Research Progress on Molecular Breeding of Resistance to Disease in Pepper
邹学校, 胡博文, 熊程, 戴雄泽, 刘峰, 欧立军, 杨博智, 刘周斌, 索欢, 徐昊, 朱凡, 远方. 中国辣椒育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2099-2118. DOI:10.16420/j.issn.0513-353x.2022-0677
ZOU X X, HU B W, XIONG C, DAI X Z, LIU F, OU L J, YANG B Z, LIU Z B, SUO H, XU H, ZHU F, YUAN F. Review and prospects of pepper breeding for the past 60 years in China[J]. Acta Horticulturae Sinica, 2022, 49(10): 2099-2118. DOI:10.16420/j.issn.0513-353x.2022-0677
王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势[J]. 中国蔬菜, 2019(8): 1-4.
WANG L H, MA Y Q, ZHANG B X. Market demand and breeding trend of pepper varieties in China[J]. China Vegetables, 2019(8): 1-4.
李颖, 王恒明, 徐小万, 徐晓美, 王得元, 李乃坚, 余小林. 华南地区辣椒品种选育及育种技术研究进展[J]. 广东农业科学, 2020, 47(11): 60-69. DOI:10.16768/j.issn.1004-874X.2020.11.007
LI Y, WANG H M, XU X W, XU X M, WANG D Y, LI N J, YU X L. Breeding of pepper cultivars in South China and research progress in pepper breeding technology[J]. Guangdong Agricultural Sciences, 2020, 47(11): 60-69. DOI:10.16768/j.issn.1004-874X.2020.11.007
徐晓美, 李颖, 孙启迪, 徐小万, 衡周, 李涛, 王恒明. 辣椒种质材料疫病抗性鉴评及遗传多样性分析[J]. 广东农业科学, 2022, 49(10): 19-28. DOI: 10.16768/j.issn.1004-874X.2022.10.003.
XU X M, LI Y, SUN Q D, XU X W, HENG Z, WANG H M. Resistance evaluation and genetic diversity analysis of Phytophthora disease in pepper germplasm materials[J]. Guangdong Agricultural Sciences, 2022, 49(10): 19-28. DOI: 10.16768/j.issn.1004-874X.2022.10.003.
韩梅梅, 段青青, 谭延肖, 张绍丽, 李腾飞, 李华, 张超, 常培培, 王静静, 张自坤. 辣椒主要病害抗病育种研究进展[J]. 中国农学通报, 2023, 39(14): 27-32. DOI:10.11924/j.issn.1000-6850.casb2022-0438
HAN M M, DUAN Q Q, TAN Y X, ZHANG S L, LI T F, LI H, ZHANG C, CHANG P P, WANG J J, ZHANG Z K. Breeding Capsium with main disease resistance: Research progress[J]. Chinese Agricultural Science Bulletin, 2023, 39(14): 27-32. DOI:10.11924/j.issn.1000-6850.casb2022-0438
雷建军, 朱张生, 陈长明, 曹必好, 陈国菊, 郑婕, 吴昊, 肖艳辉, 蒋园园, 原远, 廖毅, 宋佳丽. 辣椒分子育种研究进展[J]. 西南大学学报: 自然科学版, 2023, 45(7): 1-20. DOI:10.13718/j.cnki.xdzk.2023.07.001
LEI J J, ZHU Z S, CHEN C M, CAO B H, CHEN G J, ZHENG J, WU H, XIAO Y H, JIANG Y Y, YUAN Y, LIAO Y, SONG J L. Progress on molecular breeding of pepper[J]. Journal of Southwest University: Natural Science Edition, 2023, 45(7): 1-20. DOI:10.13718/j.cnki.xdzk.2023.07.001
雷刚, 周坤华, 陈学军, 黄月琴, 袁欣捷, 李歌歌, 谢媛媛, 方荣. 辣椒疫病研究进展[J]. 江西农业学报, 2023, 35(6): 39-48. DOI:10.19386/j.cnki.jxnyxb.2023.06.006
LEI G, ZHOU K H, CHEN X J, HUANG Y Q, YUAN X J, LI G G, XIE Y Y, FANG R. Research progress in pepper Phytophthora blight[J]. Acta Agriculturae Jiangxi, 2023, 35(6): 39-48. DOI:10.19386/j.cnki.jxnyxb.2023.06.006
CARANTA C, PALLOIX A. Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses[J]. Theoretical and Applied Genetics, 1996, 92(1): 15-20. DOI:10.1007/BF00222946
[10]HWANG J, LI J, LIU W Y, AN SJ, CHO H, HER N H, YEAM I, KIM D, KANG B C. Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper[J]. Molecules and Cells, 2009, 27: 329-336. DOI:10.1007/s10059-009-0042-y
[11]MURPHY J F, BLAUTH J R, LIVINGSTONE K D, LACKNEY V K, JAHN M K. Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels[J]. Molecular Plant-Microbe Interactions, 1998, 11(10): 943-951. DOI:10.1094/MPMI.1998.11.10.943
[12]CARANTA C, THABUIS A, PALLOIX A. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper[J]. Genome, 1999, 42(6): 1111-1116. DOI:10.1139/gen-42-6-1111
[13]ARNEDO-ANDRÉS M S, GIL-ORTEGA R, LUIS-ARTEAGA M, HORMAZA J I. Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.)[J]. Theoretical and Applied Genetics, 2002, 105(6/7): 1067-1074. DOI:10.1007/s00122-002-1058-2
[14]TAMISIER L, SZADKOWSKI M, NEMOUCHI G, LEFEBVRE V, SZADKOWSKI E, DUBOSCQ R, SANTONI S, SARAH G, SAUVAGE C, PALLOIX A, MOURY B. Genome-wide association mapping of QTLs implied in potato virus Y population sizes in pepper: Evidence for widespread resistance QTL pyramiding[J]. Molecualr Plant Pathology, 2020, 21(1): 3-16. DOI:10.1111/mpp.12874
[15]RUBIO M, CARANTA C, PALLOIX A. Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR[J]. Genome, 2008, 51(9): 767-771. DOI:10.1139/G08-056
[16]DEVRAN Z, KAHVECI E, O ZKAYNAK E, STUDHOLME D J, TOR M. Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing[J]. Molecular Breeding, 2015, 35(4). DOI:10.1007/s11032-015-0294-5
[17]HOLDSWORTH W L, MAZOUREK M. Development of user-friendly markers for the pvr1 and Bs3 disease resistance genes in pepper[J]. Molecular Breeding, 2015, 35(1). DOI:10.1007/s11032-015-0260-2
[18]YEAM I, KANG B C, LINDEMAN W, FRANTZ J D, FABER N, JAHN M M. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum[J]. Theoretical and Applied Genetics, 2005, 112: 178-186. DOI:10.1007/s00122-005-0120-2
[19]CARANTA C, LEFEBVRE V, PALLOIX A. Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci[J]. Molecular Plant-Microbe Interactions, 1997, 10(7): 872-878. DOI:10.1094/MPMI.1997.10.7.872
[20]PARRELLA G, RUFFEL S, MORETTI A, MOREL C, PALLOIX A, CARANTA C. Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes[J]. Theoretical and Applied Genetics, 2002, 105(6/7): 855-861. DOI:10.1007/s00122-002-1005-2
[21]VENKATESH J, AN J, KANG W H, JAHN M, KANG B C. Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum[J]. Phytopathology, 2018, 108: 142-148. DOI:10.1094/PHYTO-07-17-0231-R
[22]LOAIZA-FIGUEROA F. Genetic studies on the infection-responses to tobacco mosaic and tomato spotted wilt viruses in interspecific crosses of pepper (Capsicum)[D]. New York: Cornell University, 1994.
