首页 分享 基因调控植物花器官发育的研究进展

基因调控植物花器官发育的研究进展

来源:花匠小妙招 时间:2024-11-04 22:33

参考文献

[1]孟雨婷,黄晓晨,侯元同,邱念伟. 花的形态与花发育的ABCDE模型. 生物学杂志, 2017, 34(6): 105-107,115Meng Y T, Huang X C, Hou Y T, Qiu N W. The floral morphology and the ABCDE model of floral organ development. Journal of Biology, 2017, 34(6): 105-107,115
[2] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37
[3] Meyerowitz E M. Plants and the logic of development. Genetics, 1997, 145(1): 5-9
[4]彭洁,刘引,武荣花,冯慧,镡媛,杨一鹏,张华. 重瓣花及其分子机制的研究进展. 中国农学通报, 2023, 39(19): 65-72Peng J, Liu Y, Wu R H, Feng H, Chan Y, Yang Y P, Zhang H. Research progress of double flower and its molecular mechanism. Chinese Agricultural Science Bulletin, 2023, 39(19): 65-72
[5] Colombo L, Franken J, Koetje E, van Went J, Dons H J, Angenent G C, van Tunen A J. The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell, 1995, 7(11): 1859-1868
[6] Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H. A short history of MADS-box genes in plants. Plant Molecular Biology, 2000, 42(1): 115-149
[7] Thei?en G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development, 2016, 143(18): 3259-3271
[8]何荆洲,范继征,曾艳华,李秀玲,卢家仕,卜朝阳. 蝴蝶兰“大辣椒”APETALA1基因的克隆及表达. 北方园艺,2021, 474(3): 83-90He J Z, Fan J Z, Zeng Y H, Li X L, Lu J S, Bu Z Y. Molecular cloningand expression of APETALA1 gene from phalaenopsis ‘Big Chili’. Northern Horticulture, 2021, 474(3): 83-90
[9] Bendahmane M, Dubois A, Raymond O, Bris M L. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany, 2013, 64(4): 847-857
[10] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022-2025
[11] Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in Plant Science, 2018, 9: 481
[12] Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273-277
[13]甄妮. 月季A类花器官发育基因的克隆与功能分析. 北京:北京林业大学, 2017Zhen N. Isolation and function analysis of class a genes related to flower development in roses. Beijing: Beijing Forestry University, 2017
[14]孙迎坤. 山茶花MADS-box家族A类和C类基因克隆及功能分析. 北京: 中国林业科学研究院,2013Sun Y K. Isolation and function analysis of class A and C genes of MADS-box family from Camellia japonica. Beijing: Chinese Academy of Forestry,2013
[15]安利忻,刘荣维,陈章良,李毅. 花分生组织决定基因AP1转化矮牵牛的研究. 植物学报, 2001(1): 63-66An L X, Liu R W, Chen Z L, Li Y. Studies on petunia hybrida transformed with flower-meristem-identity gene AP1. Acta Botanica Sinica, 2001(1): 63-66
[16] Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology, 1999, 120: 969-978
[17] Hsu H F, Huang C H, Chou L H, Yang C H. Ectopic expression of an orchid(Oncidium Gower Ramsey)AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiology, 2003, 44: 783-794
[18] Chi Y, Huang F, Liu H, Yang S, Yu D. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology, 2011, 168(18): 2251-2259
[19]王一非. 红花MADS-box基因家族生物信息学分析及CtMADS24调控功能研究. 长春:吉林农业大学, 2022Wang Y F. Bioinformatics analysis and CtMADS24 regulation function of MADS-box gene family in Carthamus tinctorius L. Changchun: Jilin Agricultural University, 2022
[20] Chen M K, Lin I C, Yang C H. Functional analysis of three lily(Lilium longiflorum)APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiology, 2008, 49: 704-717
[21] Huang H J,Chen S,Li H Y,Jiang J. Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis. Plant Cell Reports, 2015, 34(9): 1663-1680
[22]王朔,黄海娇,杨光,姜静,刘桂丰.转基因白桦杂种T1代的生长发育及AP1基因的遗传分析. 北京林业大学学报,2016,38(9):1-7Wang S, Huang H J, Yang G, Jiang J, Liu G F. Growth and developmental analysis of T1 generation from BpAP1 transgenic birch. Journal of Beijing Forestry University, 2016,38(9):1-7
[23]肖晨星. 梅花PmAG基因功能验证和重瓣候选基因的筛选. 武汉:华中农业大学, 2021Xiao C X. Functional analysis of Prunus mume PmAG and selection of candidated genes for double flower.Wuhan: Huazhong Agricultural University, 2021
[24]袁友泉,李超超,许馨月,张志宏,刘月学.草莓FaAP1基因植物表达载体构建及在拟南芥中的超表达. 华中农业大学学报,2015,34(5):13-18Yuan Y Q, Li C C, Xu X Y, Zhang Z H, Liu Y X. Constructing FaAP1 expression vector of strawberry and its ectopic-expression in Arabidopsis. Journal of Huazhong Agricultural University, 2015,34(5):13-18
