Nature Plants :通过抑制衰老调节因子EPHEMERAL1延长日本牵牛花寿命的化学方法
AbstractPetal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1.
。NAM/ATAF1,2/CUC2转录因子EPHEMERAL1(EPH1)已被确定为日本牵牛花(Ipomoea nil)花瓣衰老的关键调节因子。在这里,我们使用了一种新的化学方法,通过抑制EPH1的DNA结合活性来延缓日本牵牛花的花瓣衰老。
A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1–DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes.
无细胞高通量筛选系统和随后的生物测定发现了两种基于四氟邻苯二甲酰亚胺的化合物,Everlastin1和Everlastin2,它们抑制了EPH1-DNA的相互作用并延缓了花瓣的衰老。。RNA测序分析表明,化学处理强烈抑制了程序性细胞死亡和自噬相关基因的表达。
These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence..
这些结果表明,靶向转录因子的化学方法可以调节花瓣衰老。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间更多订阅本期刊每年收到12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元更多了解更多购买本文在SpringerLink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Establishment of a high-throughput assay to detect the EPH1–DNA interaction and screening of EPH1 inhibitors.Fig. 2: Screening of analogues of the compounds obtained from the first screening.Fig. 3: Effects of Everlastin1 and Everlastin2 on the DNA interaction and dimerization of EPH1.Fig. 4: ChIP and transcriptome analysis of Everlastin1- and Everlastin2-treated petals.Fig.
图1:建立高通量测定法以检测EPH1-DNA相互作用和筛选EPH1抑制剂。图2:从第一次筛选获得的化合物类似物的筛选。图3:Everlastin1和Everlastin2对EPH1的DNA相互作用和二聚化的影响。图4:Everlastin1和Everlastin2处理的花瓣的ChIP和转录组分析。图。
5: Effects of Everlastin1 and Everlastin2 on petal senescence..
5: Everlastin1和Everlastin2对花瓣衰老的影响。。
Data availability
数据可用性
All data generated or analysed in this study are included in this published article and its supplementary information files. Raw RNA-seq data are available at DDBJ Sequence Read Archive (https://www.ddbj.nig.ac.jp/dra/index-e.html, with accession numbers DRR437987–DRR437998, DRR545318–DRR545320). The I.
本研究中生成或分析的所有数据均包含在本文及其补充信息文件中。原始RNA-seq数据可在DDBJ序列读取存档中获得(https://www.ddbj.nig.ac.jp/dra/index-e.html,登录号为DRR437987–DRR437998,DRR545318–DRR545320)。I。
nil genome (RefSeq assembly accession: GCF_001879475.1) was used for the sequencing analysis. Source data are provided with this paper..
nil基因组(RefSeq组装登录号:GCF001879475.1)用于测序分析。本文提供了源数据。。
ReferencesPrimack, R. B. Longevity of individual flowers. Annu. Rev. Ecol. Syst. 16, 15–37 (1985).Article
参考文献Primack,R.B。单个花的寿命。年。修订版Ecol。系统。16,15-37(1985)。文章
Google Scholar
谷歌学者
Ashman, T. L. & Schoen, D. J. How long should flowers live. Nature 371, 788–791 (1994).Article
Ashman,T.L。和Schoen,D.J。花应该活多久。自然371788-791(1994)。文章
CAS
中科院
Google Scholar
谷歌学者
van Doorn, W. G. & Woltering, E. J. Physiology and molecular biology of petal senescence. J. Exp. Bot. 59, 453–480 (2008).Article
van Doorn,W.G。和Woltering,E.J。花瓣衰老的生理学和分子生物学。J、 附录59453-480(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rogers, H. J. From models to ornamentals: how is flower senescence regulated? Plant Mol. Biol. 82, 563–574 (2013).Article
罗杰斯(Rogers,H.J.)从模型到观赏植物:如何调节花的衰老?植物分子生物学。82563-574(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shibuya, K., Niki, T. & Ichimura, K. Pollination induces autophagy in petunia petals via ethylene. J. Exp. Bot. 64, 1111–1120 (2013).Article
Shibuya,K.,Niki,T。&Ichimura,K。授粉通过乙烯诱导矮牵牛花瓣中的自噬。J、 实验Bot 641111-1120(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jones, M. L. Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AoB Plants 5, plt023 (2013).Article