[23]MOURY B, PFLIEGER S, BLATTES A, LEFEBVRE V, PALLOIX A. A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper[J]. Genome, 2000, 43: 137-142. DOI:10.1139/g99-098
[24]JAHN M, PARAN I, HOFFMANN K, RADWANSKI E R, LIVINGSTONE K D, GRUBE R C, AFTERGOOT E, LAPIDOT M, MOYER J. Genetic mapping of the Tsw locus for resistance to the tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the gene for resistance to the same pathogen in tomato[J]. Molecular Plant-Microbe Interactions, 2000, 13(6): 673-82. DOI:10.1094/MPMI.2000.13.6.673
[25]BOUKEMA I W. Allelism of genes controlling resistance to TMV in Capsicum L.[J]. Euphytica, 1980, 29: 433-439. DOI:10.1007/BF00025143
[26]LEFEBVR E V, PALLOI X A, CARANTA C, POCHARD E. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies[J]. Genome, 1995, 38(1): 112-121. DOI:10.1139/g95-014
[27]SUGITA T, YAMAGUCHI K, SUGIMURA Y, NAGATA R, YUJI K, KINOSHITA T. Development of SCAR markers linked to L3 gene in Capsicum[J]. Breeding Science, 2004, 54: 111-115. DOI:10.1270/jsbbs.54.111
[28]YANG H B, LIU W Y, KANG W H, JAHN M, KANG B C. Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis[J]. Molecular Breeding, 2009, 24: 433-446. DOI:10.1007/s11032-009-9304-9
[29] 王述彬, 吴小丽, 刘金兵, 潘宝贵. 辣椒抗黄瓜花叶病毒(CMV) 基因的ISSR标记[J]. 分子植物育种, 2009, 7(3): 569-572.
WANG S B, WU X L, LIU J B, PAN B G. The ISSR markers linked to CMV resistant gene in hot pepper[J]. Molecular Plant Breeding, 2009, 7(3): 569-572.
杨学玲. 辣椒抗CMV基因同源序列克隆与分子标记研究[D]. 南京: 南京农业大学, 2009.
YANG X L. Study on cloning of homologous sequence of resistance gene to CMV and its molecular marker in pepper[D]. Nanjing: Nanjing Agricultural Univeirsity, 2009.
赵娟. 辣椒分子连锁图谱的构建及抗黄瓜花叶病毒QTL定位[D]. 呼和浩特: 内蒙古农业大学, 2009.
ZHAO J. Construction of molecular linkage map and QTL analysis of cucumber mosaic virus resistance in pepper[D]. Hohhot: Inner Mongolia Agricultural University, 2009.
KANG W H, HOANG N H, YANG H B, KWON J K, JO S H, SEO J K, KIM K H, CHOI D, KANG B C. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.)[J]. Theoretical and Applied Genetics, 2010, 120: 1587-1596. DOI:10.1007/s00122-010-1278-9
[33]KIM H, YOON J B, LEE J. Development of fluidigm SNP type genotyping assays for marker-assisted breeding of chili pepper (Capsicum annuum L.)[J]. Horticultural Science Technology, 2017, 35: 465-479.
[34]CHOI S, LEE J H, KANG W H, KIM J, HUY H N, PARK S W, SON E H, KWON J K, KANG B C. Identification of cucumber mosaic resistance 2 (cmr2) that confers resistance to a new cucumber mosaic virus isolate P1 (CMV-P1) in pepper (Capsicum spp.)[J]. Frontiers in Plant Science, 2018, 9: 1106. DOI:10.3389/fpls.2018.01106
[35]BEN CHAIM A, GRUBE R, LAPIDOT M, JAHN M, PARAN I. Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum[J]. Theoretical and Applied Genetics, 2001, 102: 1213-1220. DOI:10.1007/s001220100581
[36]CARANTA C, PFLIEGER S, LEFEBVRE V, DAUBÈZE A M, THABUIS A, PALLOIX A. QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper[J]. Theoretical and Applied Genetics, 2002, 104(4): 586-591. DOI:10.1007/s001220100753
[37]LEE H R, YOU H J, LEE Y G, KIM J, KANG H J, HARN C H B C. Development of a novel codominant molecular marker for chili veinal mottle virus resistance in Capsicum annuum L.[J]. Euphytica, 2013, 193: 197-205. DOI:10.1007/s10681-013-0897-z
[38]LEE J H, AN J T, SIDDIQUE M I, HAN K, CHOI S, KWON J K, KANG B C. Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum)[J]. Molecular Breeding, 2017, 37(10). DOI:10.1007/s11032-017-0717-6
[39]THAKUR H, JINDAL S K, SHARMA A, DHALIWAL M S. Molecular mapping of dominant gene responsible for leaf curl virus resistance in chilli pepper (Capsicum annuum L.)[J]. 3 Biotech, 2020, 10(4). DOI:10.1007/s13205-020-02168-7
[40]DWIVEDI N, MISHRA M, SHARMA S S, SINGH R K. Genetic analysis and QTLs identification for resistance to the Begomovirus causing pepper leaf curl virus (PepLCV) disease[J]. Journal of Plant Biochemistry and Biotechnology, 2024, 33(1): 34-44. DOI:10.1007/s13562-023-00855-z
[41]MIMURA Y, KAGEYAMA T, MINAMIYAMA Y, HIRAI M. QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession 'LS2341'[J]. Journal of Japan Society of Horticultural Science, 2009, 78: 307-313. DOI:10.2503/jjshs1.78.307
[42]THAKUR P P, MATHEW D, NAZEEM P A, ABIDA P S, INDIRA P, GIRIJA D, SHYLAJA M R, VALSALA A. Identification of allele specific AFLP markers linked with bacterial wilt ﹝ Ralstonia solanacearum (Smith) Yabuuchi et al. ﹞resistance in hot peppers (Capsicum annuum L.)[J]. Physiological and Molecular Plant Pathology, 2014, 87: 19-24. DOI:10.1016/j.pmpp.2014.05.001
[43]KANG Y J, AHN Y K, KIM K T, JUN T H. Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance[J]. BMC Plant Biology, 2016, 16. DOI:10.1186/s12870-016-0931-0
[44]LEE S, CHAKMA N, JOUNG S, LEE J M, LEE J. QTL mapping for resistance to bacterial wilt caused by two isolates of Ralstonia solanacearum in chili pepper (Capsicum annuum L.)[J]. Plants-Basel, 2022, 11(12). DOI:10.3390/plants11121551
[45]CHAE S Y, LEE K, DO J W, HONG S C, LEE K H, CHO M C, YANG E Y, YOON J B. QTL mapping of resistance to bacterial wilt in pepper plants (Capsicum annuum) using genotyping-by-sequencing (GBS)[J]. Horticulturae, 2022, 8(2). DOI:10.3390/horticulturae8020115
[46] 马海宾. 辣椒抗疫病的生化和分子标记研究[D]. 儋州: 华南热带农业大学, 2002.
