X M. Disproportionate changes in the CH4 emissions of six water table levels in an alpine peatland. Atmosphere, 2020, 11(11): 1165.

[107] [108] [109]

Li Z, Zhang Z Y, Xiao Y, Guo J S, Wu S J, Liu J. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China. Environmental Monitoring and Assessment, 2014, 186(5): 3023-3039.

[110]

Xiao S, Wang Y, Liu D, Yang Z, Lei D, Zhang C. Diel and seasonal variation of methane and carbon dioxide fluxes at Site Guojiaba, the Three Gorges Reservoir. Journal of Environmental Sciences, 2013, 25(10): 2065-2071.

[111]

Yang L, Lu F, Wang X K, Duan X N, Song W Z, Sun B F, Chen S, Zhang Q Q, Hou P Q, Zheng F X, Zhang Y, Zhou X P, Zhou Y J, Ouyang Z Y. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. Journal of Geophysical Research: Atmospheres, 2012, 117: D10109.

[112]

Zhao Y, Wu B F, Zeng Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences, 2013, 10(2): 1219-1230.

[113]

Hu Z Q, Wu S, Ji C, Zou J W, Zhou Q S, Liu S W. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environmental Science and Pollution Research, 2016, 23(2): 1505-1515.

[114]

Xiong Y, Wang F, Guo X, Liu F, Dong S. Carbon dioxide and methane fluxes across the sediment-water interface in different grass carp Ctenopharyngodon idella polyculture models. Aquaculture Environment Interactions, 2017, 9: 45-56.

[115]

United States Environmental Protection Agency, Office of Policy, Planning and Evaluation. Inventory of US greenhouse gas emissions and sinks: 1990-1994(EPA-230-R-96-006). Washington, D. C., U.S.: United States Environmental Protection Agency, 1994. [2022-04-23] https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=40000KQ2.PDF.

[116] [117]

Zhang Y, Li C S, Trettin C C, Li H, Sun G. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 2002, 16(4): 1061.

[118]

Kang X M, Li Y, Wang J Z, Yan L, Zhang X D, Wu H D, Yan Z Q, Zhang K R, Hao Y B. Precipitation and temperature regulate the carbon allocation process in alpine wetlands: Quantitative simulation. Journal of Soils and Sediments, 2020, 20(9): 3300-3315.

[119] [120]

Geng X M, Yang M, Grace J, Li C S, Jia Y F, Lu C, Zhou Y, Lei G C. Simulating methane emissions from the littoral zone of a reservoir by Wetland DNDC Model. Journal of Resources and Ecology, 2016, 7(4): 281-290.

[121]

Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, Cai W, Fu H, Huang X, Zhang C, Liu H, Taylor J. Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516-520.

[122]

Tang H J, Qiu J J, Wang L G, Li H, Li C S, van Ranst E. Modeling soil organic carbon storage and its dynamics in croplands of China. Agricultural Sciences in China, 2010, 9(5): 704-712.

[123]

Huang Y, Zhang W, Zheng X H, Li J, Yu Y Q. Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research: Atmospheres, 2004, 109: D08113.

[124]

Li T T, Huang Y, Zhang W, Song C C. CH4MODwetland: A biogeophysical model for simulating methane emissions from natural wetlands. Ecological Modelling, 2010, 221(4): 666-680.

[125]

Li T T, Zhang Q, Cheng Z G, Ma Z F, Liu J, Luo Y, Xu J J, Wang G C, Zhang W. Modeling CH4 emissions from natural wetlands on the Tibetan Plateau over the past 60 years: Influence of climate change and wetland loss. Atmosphere, 2016, 7(7): 90.

[126] [127]

Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell J G, Dlugokencky E J, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello F N, Castaldi S, Jackson R B, Alexe M, Arora V K, Beerling D J, Bergamaschi P, Blake D R, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Höglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim H-S, Kleinen T, Krummel P, Lamarque J-F, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald K C, Marshall J, Melton J R, Morino I, Naik V, O'Doherty S, Parmentier F-J W, Patra P K, Peng C, Peng S, Peters G P, Pison I, Prigent C, Prinn R, Ramonet M, Riley W J, Saito M, Santini M, Schroeder R, Simpson I J, Spahni R, Steele P, Takizawa A, Thornton B F, Tian H, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf G R, Weiss R, Wiedinmyer C, Wilton D J, Wiltshire A, Worthy D, Wunch D, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Q. The global methane budget 2000-2012. Earth System Science Data, 2016, 8(2): 697-751.

[128]

Zhang K R, Peng C H, Wang M, Zhou X L, Li M X, Wang K F, Ding J H, Zhu Q A. Process-based TRIPLEX-GHG model for simulating N2O emissions from global forests and grasslands: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 2017, 9(5): 2079-2102.

[129]

Chen L Z, Wang W Q, Zhang Y H, Lin G H. Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2009, 2(2): 45-54.

[130]

Xu W H, Fan X Y, Ma J G, Pimm S L, Kong L Q, Zeng Y, Li X S, Xiao Y, Zheng H, Liu J G, Wu B F, An L, Zhang L, Wang X K, Ouyang Z Y. Hidden loss of wetlands in China. Current Biology, 2019, 29(18): 3065-3071.e2.

[131]

Wang H J, Lu J W, Wang W D, Yang L Y, Yin C Q. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. Journal of Geophysical Research: Atmospheres, 2006, 111: D17109.

[132]

Wang X L, Xu L G, Wan R R. Comparison on soil organic carbon within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Hydrology Research, 2016, 47(S1): 261-277.

[133] [134] [135]

Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome: FAO, 2020.

[136]

焦念志, 刘纪化, 石拓, 张传伦, 张永雨, 郑强, 陈泉睿, 汤凯, 王誉泽, 董海良, 唐剑武, 叶思源, 董双林, 高坤山, 张继红, 薛强, 李琦, 贺志理, 屠奇超, 王法明, 黄小平, 白雁, 潘德炉. 实施海洋负排放践行碳中和战略. 中国科学: 地球科学, 2021, 51(4): 632-643.

[137]

Kang X M, Wang Y F, Chen H, Tian J Q, Cui X Y, Rui Y C, Zhong L, Kardol P, Hao Y B, Xiao X M. Modeling carbon fluxes using multi-temporal MODIS imagery and CO2 eddy flux tower data in Zoige alpine wetland, South-West China. Wetlands, 2014, 34(3): 603-618.

[138]

Yan L, Zhou G S, Wang Y H, Hu T Y, Sui X H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. Journal of Cleaner Production, 2015, 107: 195-201.

相关知识

Blue Carbon Sink Function of Chinese Coastal Wetlands and Carbon Neutrality Strategy
甲烷排放部分抵消湿地生态系统碳汇功能:全球数据分析
减缓温室效应 Chinese Pronunciation Slow down the greenhouse effect
Effects of farmland management measures on soil organic carbon turnover and microorganisms
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
中国设施种植土壤可持续利用的难点与应对策略
地球的重要“碳库”
Screening of antagonistic bacteria against Erwinia amylovora and its control effect in greenhouse
Research Progress in Detection and Identification of Crop Diseases and Insect Pests Based on Deep Learning
滨海盐沼湿地退化机制及生态修复技术研究进展

网址: An overview of greenhouse gas inventory in the Chinese wetlands https://www.huajiangbk.com/newsview471837.html

所属分类:花卉
上一篇: 研究发现自然湿地对温室气体吸收功
下一篇: 全球温室效应

推荐分享