Jones,M.L。乙烯敏感和不敏感花的花冠衰老过程中矿物质营养的再活化。AoB工厂5,plt023(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shibuya, K., Yamada, T. & Ichimura, K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J. Exp. Bot. 67, 5909–5918 (2016).Article
Shibuya,K.,Yamada,T。&Ichimura,K。衰老花瓣细胞的形态变化和花瓣衰老的调节机制。J、 附录675909-5918(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamada, T., Takatsu, Y., Kasumi, M., Ichimura, K. & van Doorn, W. G. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil). Planta 224, 1279–1290 (2006).Article
Yamada,T.,Takatsu,Y.,Kasumi,M.,Ichimura,K。&van Doorn,W.G。牵牛花(Ipomoea nil)花瓣程序性细胞死亡过程中的核碎裂和DNA降解。植物2241279-1290(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Matile, P. & Winkenbach, F. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpurea). J. Exp. Bot. 22, 759–771 (1971).Article
Matile,P。&Winkenbach,F。溶酶体和溶酶体酶在牵牛花(Ipomoea purpurea)衰老花冠中的功能。J、 附录22759-771(1971)。文章
CAS
中科院
Google Scholar
谷歌学者
Rogers, H. J. Programmed cell death in floral organs: how and why do flowers die? Ann. Bot. 97, 309–315 (2006).Article
罗杰斯,H.J。花器官中的程序性细胞死亡:花是如何以及为什么死亡的?《安·博特》97309-315(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shibuya, K., Shimizu, K., Niki, T. & Ichimura, K. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. Plant J. 79, 1044–1051 (2014).Article
Shibuya,K.,Shimizu,K.,Niki,T。&Ichimura,K。鉴定控制日本牵牛花花瓣衰老的NAC转录因子EPHEMERAL1。植物J.791044–1051(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Olsen, A. N., Ernst, H. A., Lo Leggio, L. & Skriver, K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87 (2005).Article
Olsen,A.N.,Ernst,H.A.,Lo Leggio,L。&Skriver,K。NAC转录因子:结构不同,功能多样。趋势植物科学。10,79-87(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mathew, I. E. & Agarwal, P. May the fittest protein evolve: favoring the plant-specific origin and expansion of NAC transcription factors. Bioessays 40, e1800018 (2018).Article
Mathew,I。E。和Agarwal,P。可能是最合适的蛋白质进化:有利于植物特异性起源和NAC转录因子的扩增。生物测定40,e1800018(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ernst, H. A., Olsen, A. N., Larsen, S. & Lo Leggio, L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297–303 (2004).Article
Ernst,H.A.,Olsen,A.N.,Larsen,S。&Lo Leggio,L。ANAC保守结构域的结构,ANAC是NAC转录因子家族的成员。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Olsen, A. N., Ernst, H. A., Lo Leggio, L. & Skriver, K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169, 785–797 (2005).Article
Olsen,A.N.,Ernst,H.A.,Lo Leggio,L。&Skriver,K。NAC转录因子的DNA结合特异性和分子功能。植物科学。169785-797(2005)。文章
CAS
中科院
Google Scholar
谷歌学者
Kjaersgaard, T. et al. Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J. Biol. Chem. 286, 35418–35429 (2011).Article
Kjaersgaard,T。等人。衰老相关的大麦NAC(NAM,ATAF1,2,CUC)转录因子通过无序的调节域与自由基诱导的细胞死亡1相互作用。J、 生物。化学。28635418–35429(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jensen, M. K. et al. The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochem. J. 426, 183–196 (2010).Article
Jensen,M.K.等人,《拟南芥NAC转录因子家族:ANAC019应激信号的结构-功能关系和决定因素》。生物化学。J、 426183-196(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021).Article
Henley,M.J.&Koehler,A.N.在用小分子靶向“不可药用”转录因子方面取得了进展。《药物目录》修订版。20669-688(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).Article
Lambert,S.A.等人,《人类转录因子》。细胞172650-665(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331–340 (2010).Article