[25] Gao M, Jiang W, Lin Z, Lin Q, Ye Q, Wang W, Xie Q, He X, Luo C, Chen Q. SMRT and illumina RNA-Seq identifies potential candidate genes related to the double flower phenotype and unveils SsAP2 as a key regulator of the double-flower trait in Sagittaria sagittifolia. International Journal of Molecular Sciences, 2022, 23(4): 2240
[26] Maes T, Van de Steene N, Zethof J, Karimi M, D′Hauw M, Mares G, Van Montagu M, Gerats T. Petunia Ap2-like genes and their role in flower and seed development. Plant Cell, 2001, 13(2): 229-244
[27]董姬秀. 荷花APETALA3、LEAFY基因的克隆与表达分析.郑州: 河南农业大学,2014Dong J X. Cloning and expression analysis of APETALA3 and LEAFY gene in lotus. Zhengzhou: Henan Agricultural University, 2014
[28]蒋素华,黄萍,王默霏,梁芳,许申平,崔波.萼脊兰MADS-box基因的克隆及表达载体构建.华北农学报,2017,32(3):65-69Jiang S H, Huang P, Wang M F, Liang F, Xu S P, Cui B. Cloning and construction of expression vector of MADS-box gene from Sedirea japonica. Acta Agriculturae Boreali-Sinica, 2017,32(3): 65-69
[29] Irish V F. Evolution of petal identity. Journal of Experimental Botany, 2009, 60(9): 2517-2527
[30]刘轶,郑唐春,代丽娟,刘彩霞,王庆娜,曲冠证. 拟南芥AtPAP1基因植物表达载体构建及在烟草中遗传转化分析. 植物生理学报, 2017, 53(7): 1199-1207Liu Y, Zheng T C, Dai L J, Liu C X, Wang Q N, Qu G Z. Construction of plant expression vector and genetic transformation analysis of Arabidopsis thaliana AtPAP1 gene in Nicotiana tabacum. Plant Physiology Journal, 2017, 53(7): 1199-1207
[31] Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. Plant Science, 2015, 231: 40-51
[32] Liu W, Shen X, Liang H, Wang Y, He Z, Zhang D, Chen F. Isolation and functional analysis of PISTILLATA homolog from Magnolia wufengensis. Frontiers in Plant Science, 2018, 9: 1743
[33] Fei Y, Liu Z X. Isolation and characterization of the PISTILLATA ortholog gene from Cymbidium faberi Rolfe. Agronomy, 2019, 9(8): 425
[34] Chen M K, Hsieh W P, Yang C H. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. Journal of Experimental Botany, 2012, 63(2): 941-961
[35] Tsai W C, Lee P F, Chen H I, Hsiao Y Y, Wei W J, Pan Z J, Chuang M H, Kuoh C S, Chen W H, Chen H H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiology, 2005, 46(7): 1125-1139
[36] Yao J L, Xu J, Tomes S, Cui W, Luo Z, Deng C, Ireland H S, Schaffer R J, Gleave A P. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple . Plant Direct, 2018, 2(4): 15-19
[37] Fang Z W, Qi R, Li X F, Liu Z X. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene, 2014, 550(2): 200-206
[38] Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore K S, Yenush L, Beltrán J P, Ca?as L A. Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant Journal, 2013, 73(4): 663-675
[39] Zhang Y, Wang X, Zhang W, Yu F, Tian J, Li D, Guo A. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes. PLoS ONE, 2011, 6(6): e20930
[40] Jing D, Chen W, Shi M, Wang D, Xia Y, He Q, Dang J, Guo Q, Liang G. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Biochemical and Biophysical Research Communications, 2020, 523(1): 33-38
[41] Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346(6279): 35-39
[42] Sieburth L E, Running M P, Meyerowitz E M. Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell, 1995, 7(8): 1249-1258
[43] Sage-Ono K, Ozeki Y, Hiyama S. Induction of double flowers in Pharbitis nil using a class-C MADS-box transcription factor with Chimeric REpressor gene-Silencing Technology. Plant Biotechnology (Tokyo, Japan), 2011, 28(2): 153-165
[44] Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biology, 2015, 15: 237
[45]田亚然,范天刚,张钢,李永红. 低温引起月季花朵过度重瓣化关键基因的表达及分析. 热带作物学报, 2016, 37(6): 1147-1154Tian Y R, Fan T G, Zhang G, Li Y H. Expression and analysis of key genes of excessive double flowers in rose caused by low temperature. Chinese Journal of Tropical Crops, 2016, 37(6): 1147-1154
