基于深度学习的月季多叶片病虫害检测研究
摘要: 月季病虫害严重影响月季产量和观赏性,将目标检测算法应用到月季病虫害检测中有利于提高月季病虫害检测效率,对实现月季智能化种植培育起到重要支撑作用。针对实际种植场景中复杂背景对病虫害检测的影响,以及病虫害形状大小特点,提出两阶段月季病虫害检测方法TSDDP,首先添加调优后的Inception模块改进YOLOv3模型特征提取与融合能力对自然环境下拍摄的月季多叶片图像进行叶片检测,去除复杂背景中存在的影响因素,然后通过K-means聚类Anchor box优化Faster R-CNN以满足月季病虫害目标检测需求,基于叶片检测结果对叶片病虫害进行检测。通过比较YOLOv3、Faster R-CNN和TSDDP对自然环境下的月季多叶片病虫害检测效果,试验结果表明TSDDP的检测精度和定位准确度均高于其他算法,最终病虫害平均检测精度达到82.26%,有效减少复杂背景造成误检的同时改善小尺度病虫害的检测和定位效果。
关键词: 病虫害检测, YOLOv3, 特征融合, Faster R-CNN
Abstract: Diseases and insect pests of roses seriously affect the yield and ornamental value. The application of a target detection algorithm in the detection of rose diseases and insect pests is conducive to improve the detection efficiency and plays an important role in the realization of the intelligent cultivation of roses. In view of the influence of complex background on the detection of diseases and insect pests in the actual planting scene, a twostage rose pest detection method TSDDP was proposed in this paper. Firstly, the optimized Inception module was added to improve the ability of feature extraction and fusion of YOLOv3 model. The leaf detection of multileaf images of roses in the natural environment was carried out to remove the shadow in the complex background. Then, Faster RCNN was optimized by Kmeans clustering Anchor box to meet the needs of target detection of rose diseases and insect pests. By comparing the detection effects of YOLOv3, Faster RCNN, and TSDDP in the natural environment, the results showed that the detection accuracy and positioning accuracy of TSDDP were higher than other algorithms, and the final average detection accuracy of pests and diseases reached 82.26%. This can effectively reduce the false detection caused by complex backgrounds and improve the detection and location effect of smallscale diseases and insect pests.
Key words: diseases and pests detection, YOLOv3, feature fusion, Faster RCNN
中图分类号:
S436.8
TP391.41
TP18
相关知识
基于深度学习的月季多叶片病虫害检测研究
基于深度学习特征的植物病虫害检测
基于深度学习的植物病虫害智能检测系统研究
基于深度学习的病虫害智能化识别系统
深度学习在植物病害目标检测的科研进展
基于深度学习的植物病虫害识别方法与流程
基于深度学习的农作物病害图像识别技术进展
基于深度学习的yolov7植物病虫害识别及防治系统
基于特征检测的蔬菜叶片病虫害识别模型研究
基于svm机器学习的植物病虫害检测方法
网址: 基于深度学习的月季多叶片病虫害检测研究 https://www.huajiangbk.com/newsview292519.html
上一篇: 丝瓜病虫害识别与防治 丝瓜的病虫 |
下一篇: 养花的常见病虫防治方法简单介绍 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039