Koehler,A.N。一项复杂的任务?用小分子直接调节转录因子。货币。奥平。化学。生物学14331-340(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nomura, S. et al. Pyrrothiogatain acts as an inhibitor of GATA family proteins and inhibits Th2 cell differentiation in vitro. Sci. Rep. 9, 17335 (2019).Article
野村(Nomura),S。等人。Pyrrothiogatain可作为GATA家族蛋白的抑制剂,并在体外抑制Th2细胞分化。科学。代表917335(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yano, T. et al. AGIA tag system based on a high affinity rabbit monoclonal antibody against human dopamine receptor D1 for protein analysis. PLoS ONE 11, e0156716 (2016).Article
Yano,T。等人。基于针对人多巴胺受体D1的高亲和力兔单克隆抗体的AGIA标签系统,用于蛋白质分析。PLoS ONE 11,e0156716(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. H., Chung, T. D. Y. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73 (1999).Article
Zhang,J.H.,Chung,T.D.Y.&Oldenburg,K.R。一个用于评估和验证高通量筛选分析的简单统计参数。J、 生物摩尔。屏幕4,67-73(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shinozaki, Y. et al. Expression of an AtNAP gene homolog in senescing morning glory (Ipomoea nil) petals of two cultivars with a different flower life span. J. Plant Physiol. 171, 633–638 (2014).Article
Shinozaki,Y。等人。AtNAP基因同源物在两个不同花寿命品种的衰老牵牛花(Ipomoea nil)花瓣中的表达。J、 植物生理学。171633-638(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, J. H. et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323, 1053–1057 (2009).Article
Kim,J.H.等人。拟南芥中涉及miR164的年龄依赖性细胞死亡的三叉前馈调节。科学3231053-1057(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luo, J. et al. SMRT and Illumina RNA sequencing and characterization of a key NAC gene LoNAC29 during the flower senescence in Lilium oriental ‘Siberia’. Genes 12, 869 (2021).Article
Luo,J。等人。东方百合“西伯利亚”花衰老过程中关键NAC基因LoNAC29的SMRT和Illumina RNA测序和表征。基因12869(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smith, M. T., Saks, Y. & van Staden, J. Ultrastructural-changes in the petals of senescing flowers of Dianthus caryophyllus L. Ann. Bot. 69, 277–285 (1992).Article
Smith,M.T.,Saks,Y。&van Staden,J。石竹衰老花花瓣的超微结构变化。Bot。69277-285(1992)。文章
Google Scholar
谷歌学者
van Doorn, W. G., Kirasak, K. & Ketsa, S. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals. J. Plant Physiol. 177, 67–73 (2015).Article
van Doorn,W.G.,Kirasak,K。&Ketsa,S。巨自噬和微自噬与石斛花被叶肉细胞液泡形成的关系。J、 植物生理学。177,67-73(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lin, Y. Y. & Jones, M. L. CRISPR/Cas9-mediated editing of Autophagy Gene 6 in petunia decreases flower longevity, seed yield, and phosphorus remobilization by accelerating ethylene production and senescence-related gene expression. Front. Plant Sci. 13, 840218 (2022).Article
Lin,Y。Y。&Jones,M。L。CRISPR/Cas9介导的矮牵牛自噬基因6的编辑通过加速乙烯产生和衰老相关基因表达来降低花寿命,种子产量和磷再活化。正面。植物科学。13840218(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, W. X., Vinocur, B., Shoseyov, O. & Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252 (2004).Article
Wang,W.X.,Vinocur,B.,Shoseyov,O。&Altman,A。植物热激蛋白和分子伴侣在非生物胁迫反应中的作用。趋势植物科学。9244-252(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, W. N., Van Montagu, M. & Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577, 1–9 (2002).Article
Sun,W.N.,Van Montagu,M。&Verbruggen,N。植物中的小热激蛋白和胁迫耐受性。生物化学。。Acta 1577,1–9(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marrs, K. A. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127–158 (1996).Article