MA H B. Studies on biochemical marker of pepper blight resistance and RAPD Marker linked to Phytophthora capsici gene in Capsicum [D]. Danzhou: South China Tropical Agricultural University, 2002.
易图永. 辣椒抗疫病相关基因的分析及QTL定位[D]. 长沙: 湖南农业大学, 2003.
YI T Y. Analysis and QTL mapping of the relative resistant gene to Phtophthora blight in pepper(Capsicum annuum)[D]. Changsha: Hunan Agricultrual University, 2003.
安静. 辣椒分子连锁图谱的构建及抗疫病QTL定位[D]. 北京: 中国农业科学院, 2006.
AN J. Construction of molecular linkage map and QTL analysis of Phytophthora capsici resistance in pepper[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.
李儒剑. 辣椒抗疫病分子标记的开发及抗病相关基因的功能鉴定[D]. 杨凌: 西北农林科技大学, 2018.
LI R J. Development of molecular markers and functional identification of disease-resistant genes in pepper[D]. Yangling: Northwest Agricultural and Forestry University, 2018.
LI Y F, ZHANG S C, YANG X M, WANG C P, HUANG Q Z, HUANG R Z. Generation of a high-density genetic map of pepper (Capsicum annuum L.) by SLAF-seq and QTL analysis of Phytophthora capsici resistance[J]. Horticulturae, 2021, 7(5). DOI:10.3390/horticulturae7050092
[51]KUMAR M, KAMBHAM M R, REDDY D C L, SRIRAM S, SINGH T H. Identification of molecular marker linked to resistance gene loci against Indian isolate of Phytophthora capsici L. causing root rot in chilli (Capsicum annuum L.)[J]. Australasian Plant Pathology, 2021, 51(2): 211-220. DOI:10.1007/s13313-021-00837-6
[52]LOZADA D N, NUNEZ G, LUJAN P, DURA S, COON D, BARCHENGER D W, SANOGO S, BOSLAND P W. Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.)[J]. BMC Plant Biology, 2021, 21(1). DOI:10.1186/s12870-021-03387-7
[53]BONGIORNO G, DI N A, CIANCALEONI S, MARCONI G, CASSIBBA V, ALBERTINI E. Development and application of a cleaved amplified polymorphic sequence marker (Phyto) linked to the Pc5.1 locus conferring resistance to Phytophthora capsici in pepper (Capsicum annuum L.)[J]. Plants-Basel, 2023, 12(15). DOI:10.3390/plants12152757
[54]ZHANG Z H, CAO Y C, WANG Y F, YU H L, WU H M, LIU J, AN D L, ZHU Y S, FENG X G, ZHANG B X, WANG L H. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L.[J]. Molecular Breeding, 2023, 43(3). DOI:10.1007/s11032-023-01367-3
[55]RO N, HAILE M, HUR O, GEUM B, RHEE J, HWANG A, KIM B, LEE J, HAHN B S, LEE J, KANG B C. Genome-wide association study of resistance to Phytophthora capsici in the pepper (Capsicum spp.) collection[J]. Frontiers in Plant Science, 2022, 13. DOI:10.3389/fpls.2022.902464
[56]MOHAMMADBAGHERI L, NASR-ESFAHANI M, AL-SADI A M, KHANKAHDANI H H, GHADIRZADEH E. Screening for resistance and genetic population structure associated with Phytophthora capsici-pepper root and crown rot[J]. Physiological and Molecular Plant Patholog, 2022, 122. DOI:10.1016/j.pmpp.2022.101924
[57]BUKHARI T, RANA R M, UL HASSAN M, NAZ F, SAJJAD M. Genetic diversity and marker trait association for Phytophthora resistance in chilli[J]. Molecular Biology Reports, 2022, 49(6): 5717-5728. DOI:10.1007/s11033-022-07635-3
[58]LIU W Y, KANG J H, JEONG H S, CHOI H J, YANG H B, KIM K T, CHOI D, CHOI G J, JAHN M, KANG B C. Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper[J]. Theoretical and Applied Genetetics, 2014, 127: 2503-2513. DOI:10.1007/s00122-014-2394-8
[59]ATES A Ç, YILMAZ N. molecular marker assisted selection for Phytophthora capsici Leon. resistance lines in pepper (Capsicum annum L.)[J]. Acta Scientiarum Polonorum-Hortorum cultus, 2020, 19(3): 179-188. DOI:10.24326/asphc.2020.3.16
[60]THABUIS A, PALLOIX A, PFLIEGER S, DAUBÈZE A M, CARANTA C, LEFEBVRE V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: Evidence for conserved resistance loci across Solanaceae and for a large genetic diversity[J]. Theoretical and Applied Genetics, 2003, 106(8): 1473-1485. DOI:10.1007/s00122-003-1206-3
[61]THABUIS A, LEFEBVRE V, BERNARD G, DAUBÈZE A M, PHALY T, POCHARD E, PALLOIX A. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper[J]. Theoretical and Applied Genetics, 2004, 109(2): 342-351. DOI:10.1007/s00122-004-1633-9
[62]LEE J, HONG J, DO J W. Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper[J]. Journal of Crop Sciences Biotechnology, 2010, 13: 227-233. DOI:10.1007/s12892-010-0081-0
[63]LEE J, DO J W, YOON J B. Development of STS markers linked to the major QTLs for resistance to the pepper anthracnose caused by Colletotrichum acutatum and C. capsici[J]. Horticultural Environment Biotechnology, 2011, 52(596): 601. DOI:10.1007/s13580-011-0178-5
[64]NANDA C, PRATHIBHA V H, RAO A M, RAMESH S, HITTALMANI S, PAI S. Tagging SSR markers associated with genomic regions controlling anthracnose resistance in chilli[J]. Indian Journal of Horticulture, 2016, 73(3): 350-355. DOI:10.5958/0974-0112.2016.00076.1
[65]SUWOR P, THUMMABENJAPONE P, SANITCHON J, KUMAR S, TECHAWONGSTIEN S. Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen(Colletotrichum spp.)[J]. European Journal of Plant Pathology, 2015, 143: 725-736. DOI:10.1007/s10658-015-0723-7
[66]MISHRA R, ROUT E, MOHANTY J N, JOSHI R K. Sequence-tagged site-based diagnostic markers linked to a novel anthracnose resistance gene RCt1 in chili pepper (Capsicum annuum L.)[J]. 3 Biotech, 2019, 9(1). DOI:10.1007/s13205-018-1552-0
[67]ZHAO Y, LIU Y, ZHANG Z, CAO Y, YU H, MA W, ZHANG B, WANG R, GAO J, WANG L. Fine mapping of the major anthracnose resistance QTL AnRGO5 in Capsicum chinense 'PBC932'[J]. BMC Plant Biology, 2020, 20: 189. DOI:10.1186/s12870-019-2115-1
[68]SUWOR P, SANITCHON J, THUMMABENJAPONE P, KUMAR S, TECHAWONGSTIEN S. Inheritance analysis of anthracnose resistance and marker-assisted selection in introgression populations of chili (Capsicum annuum L.)[J]. Scientia Horticulturae, 2017, 22: 20-26. DOI:10.1016/j.scienta.2017.03.032
[69]MAHASUK P, STRUSS D, MONGKOLPORN O. QTLs for resistance to anthracnose identified in two Capsicum sources[J]. Molcular Breeding, 2016, 36: 10. DOI:10.1007/s11032-016-0435-5
[70]CHEN Y, ZENG Q, MAN Y L, LIU S Z, OUYANG C, LI C G, WU X Y, ZHANG D Y, LIU Y, TAN X Q. Simple sequence repeat markers reflect the biological phenotype differentiation and genetic diversity of Colletotrichum gloeosporioides strains from Capsicum annuum L. in China[J]. Journal of Phytopathology, 2021, 169(11/12): 701-709. DOI:10.1111/jph.13041
[71]VOORRIPS R E, FINKERS R, SANJAYA L, GROENWOLD R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annum and C. chinense[J]. Theoretical and Applied Genetics, 2004, 109: 1275-1282. DOI:10.1007/s00122-004-1738-1
[72]SUN C Y, MAO S L, ZHANG Z H, PALLOIX A, WANG L H, ZHANG B X. Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5[J]. Scientia Horticulturae, 2015, 181(2): 81-88.