[46] Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Scientific Reports, 2013, 3: 2641
[47] Bowman J L. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences, 1997, 22(4): 515-527
[48]徐雷,宋伟杰,王利琳. 豌豆 AGAMOUS 同源基因功能的初步研究. 科学通报, 2009, 54(20): 3207-3212Xu L, Song W J, Wang L L. Preliminary study on the functions of AGAMOUS homologous genes in Pisum sativum. Chinese Science Bulletin, 2009, 54(20): 3207-3212
[49] Sasaki K, Yoshioka S, Aida R, Ohtsubo N. Production of petaloid phenotype in the reproductive organs of compound flowerheads by the co-suppression of class-C genes in hexaploid Chrysanthemum morifolium. Planta, 2021, 253(5): 100
[50] Rodríguez-Cazorla E, Ortu?o-Miquel S, Candela H, Bailey-Steinitz L J, Yanofsky M F, Martínez-Laborda A, Ripoll J J, Vera A. Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018,14(1):e1007182
[51]刘志雄,于先泥. 日本晚樱同源异型基因PrseAP3的克隆及其在单瓣与重瓣花中的表达分析. 华中农业大学学报, 2012,31(5): 578-583Liu Z X, Yu X N. Cloning and expressing analysis of a floral homeotic gene PrseAP3 from Prunus lannesiana. Journal of Huazhong Agricultural University, 2012,31(5): 578-583
[52]袁秀云,许申平,张燕,梁芳,蒋素华,牛苏燕,崔波. 蝴蝶兰花发育基因PhSTK的克隆及在突变体中的表达分析. 植物生理学报,2022,58(8): 1565-1574Yuan X Y, Xu S P, Zhang Y, Liang F, Jiang S H, Niu S Y, Cui B. Cloning of the floral organ identity gene PhSTK from Phalaenopsis and its expression analysis in floral organ mutants. Plant Physiology Journal, 2022,58(8): 1565-1574
[53] Dirks-Mulder A, But?t R, van Schaik P, Wijnands J W, van den Berg R, Krol L, Doebar S, van Kooperen K, de Boer H, Kramer E M, Smets E F, Vos R A, Vrijdaghs A, Gravendeel B. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evolutionary Biology, 2017, 17(1):89
[54] Chen Y Y, Lee P F, Hsiao Y Y, Wu W L, Pan Z J, Lee Y I, Liu K W, Chen L J, Liu Z J, Tsai W C. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol, 2012, 53(6): 1053-1067
[55]夏胜应,刘志雄.CygoSTK基因在普通春兰与奇花品种‘天彭牡丹’中的表达比较. 广西植物, 2020,40(4):518-525Xia S Y, Liu Z X. Expression comparison of CygoSTK gene in Cymbidium goeringii and abnormal flower variety ‘Tian Peng Mu Dan’. Guihaia, 2020,40(4):518-525
[56]陶显良. 玉米ZmSTK2基因启动子花粉特异性元件分析及基因对花粉脂质代谢的影响. 沈阳: 沈阳农业大学,2023Tao X L. Analysis of pollen specific elements of maize ZmSTK2 gene promoter and its effect on lipid metabolism in late pollen development. Shenyang: Shenyang Agricultural University,2023
[57] Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 2004, 14(21): 1935-1940
[58]崔荣峰,孟征. 花同源异型MADS-box基因在被子植物中的功能保守性和多样性. 植物学通报, 2007, 24(1): 31-41Cui R F, Meng Z. Functional conservation and diversity of floral homeotic MADS-box genes in angiosperms. Chinese Bulletin of Botany, 2007, 24(1): 31-41
[59] Zhao X Y, Cheng Z J, Zhang X S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat,causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223(4): 698-707
[60] Kaufmann K, Mui?o J M, Jauregui R, Airoldi C A, Smaczniak C, Krajewski P, Angenent G C, Weigel D. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLOS Biology, 2009, 7(4): e1000090
[61] Wang J Y, Jiu S T, Xu Y, Ali Sabir I, Wang L, Ma C, Xu W P, Wang S P, Zhang C X. SVP-like gene PavSVP potentially suppressing flowering with PavSEP,PavAP1, and PavJONITLESS in sweet cherries ( Prunus avium L.). Plant Physiology and Biochemistry, 2021, 159: 277-284
[62] Cheng Z H, Zhuo S B, Liu X F, Che G, Wang Z Y, Gu R, Shen J J, Song W Y, Zhou Z Y, Han D G, Zhang X L. The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber. Frontiers in Plant Science, 2019, 10: 1781
[63] Pu Z Q, Ma Y Y, Lu M X, Ma Y Q, Xu Z Q. Cloning of a SEPALLATA4-like gene(IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 154: 229-237
[64] Ampomah-Dwamena C, Morris B A, Sutherland P, Veit B, Yao J L. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology, 2002, 130: 605-617