Marrs,K.A。植物中谷胱甘肽S-转移酶的功能和调节。年。植物生理学评论。植物分子生物学。47127-158(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schuler, M. A. Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 15, 235–284 (1996).Article
Schuler,M.A。植物细胞色素P450单加氧酶。暴击。植物科学版。15235-284(1996)。文章
CAS
中科院
Google Scholar
谷歌学者
Shibuya, K., Watanabe, K. & Ono, M. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiol. Biochem. 131, 53–57 (2018).Article
Shibuya,K.,Watanabe,K。&Ono,M。CRISPR/Cas9介导的调节日本牵牛花花瓣衰老的EPHEMERAL1基因座的诱变。植物生理学。生物化学。131,53-57(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Battelli, R. et al. Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci. 180, 716–725 (2011).Article
Battelli,R。等人。百合花衰老过程中超微结构,蛋白酶和半胱天冬酶样活性的变化。植物科学。180716-725(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamada, T. & Marubashi, W. Overproduced ethylene causes programmed cell death leading to temperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens x N. tabacum. Planta 217, 690–698 (2003).Article
Yamada,T。&Marubashi,W。过量产生的乙烯导致程序性细胞死亡,导致来自杂交烟草的杂交幼苗对温度敏感的致死性。Planta 217690–698(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shibuya, K., Yamada, T., Suzuki, T., Shimizu, K. & Ichimura, K. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiol. 149, 816–824 (2009).Article
Shibuya,K.,Yamada,T.,Suzuki,T.,Shimizu,K。&Ichimura,K。InPSR26是一种推定的膜蛋白,可调节日本牵牛花花瓣衰老过程中的程序性细胞死亡。植物生理学。149816-824(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank the Applied Protein Research Laboratory at Ehime University for protein analysis, the Drug Discovery Initiative at the University of Tokyo for providing the chemical libraries and the National BioResource Project ‘Morning glory’, Japan, for providing seeds of I.
下载参考文献致谢我们感谢爱媛大学应用蛋白质研究实验室进行蛋白质分析,东京大学药物发现计划提供化学文库,日本国家生物资源项目“牵牛花”提供I的种子。
nil. We also thank M. Nakayama (National Agriculture and Food Research Organization) for valuable discussions about chemical structures, and K. Maruyama (Ehime University) for assistance with in vitro interaction assays. This work was supported by a grant from a commissioned project study on ‘Development of post-harvest technology in cut flowers’ (JP15650941 to K.S.) from the Ministry of Agriculture, Forestry and Fisheries, Japan.; the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research) from Japan Agency for Medical Research and Development (AMED) under grant numbers JP21am0101086 (support number 1590 to K.S.) and JP21am0101077 (support number 1144 to K.S.); and a Grant-in-Aid for Scientific Research on Innovative Areas (JP16H06579 to T.S.), Grants-in-Aid for Scientific Research (21K05589 to K.S., 19H03218 to T.S.
零。我们还感谢M.Nakayama(国家农业和食品研究组织)对化学结构的宝贵讨论,以及K.Maruyama(爱媛大学)对体外相互作用测定的帮助。这项工作得到了日本农林水产省委托进行的“切花采后技术开发”项目研究(JP15650941至K.S.)的资助。;日本医学研究与发展署(AMED)支持药物发现和生命科学研究的平台项目(支持创新药物发现和生命科学研究的基础),资助号为JP21am0101086(K.S.的支持号1590)和JP21am0101077(K.S.的支持号1144);以及创新领域科学研究补助金(T.S.的JP16H06579),科学研究补助金(K.S.的21K05589,T.S.的19H03218)。
and 19K05815 to A.N.) from the Japan Society for the Promotion of Science.Author informationAuthors and AffiliationsInstitute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, JapanKenichi ShibuyaProteo-Science Center (PROS), Ehime University, Matsuyama, JapanAkira Nozawa, Chikako Takahashi & Tatsuya SawasakiAuthorsKenichi ShibuyaView author publicationsYou can also search for this author in.