[73]RO N, HAILE M, HUR O, KO H C, YI J Y, WOO H J, CHOI Y M, RHEE J, LEE Y J, KIM D A, DO J W, KIM G W, KWON J K, KANG B C. Genome-wide association study of resistance to anthracnose in pepper (Capsicum chinense) germplasm[J]. BMC Plant Biology, 2023, 23(1). DOI:10.1186/s12870-023-04388-4
[74]TAI T H, DAHLBECK D, CLARK E T, GAJIWALA P, PASION R, WHALEN M C, STALL R E, STASKAWICZ B J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 14153-1458. DOI:10.1073/pnas.96.24.14153
[75]TRUONG H T H, KIM K T, KIM S, CHO M C, KIM H R, WOO J G. Development of gene-based markers for the Bs2 bacterial spot resistance gene for marker-assisted selection in pepper (Capsicum spp.)[J]. Horticulture, Environment, and Biotechnology, 2011, 52: 65-73. DOI:10.1007/s13580-011-0142-4
[76]PIERRE M, NOEL L, LAHAYE T, BALLVORA A, VEUSKENS J, GANAL M, BONAS U. High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv vesicatora AvrBs3 protein[J]. Theoretical and Applied Genetics, 2000, 101: 255-263. DOI:10.1007/s001220051477
[77]SHARMA A, MINSAVAGE G, GILL U S, HUTTON S F, JONES J B. Identification and mapping of bs8, a novel locus conferring resistance to bacterial spot caused by Xanthomonas gardneri[J]. Phytopathology, 2022, 112(8): 1640-1650. DOI:10.1094/PHYTO-08-21-0339-R
[78]SHARMA A, LI J, WENTE R, MINSAVAGE G V, GILL U S, ORTEGA A, VALLEJOS C E, HART J P, STASKAWICZ B J, MAZOUREK M R, STALL R E, JONES J B, HUTTON S F. Mapping of the bs5 and bs6 non-race-specific recessive resistances against bacterial spot of pepper[J]. Frontiers in Plant Science, 2023, 14. DOI:10.3389/fpls.2023.1061803
[79] 王立浩, 张宝玺, CARANTA C, 毛胜利, PALLOIX A. 利用分子标记对辣椒抗马铃薯Y病毒的3个QTLs进行选择[J]. 园艺学报, 2008, 35(1): 53-58. DOI:10.16420/j.issn.0513-353x.2008.01.011
WANG L H, ZHANG B X, CARANTA C, MAO S L, PALLOIX A. Molecular markers assisted selection for three QTLs resistant to PVY in pepper (Capsicum annuum L.)[J]. Acta Horticultrae Sinica, 2008, 35(1): 53-58. DOI:10.16420/j.issn.0513-353x.2008.01.011
MOODLEY V, NAIDOO R, GUBBA A, MAFONGOYA P L. Development of potato virus Y (PVY) resistant pepper (Capsicum annuum L.) lines using marker-assisted selection (MAS)[J]. Physiological and Molecular Plant Pathology, 2019, 105(96/101). DOI:10.1016/j.pmpp.2018.12.002
[81] 于海龙, 靳远, 周黛媛, 张正海, 曹亚从, 吴华茂, 冯锡刚, 张宝玺, 王秀芝, 崔聪聪, 王立浩. 内蒙古地区辣椒种质资源抗病性鉴定与评价[J]. 中国蔬菜, 2023(11): 69-79. DOI:10.19928/j.cnki.1000-6346.2023.2041
YU H L, JIN Y, ZHOU D Y, ZHANG Z H, CAO Y C, WU H M, FENG X G, ZHANG B X, WANG X Z, CUI C C, WANG L H. Identification and evaluation of disease resistance in pepper germplasms from Inner Mongolia Autonomous Region[J]. China Vegetable, 2023(11): 69-79. DOI:10.19928/j.cnki.1000-6346.2023.2041
李子雄, 潘兵青, 宋莹莹, 马世杰, 张娣, 陈婕, 沈火林, 孙亮. 辣椒种质资源果实品质与抗病性综合评价[J]. 中国蔬菜, 2023(8): 46-58. DOI:10.19928/j.cnki.1000-6346.2023.2033
LI Z X, PAN B Q, SONG Y Y, MA S J, ZHANG D, CHEN J, SHEN H L, SUN L. Comprehensive evaluation on fruit quality and disease resistance of pepper germplasm resources[J]. China Vegetable, 2023(8): 46-58. DOI:10.19928/j.cnki.1000-6346.2023.2033
陈灵芝, 张茹, 王兰兰, 高彦萍. 与辣椒抗TMV L3基因连锁的分子标记的筛选及种质资源抗TMV鉴定[J]. 西北农业学报, 2023, 32(4): 585-592. DOI:10.7606/j.issn.1004-1389.2023.04.011
CHEN L Z, ZHANG R, WANG L L, GAO Y P. Application of tobamvirus reistance gene L3-linked markers in pepper (Capsicum spp.) resource[J]. Acta Agriculturae Boreali-occidengtalis Sinica, 2023, 32(4): 585-592. DOI:10.7606/j.issn.1004-1389.2023.04.011
陈建分, 曹振木, 秦于玲, 申龙斌, 刘维侠, 朱丹, 吴怡婷, 刘子记, 王旭. 辣椒种质资源PMMoV抗性基因检测与抗性鉴定[J/OL]. 热带作物学报, 2023, https://kns.cnki.net/kcms/detail/46.1019.s.20230316.1409.004.html.
CHEN J F, CAO Z M, QIN Y L, SHEN L B, LIU W X, ZHU D, WU Y T, LIU Z J, WANG X. Resistance gene detection and resistance identification of PMMoV in pepper germplasm[J/OL]. Chinese Journal of Tropical Crops, 2023, https://kns.cnki.net/kcms/detail/46.1019.s.20230316.1409.004.html.