[65] Zhu W W, Yang L, Wu D, Meng Q C, Deng X, Huang G Q, Zhang J, Chen X F, Ferrándiz C, Liang W Q, Dreni L, Zhang D B. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. The New Phytologist, 2022, 233(4): 1682-1700
[66] Zhou Y Z, Xu Z D, Yong X, Ahmad S, Yang W R, Cheng T R, Wang J, Zhang Q X. SEP-class genes in Prunus mume and their likely role in floral organ development. BMC Plant Biology, 2017, 17(1):10
[67] Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-box gene subfamilies provide new insights into their evolution. Front Plant Science, 2016, 7: 598
[68] Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiology, 2019, 39(5): 861-876
[69] Yu X, Chen G, Guo X, Lu Y, Zhang J, Hu J, Tian S, Hu Z. Silencing SlAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Reports, 2017, 36(6): 959-969
[70] Hsu H F, Chen W H, Shen Y H, Hsu W H, Mao W T, Yang C H. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nature Communications, 2021, 12(1): 902
[71] Rijpkema A S, Zethof J, Gerats T, Vandenbussche M. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 2009, 60(1): 1-9
[72] Li B J, Zheng B Q, Wang J Y, Tsai W C, Lu H C, Zou L H, Wan X, Zhang D Y, Qiao H J, Liu Z J, Wang Y. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Communications Biology, 2020, 3(1): 89
[73] Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli G B, Pezzotti M, Ferrario S, Angenent G C, Gerats T. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. The Plant Cell , 2003, 15(11): 2680-2693
[74] Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92(1): 93-103
[75] Kim J J, Lee J H, Kim W, Jung H S, Huijser P, Ahn J H. The micro RNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology, 2012, 159(1): 461-478
[76] Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 2009, 136: 955-964
[77] Wang Y, Hu Z, Yang Y, Chen X, Chen G. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. International Journal of Molecular Sciences, 2009, 10(1): 116-132
[78] Zhang X, Dou L, Pang C, Song M, Wei H, Fan S, Wang C, Yu S. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Molecular Genetics and Genomics, 2015, 290(1): 115-126
[79] Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology, 2009, 50(12): 2133-2145
[80]陈晓博. 参与番茄花柄离区发育的转录因子 SPL3 的基因功能研究. 北京:中国农业科学院, 2010Chen X B. Functional study of a transcription factor SQUAMOSA promoter binding protein like 3 in tomato flower abscission zone development. Beijing: Chinese Academy of Agricultural Sciences , 2010
[81] Chuang C F, Running M, Williams R W, Meyerowitz E M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes & Development, 1999, 13(3): 334-344
[82] Hepworth S R, Zhang Y, McKim S, Li X, Haughn G W. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell, 2005, 17(5): 1434-1448
[83] Murmu J, Bush M J, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3): 1492-1504
[84] Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal, 2005, 44(1): 100-113
[85] Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291
[86] Minh-Thu P T, Kim J S, Chae S, Jun K M, Lee G S, Kim D E, Cheong J J, Song S I, Nahm B H, Kim Y K. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Molecules and Cells, 2018, 41(8): 781-798
[87] Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. Plant Science, 2020, 297: 110523
[88] Li Z, Liu D, Xia Y, Li Z, Jing D, Du J, Niu N, Ma S, Wang J, Song Y, Yang Z, Zhang G. Identification of the WUSCHEL-related homeobox(WOX)gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat. International Journal of Molecular Sciences, 2020, 21(5): 1581

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

相关知识

兰科植物花发育的基因调控研究进展
植物花发育的研究进展
月季RhSEP3基因及其在调控植物花器官发育中的应用
植物花发育调控基因的研究与应用.pdf
控制花器官发育的基因学说比较
兰科植物花发育相关基因的研究进展
水稻花发育的分子生物学研究进展
植物开花基因的研究进展.
兰花花发育和颜色基因调控研究进展,Gene
植物花发育的分子机理研究进展

网址: 基因调控植物花器官发育的研究进展 https://www.huajiangbk.com/newsview362158.html

所属分类:花卉
上一篇: 广谱高抗根肿病基因“卫青”的克隆
下一篇: 我校作物抗病遗传与病原致病机制研

推荐分享