FIDAN H, YILDIZ K, SARIKAYA P. Molecular detection of resistance-breaking strain Cucumber mosaic virus (rbCMV) (Cucumovirus; Bromoviridae) on resistant commercial pepper cultivars in Turkey[J]. Journal of Phytopathology, 2023, 171(6): 234-241. DOI:10.1111/jph.13175
[86]OZKAYNAK E, DEVRAN Z, KAHVECI E, DOGANLAR S, BASKÖYLÜ B, DOGAN F, ISLEYEN M, YÜKSEL A, YÜKSEL M. Pyramiding multiple genes for resistance to PVY, TSWV and PMMoV in pepper using molecular markers[J]. European Journal of Horticultural Science, 2014, 79(4): 233-239. DOI:10.2307/24126862
[87]POLAT E, OZALP R. Molecular marker assisted selection for resistance to tomato spotted wilt virus (TSWV) in pepper breeding[J]. Journal of Biotechnology, 2015, 185: 114. DOI:10.1016/j.jbiotec.2014.07.387
[88]SOOD T, SOOD S, SOOD V K, BADIYAL A, ANURADHA, KAPOOR S. Assessment and validation of resistance to bacterial wilt (Ralstonia solanacearum) through field and molecular studies in bell pepper[J]. Journal of Plant Pathology, 2023, 105(3): 849-857. DOI:10.1007/s42161-023-01378-1
[89] 郭爽, 黄贞, 常绍东, 刘玉平, 曹翠文. 利用分子标记鉴定辣椒抗疫病材料[J]. 中国农学通报, 2012, 28(13): 163-166.
GUO S, HUANG Z, CHANG S D, LIU Y P, CAO C W. Identification of resistance to phytophthora blight in hot pepper using molecular marker[J]. Chinese Agricultural Science Bulletin, 2012, 28(13): 163-166.
ATES A Ç, YILMAZ N. Molecular marker assisted selection for Phytophthora capsici Leon. resistance lines in pepper (Capsicum annuum L.)[J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2020, 19(3): 179-188. DOI:10.24326/asphc.2020.3.16
[91]RABUMA T, GUPTA O P, CHHOKAR V. Phytophthora capsici infection and analysis of genetic diversity among identified resistance accessions using SSR markers[J]. Physiological and Molecular Plant Pathology, 2020, 112(1). DOI:10.1016/j.pmpp.2020.101539
[92]KIM H, YOON J B, LEE J. Development of fluidigm SNP type genotyping assays for marker-assisted breeding of chili pepper (Capsicum annuum L.)[J]. Horticultural Science Technology, 2017, 35: 465-479.
[93]DING L N, LI Y T, WU Y Z, LI T, GENG R, CAO J, ZHANG W, TAN X L. Plant disease resistance-related signaling pathways: Recent progress and future prospects[J]. International Journal of Molecular Sciences, 2022, 23(24). DOI:10.3390/ijms232416200
[94]DANG F F, WANG Y N, SHE J J, LEI Y F, LIU Z Q, EULGEM T, LAI Y, LIN J, YU L, LEI D, GUAN D Y, LI X, YUAN Q, HE S L. Overexpression of CaWRKY27, a subgroup Ⅱe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection[J]. Physiologia Plantarum, 2014, 150(3): 397-411. DOI:10.1111/ppl.12093
[95]MOU S L, LIU Z Q, GAO F, YANG S, SU M X, SHEN L, WU Y, HE S L. CaHDZ27, a homeodomain-leucine zipper I protein, positively regulates the resistance to Ralstonia solanacearum infection in pepper[J]. Molecular Plant-microbe Interactions, 2017, 30(12): 960-973. DOI:10.1094/MPMI-06-17-0130-R
[96]CHENG W, XIAO Z L, CAI H Y, WANG C Q, HU Y, XIAO Y P, ZHENG Y X, SHEN L, YANG S, LIU Z Q, MOU S L, QIU A L, GUAN D Y, HE S L. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection[J]. Molecular Plant Pathology, 2017, 18(8): 1089-1100. DOI:10.1111/mpp.12462
[97]HUANG J F, SHEN L, YANG S, GUANG D Y, HE S L. CaASR1 promotes salicylic acid-but represses jasmonic acid-dependent signaling to enhance the resistance of Capsicum annuum to bacterial wilt by modulating CabZIP63[J]. Journal of Experimental Botany, 2020, 71(20): 6538-6554. DOI:10.1093/jxb/eraa350
[98]YANG S, SHI Y Y, ZOU L Y, HUANG J F, SHEN L, WANG Y Z, GUAN D Y, HE S L. Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses[J]. Plant Cell Physiology, 2020, 61(7): 1223-1238. DOI:10.1093/pcp/pcaa052
[99]YANG S, ZHANG Y W, CAI W W, LIU C L, HU J, SHEN L, HUANG X Y, GUAN D Y, HE S L. CaWRKY28 Cys249 is required for interaction with CaWRKY40 in the regulation of pepper immunity to Ralstonia solanacearum[J]. Molecular Plant-microbe Interactions, 2021, 34(7): 733-745. DOI:10.1094/MPMI-12-20-0361-R
[100]SHEN L, YANG S Y, FENG F, GUAN D Y, HE S L. CaCBL1 acts as a positive regulator in pepper response to Ralstonia solanacearum[J]. Molecular Plant-microbe Interactions, 2020, 33(7): 945-957. DOI:10.1094/MPMI-08-19-0241-R
[101]SHI L P, LI X, WENG Y H, CAI H Y, LIU K S, XIE B X, ANSAR H, GUAN D Y, HE S L, LIU Z Q. The CaPti1-CaERF3 module positively regulates resistance of Capsicum annuum to bacterial wilt disease by coupling enhanced immunity and dehydration tolerance[J]. Plant Journal, 2022, 111(1): 250-268. DOI:10.1111/tpj.15790
[102]HUSSAIN A, KAISHENG L, NOMAN A, ASHRAF M F, ALBAQAMI M, KHAN M I, LIU Z Q, HE S L. N-Methyltransferase CaASHH3 acts as a positive regulator of immunity against bacterial pathogens in pepper[J]. International Journal of Molecular Sciences, 2022, 23(12). DOI:10.3390/ijms23126492
[103]YANG S, CAI W W, SHEN L, CAO J S, LIU C L, HU J, GUAN D Y, HE S L. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper[J]. New Phytologist, 2022, 233(4): 1843-1863. DOI:10.1111/nph.17891
[104]LU Q L, HUANG Y, WANG H, WAN M Y, LYU J G, CHENG X G, CHEN Y H, CAI W W, YANG S, SHEN L, GUAN D Y, HE S L. CabZIP23 integrates in CabZIP63-CaWRKY40 cascade and turns CabZIP63 on mounting pepper immunity against Ralstonia solanacearum via physical interaction[J]. International Journal of Molecular Science, 2022, 23: 2656. DOI:10.3390/ijms23052656
[105]ZHANG Y Q, GUO S Y, ZHANG F, GAN P F, LI M, WANG C, LI H K, GAO G, WANG X J, KANG Z S, ZHANG X M. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper[J]. Horticulture Research, 2023, 10(5): uhad053. DOI:10.1093/hr/uhad053
[106]YANG S, CAI W W, WU R J, HUANG Y, LU Q L, HUANG X Y, ZHANG Y P, WU Q, CHENG X G, WAN M Y, LYU J A, LIU Q, ZHENG X, MOU S L, GUAN D Y, HE S L. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions[J]. Nature Communications, 2023, 14(1): 4477. DOI:10.1038/s41467-023-40251-8
[107]ZHANG Y P, CAI W W, WANG A W, HUANG X Y, ZHENG X, LIU Q, CHENG X G, WAN M Y, LYU J A, GUAN D Y, YANG S, HE S L. MADS-box protein AGL8 interacts with chromatin-remodelling component SWC4 to activate thermotolerance and environment-dependent immunity in pepper[J]. Journal of Experimental Botany, 2023, 74(12): 3667-3683. DOI:10.1093/jxb/erad092
[108]AMBARWATI E, ARWIYANTO T, WIDADA J, ALAM T, ANDIKA I, TARYONO. The genes associated with jasmonic acid and salicylic acid are induced in tropical chili pepper against Ralstonia solanacearum by applying Arbuscular Mycorrhizal fungi[J]. Horticulturae, 2022, 8(10). DOI:10.3390/horticulturae8100876
[109]WANG J E, LIU K K, LI D W, ZHANG Y L, ZHAO Q, HE Y M, GONG Z H. A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance[J]. International Journal of Molecular Sciences, 2013, 14(2): 3158-3177. DOI:10.3390/ijms14023158
[110]LIU Z Q, SHI L P, YANG S, LIN Y Q, WENG Y H, LI X, HUSSAIN A, NOMAN A, HE S L. Functional and promoter analysis of Chi IV3, a chitinase of pepper plant, in response to Phytophthora capsici infection[J]. International Journal of Molecular Sciences, 2017, 18(8): 1661. DOI:10.3390/ijms18081661
[111]ALI M, MUHAMMAD I, HAQ S U, ALAM M, KHATTAK A M, AKHTAR K, ULLAH H, KHAN A, LU G, GONG Z H. The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici[J]. Frontier in Plant Science, 2020, 11. DOI:10.3389/fpls.2020.00219
[112]JIN J H, ZHANG H X, TAN J Y, YAN M J, LI D W, KHAN A, GONG Z H. A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to Phytophthora capsici[J]. Frontiers in Plant Science, 2016(6): 1217. DOI:10.3382/fpis.2015.01217
[113]JIN J H, ZHANG H X, ALI M, WEI A M, LUO D X, GONG Z H. The CaAP2/ERF064 regulates dual functions in pepper: Plant cell death and resistance to Phytophthora capsici[J]. Genes, 2019, 10(7): 541. DOI:10.3390/genes10070541
[114]ZHANG H X, FENG X H, ALI M, JIN J H, WEI A M, KHATTAK A M, GONG Z H. Identification of pepper CaSBP08 gene in defense response against Phytophthora capsici infection[J]. Frontiers in Plant Science, 2020(11): 183. DOI:10.3389/fpls.2020.00183
[115]ZHANG H X, FENG X H, JIN J H, KHAN A, GUO W L, DU X H, GONG Z H. CaSBP11 participates in the defense response of pepper to Phytophthora capsici through regulating the expression of defense-related genes[J]. International Journal of Molecular Sciences, 2020, 21: 9065. DOI:10.3390/ijms21239065
[116]ZHANG H X, ALI M, FENG X H, JIN J H, HUANG L J, KHAN A, LYU J G, GAO S Y, LUO D X, GONG Z H. A novel transcription factor CaSBP12 gene negatively regulates the defense response against Phytophthora capsici in pepper (Capsicum annuum L.)[J]. International Journal of Molecular Sciences, 2019, 20(48). DOI:10.3390/ijms20010048
[117]ZHANG Y L, JIA Q L, LI D W, WANG J E, YIN Y X, GONG Z H. Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian[J]. International Journal of Molecular Sciences, 2013, 14(5): 8985-9004. DOI:10.3390/ijms14058985
[118]KHAN A, LI R J, SUN J T, MA F, ZHANG H X, JIN J H, ALI M UL HAQ S, WANG J E, GONG Z H. Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses[J]. Scientific Reports, 2018, 8(1): 5500. DOI:10.1038/s41598-018-23761-0
[119]MA X, GAI W X, QIAO Y M, ALI M, WEI A M, LUO D X, LI Q H, GONG Z H. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.)[J]. BMC Genomics, 2019, 20(1): 775. DOI:10.1186/s12864-019-6125-z
[120]CHENG W, JIANG Y, PENG J T, GUO J W, LIN M L, JIN C T, HUANG J F, TANG W Q, GUAN D Y, HE S L. The transcriptional reprograming and functional identification of WRKY family members in pepper's response to Phytophthora capsici infection[J]. BMC Plant Biology, 2020, 20: 1. DOI:10.1186/s12870-020-02464-7
[121]KANG W H, KIM S, LEE H A, CHOI D, YEOM S I. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper[J]. Scientific Reports, 2016, 6: 33332. DOI:10.1038/srep33332
[122]DU J S, HANG L F HAO H Q, YANG H T, ALI S, BADAWY R S E, XU X Y, TAN H Q, SU L H, LI H X, ZOU K X, LI Y, SUN B, LIN L J, LAI Y S. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers[J]. BMC Genomics, 2021, 372. DOI:10.1186/s12864-021-07705-z
[123]NABOR-ROMERO O, ZAVALETA-MEJIA E, OCHOA-MARTINEZ D L, SILVA-VALENZUELA M, VEGA-ARREGUIN J, SANCHEZFLORES A, ROJAS-MARTINEZ R I. Transcriptional alterations induced by Nacobbus aberrans in interaction with chili pepper CM-334 and Phytophthora capsici[J]. Physiological and Molecular Plant Pathology, 2023, 123. DOI:10.1016/j.pmpp.2022.101942
[124]ZHOU L Y, YANG S Z, CHEN C L, LI M, DU Q J, WANG J Q, YIN Y X, XIAO H J. CaCP15 gene negatively regulates salt and osmotic stress responses in Capsicum annuum L.[J]. Genes, 2023, 14(7): 1409. DOI:10.3390/genes14071409
[125]BABA V Y, POWELL A F, IVAMOTO-SUZUKI S T, PEREIRA L F P, VANZELA A L L, GIACOMIN R M, STRICKLER S R, MUELLER L A, RODRIGUES R, GONCALVES L S A. Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages[J]. Scientic Reports, 2020, 10(1): 12048. DOI:10.1038/s41598-020-68949-5
[126]LEE S C, HWANG I S, CHOI H W, HWANG B K. Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance[J]. Plant Physiology, 2008, 148(2): 1004-1020. DOI:10.1104/pp.108.123836
[127]SON S, KIM S, LEE K S, OH J, CHOI I, DO J W, YOON J B, HAN J, PARK S R. The Capsicum baccatum-specific truncated NLR protein CbCN enhances the innate immunity against Colletotrichum acutatum[J]. International Journal of Molecular Sciences, 2021, 22(14): 7672. DOI:10.3390/ijms22147672
[128]LI Y, MA X, XIAO L D, YU Y N, YAN H L, GONG Z H. CaWRKY50 acts as a negative regulator in response to Colletotrichum scovillei infection in pepper[J]. Plants, 2023, 12: 1962. DOI:10.3390/plants12101962
[129]HAN Y J, KANG H Y, KIM Y S, KIM J I. Functional divergence of two closely related carboxylesterases in pepper (Capsicum annuum L.)[J]. Plant Biotechnology Reports, 2023, 17(4): 499-507. DOI:10.1007/s11816-023-00849-2
[130]SRIDEEPTHI R, KRISHNA M S R, SUNEETHA P, KRISHNA R S, KARTHIKEYAN S. Genome-wide identification, characterization and expression analysis of non-RD receptor like kinase gene family under Colletotrichum truncatum stress conditions in hot pepper[J]. Genetica, 2020, 148: 283-296. DOI:10.1007/s10709-020-00104-4
[131]SON S, KIM S, LEE K S, OH J, CHOI I, DO J W, YOON J B, HAN J, CHOI D, PARK S R. Identification of the Capsicum baccatum NLR protein CbAR9 conferring disease resistance to anthracnose[J]. International Journal of Molecular Sciences, 2021, 22(22): 12612. DOI:10.3390/ijms222212612
[132]MISHRA R, MOHANTY J N, MAHANTY B, JOSHI R K. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.)[J]. Planta, 2021, 254: 5-17. DOI:10.1007/s00425-021-03660-x
[133]SHAFIQUE S, SHAFIQUE S, AHMAD A. Biochemical and molecular screening of varieties of chili plants that are resistant against Fusarium wilt infection[J]. European Journal of Microbiology and Immunology, 2018, 8: 12-19. DOI:10.1556/1886.2017.00031
[134]HONG J K, HWANG B K. Functional characterization of PR-1 protein, β-1, 3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum[J]. The Plant Pathology Journal, 2005, 21: 195-206. DOI:10.5423/PPJ.2005.21.3.195
[135]KIM D S, KIM N H, HWANG B K. The Capsicum annuum class Ⅳ chitinase ChitⅣ interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses[J]. Journal of Experimental Botany, 2015, 66: 1987-1999. DOI:10.1093/jxb/erv001
[136]KOEDA S, ONOUCHI M, MORI N, POHAN N S, NAGANO A J, KESUMAWATI E. A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum[J]. Theoretical and Applied Genetics, 2021, 134(9): 2947-2964. DOI:10.1007/s00122-021-03870-7
[137]OH S K, LEE S, YU S H, CHOI D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens[J]. Planta, 2005, 222(5): 876-887. DOI:10.1007/s00425-005-0030-1
[138]ZHAO L H, ZHANG L Z, HU Z H, LI B W, ZHENG X, QIU R S, CHEN Y, LI J, DONG J H, ZHANG Z K. Tomato zonate spot virus induced hypersensitive resistance via an auxin-related pathway in pepper[J]. Gene, 2022, 823: 146320. DOI:10.1016/j.gene.2022.146320
[139]LUO Y, QIN C, QIU H R, ZHANG X W, TANG X Q, LUO X R, LUO Y, YANG H, CHEN X C. Novel microRNAs associated with the immune response to cucumber mosaic virus in hot pepper (Capsicum annuum L.)[J]. Physiological and Molecular Plant Pathology, 2023, 124. DOI:10.1016/j.pmpp.2023.101963
[140]HAN K L, ZHENG H Y, YAN D K, ZHOU H J, JIA Z X, ZHAI Y S, WU J, LU Y W, WU G W, RAO S F, CHEN J P, PENG J J, QI R D, YAN F. Pepper mild mottle virus coat protein interacts with pepper chloroplast outer envelope membrane protein OMP24 to inhibit antiviral immunity in plants[J]. Horticulture Research, 2023, 10(5). DOI:10.1093/hr/uhad046
[141]WANG J, ZENG X, TIAN D S, YANG X B, WANG L L, YIN Z C. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice[J]. Molecular Plant Pathology, 2018, 19(8): 2025-2035. DOI:10.1111/mpp.12684
[142]SENDIN L N, ORCE I G, GOMEZ R L, ENRIQUE R, BOURNONVILLE C F G, NOGUERA A S, VOJNOV A A, MARANO M R, CASTAGNARO A P, FILIPPONE M P. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease[J]. Plant Molecular Biology, 2017, 93(6): 607-621. DOI:10.1007/s11103-017-0586-8
[143]SZABO Z, BALOGH M, DOMONKOS A, CSANYI M, KALO P, KISS G B. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species[J]. Theoretical and Applied Genetics, 2023, 136(3): 64. DOI:10.1007/s00122-023-04340-y
[144]RAFFEINER M, USTUN S, GUERRA T, SPINTI D, FITZNER M, SONNEWALD S, BALDERMANN S, BORNKE F. The Xanthomonas type-Ⅲ effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum)[J]. Plant Cell, 2022, 34(5): 1684-1708. DOI:10.1093/plcell/koac032
[145]DJAMI-TCHATCHOU A T, MATSAUNYANE L B T, KALU C M, NTUSHELO K. Gene expression and evidence of coregulation of the production of some metabolites of chilli pepper inoculated with Pectobacterium carotovorum ssp. Carotovorum[J]. Functional Plant Biology, 2019, 46(12): 1114-1122. DOI:10.1071/FP18244
[146]GER M J, LOUH G Y, LIN Y H, FENG T Y, HUANG H E. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis[J]. Molecular Plant Pathology, 2014, 15(9): 892-906. DOI:10.1111/mpp.12150
[147]CHEN Z L, GU H Y, LI Y, SU Y L, WU P, JIANG Z C, MING X T, TIAN J H, PAN N S, QU L J. Safety assessment for genetically modified sweet pepper and tomato[J]. Toxicology, 2003, 188: 297-307. DOI:10.1016/S0300-483X(03)00111-2
[148] [149] 徐秉良, 商鸿生, 王旭. 双抗转CP基因线辣椒对非克隆病毒的抗病性[J]. 兰州大学学报, 2002, 38(4): 95-100.
XU B L, SHANG H S, WANG X. Protection of transgenic chili pepper expressing cmv and TMV coat proteins gene against unrelated CMV strains and viruses[J]. Journal of Lanzhou University (Natural Sciences), 2002, 38(4): 95-100.
徐秉良, 商鸿生, 王旭. 转CP基因线辣椒对CMV和CMV-RNA的抗病性比较[J]. 植物病理学报, 2002, 32(2): 132-137. DOI:10.13926/j.cnki.apps.2002.02.006
XU B L, SHANG H S, WANG X. Comparison of resistance to CMV particle and to CMV-RNA in transgenic chili pepper expressing cmv and tmv coat proteins[J]. Acta Phytopathologica Sinica, 2002, 32(2): 132-137. DOI:10.13926/j.cnki.apps.2002.02.006
杨国顺. 转JERFs基因提高辣椒抗病性的研究[D]. 长沙: 湖南农业大学, 2003.
YANG G S. Studies on disease resistance of transgenic pepper with jasmonate and ethylene responsive element bingding factor genes[D]. Changsha: Hunan Agricultural University, 2003.
高玉尧, 陈长明, 陈国菊, 曹必好, 雷建军. Cry2Aa2和PamPAP双价表达载体的构建及其对辣椒的遗传转化[J]. 园艺学报, 2012, 39(7): 1285-1292. DOI:10.16420/j.issn.0513-353x.2012.07.013
GAO Y Y, CHEN C M, CHEN G J, CAO B H, LEI J J. Construction of binary expression vector containing Cry2Aa2 and PamPAP and its transfer to pepper[J]. Acta Horticulturae Sinica, 2012, 39(7): 1285-1292. DOI:10.16420/j.issn.0513-353x.2012.07.013
黄真池. 诱导超敏反应增强辣椒广谱抗病性的转基因研究[D]. 长沙: 湖南农业大学, 2008.
HUANG C. Transgene studies on enhancing pepper broad-spectrum disease resistance by inducing hypersensitive response[D]. Changsha: Hunan Agricultural University, 2008.
BAGGA S, LUCERO Y, APODACA K, RAJAPAKSE W, LUJAN P, ORTEGA J L, SENGUPTA-GOPALAN C. Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici[J]. PLOS One, 2019, 14(10). DOI:10.1371/journal.pone.0223213
[155] 周钟信, 粟密兰, 陈德芬, 宋兰英, 杨静惠. 辣椒诱导再生及黄瓜花叶病毒外壳基因转化研究初报[J]. 华北农学报, 1991, 6(14): 69-72.
ZHOU Z X, LI M L, CHEN D F, SONG L Y, YANG J H. Preliminary study on regeneration in duction and gene transformation of CMVcp in pepper[J]. Acta Agriculaturae Boreali Sinica, 1991, 6(14): 69-72.
张宗江, 周钟信, 刘艳军, 江倩云, 尤明, 刘国民, 米景九. 黄瓜花叶病毒壳蛋白基因转化辣椒及其在转基因株后代的表达[J]. 华北农学报, 1994, 9(3): 67-71.
ZHANG Z J, LIU Y J, JIANG Q Y, YOU M, LIU G M, MI J J. CMVcp gene transforamtion and expression in pepper[J]. Acta Agriculaturae Boreali Sinica, 1994, 9(3): 67-71.
李华平, 胡晋生, 王敏, 范怀忠. 黄瓜花叶病毒衣壳蛋白基因转化辣椒研究[J]. 病毒学报, 2000, 16(3): 276-278. DOI:10.13242/j.cnki.bingduxuebao.001258
LI H P, HU J S, WANG M, FAN H Z. Studies on transgenic pepper plants transferred with the coat protein gene of cucumber mosaic virus[J]. Chinese Journal of Virology, 2000, 16(3): 276-278. DOI:10.13242/j.cnki.bingduxuebao.001258
XU B L, SHENG H S, WANG X. Comparison of resistance to CMV particle and to CMV-RNA in transgenic chili pepper expressing CMV and TMV coat proteins[J]. Acta Phytopatholgoica Sinica, 2002, 32(2): 132-137.
[159] 毕玉平, 单蕾, 王兴军, 徐平丽, 周钟信, 米景九. 双抗TMV+CMV辣椒转基因工程植株的再生及抗病毒鉴定[J]. 华北农学报, 1999, 14(3): 103-108.
BI Y P, SHAN L, WANG X J, XU L P, ZHOU Z X, MI J J. Regeneration of transgenic pepper plants resistant to TMV and CMV and its resistance assay[J]. Acta Agriculturae Boreali Sinica, 1999, 14(3): 103-108.
郭亚华, 徐香玲, 邓立平, 张军民, 张欣. Ri质粒介导TMV和CMV外壳蛋白基因转化甜椒研究[J]. 北方园艺, 2000(4): 17-18.
GUO Y H, XI X L, DENG L P, ZHANG J M, ZHANG X. Study on transformation of TMV and CMV coat protein genes mediated by Ri plasmid in sweet pepper[J]. Northern Horticulture, 2000(4): 17-18.
陈国菊, 石丽, 雷建军, 曹必好, 曾国平. 中国商陆抗病毒蛋白基因的克隆及其转化辣椒[J]. 园艺学报, 2008, 35(6): 827-832. DOI:10.16420/j.issn.0513-353x.2008.06.013
CHEN G J, SHI L, LEI J J, CAO B H, ZENG G P. Cloning of pokeweed antiviral protein gene from Phytolacca acinosa and its transfer to pepper (Capsicum annuum L.)[J]. Acta Horticulturae Sinica, 2008, 35(6): 827-832. DOI:10.16420/j.issn.0513-353x.2008.06.013
MURPHY J F, KYLE M M. Isolation and viral-infection of Capsicum leaf protoplasts[J]. Plant Cell Reports, 1994, 13(7): 397-400. DOI:10.1007/BF00234146
[163] 董春枝, 姜春哓, 冯兰香. 甜(辣) 椒导入CMV卫星RNA互补DNA的植株再生[J]. 园艺学报, 1992, 19(2): 184-186.
DONG C Z, JIANG C X, FENG L X. Transgenic pepper plants (Capsicum annuum L.) containing CMV Sat-RNA cDNA[J]. Acta Horticulturae Sinica, 1992, 19(2): 184-186.
KIM Y H. Improvementin plant disease resistance and anti-fungal protein gene[J]. Proceedings Vienna Austria, 1995, 7: 145-155.
[165] [166] 李乃坚, 余小林, 李颖, 黄自然, 张银东. 双价抗菌肽基因转化辣椒[J]. 热带作物学报, 2000, 21(4): 45-51.
LI N J, YU X L, LI Y, HUANG Z R, ZHANG Y D. Transference of double gene cecropin B and D into pepper (Capsicum annuum L.)[J]. Chinese Journal of Tropical Crops, 2000, 21(4): 45-51.
李颖, 余小林, 李乃坚, 王恒明, 黄自然. 转抗菌肽基因辣椒株系的青枯病抗性鉴定及系统选育[J]. 分子植物育种, 2005, 3(2): 217-221.
LI Y, YU X L, LI N J, WANG H M, HUANG Z R. Evaluation of resistance to bacterial wilt and systemic breeding in cecropin-GM Capsicum[J]. Molecular Plant Breeding, 2005, 3(2): 217-221.
KUROIWA K, DANILO B, PERROT L, THENAULT C, VEILLET F, DELACOTE F, DUCHATEAU P, NOGUE, MAZIER M, GALLOIS J L. An iterative gene-editing strategy broadens eIF4E1 genetic diversity in Solanum lycopersicum and generates resistance to multiple potyvirus isolates[J]. Plant Biotechnology Journal, 2023. DOI:10.1111/pbi.14003
相关知识
Research progress on citrus canker disease and its microbial control
花生抗病基因的研究进展
Research Progress on Identification and Evaluation Methods, and Mechanism of Drought Resistance in Plants
Research Progress on Response of Hemerocallis to Abiotic Stresses
Progress of Molecular Floral Development Research in Rice水稻花发育的分子生物学研究进展 Progress of Molecular Floral Development Research in Rice
Enlightenment from microbiome research towards biocontrol of plant disease
The role of jasmonic acid in stress resistance of plants: a review
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Research Progress of the Molecular Mechanisms of Light
植物抗病基因工程研究进展精品论文
网址: Research Progress on Molecular Breeding of Resistance to Disease in Pepper https://www.huajiangbk.com/newsview362355.html
上一篇: 男朋友毕业典礼送什么花? |
下一篇: 【中国科学报】植物体内“点烽火” |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039