和日本科学促进会的19K05815)。作者信息作者和所属机构国家农业和食品研究组织(NARO)蔬菜和花卉科学研究所,筑波,日本爱媛大学,松山,日本野崎骏,高桥千代子和SawasakiAuthorsKenichi ShibuyaView作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarAkira NozawaView author publicationsYou can also search for this author in
PubMed Google ScholarAkira NozawaView作者出版物您也可以在
PubMed Google ScholarChikako TakahashiView author publicationsYou can also search for this author in
PubMed Google ScholarChikako TakahashiView作者出版物您也可以在
PubMed Google ScholarTatsuya SawasakiView author publicationsYou can also search for this author in
PubMed Google ScholarTatsuya SawasakiView作者出版物您也可以在
PubMed Google ScholarContributionsK.S., A.N. and T.S. designed experiments. K.S. and A.N. performed chemical screening. A.N., C.T. and K.S. performed in vitro interaction assays. K.S. performed the experiments with Japanese morning glory plants and RNA-seq analysis. K.S., A.N.
PubMed谷歌学术贡献SK。S、 ,A.N.和T.S.设计的实验。K、 S.和A.N.进行了化学筛选。A、 N.,C.T.和K.S.进行了体外相互作用测定。K、 美国用日本牵牛花植物和RNA-seq分析进行了实验。K、 。
and T.S. analysed and interpreted data. K.S. and A.N. wrote the manuscript, and all authors contributed to editing.Corresponding authorsCorrespondence to.
。K、 S.和A.N.撰写了手稿,所有作者都为编辑做出了贡献。通讯作者通讯。
Kenichi Shibuya or Akira Nozawa.Ethics declarations
涉谷健一或野泽明。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Plants thanks Junping Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Nature Plants感谢高俊平和另一位匿名审稿人为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Chemical structures of G1-1 and its analogues.The inhibition assay of EPH1–DNA interaction activity was performed in the presence of G1-1 analogues at a final concentration of 5 µM.Extended Data Fig.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 G1-1及其类似物的化学结构。EPH1-DNA相互作用活性的抑制测定是在最终浓度为5µM的G1-1类似物存在下进行的。扩展数据图。
2 Inhibition rate of EPH1–DNA interaction activity for fluorine-substituted compounds of G1-5 and G1-6.a, b, Chemical structures (a) and the inhibition rate of EPH1–DNA interaction activity (b) for fluorine-substituted compounds of G1-5. c, d, Chemical structures (c) and the inhibition rate of EPH1–DNA interaction activity (d) for fluorine-substituted compounds of G1-6.
。c、 d,化学结构(c)和EPH1-DNA相互作用活性(d)对G1-6氟取代化合物的抑制率。
The inhibition assays were performed in the presence of compounds at a final concentration of 10 µM. Values are means ± s.e.m. of n = 3 independent experiments (b, d). Asterisks indicate significant differences. **** P < 0.0001; one-way ANOVA with Dunnett’s test compared with G1-5 (b) or G1-6 (d).Source dataExtended Data Fig.
在终浓度为10μM的化合物存在下进行抑制测定。。星号表示显著差异。****P<0.0001;与G1-5(b)或G1-6(d)相比,Dunnett检验的单因素方差分析。源数据扩展数据图。
3 Effects of Everlastin1 and Everlastin2 on the DNA interaction of NAC TFs other than EPH1.a, Alignment of EPH1 (GenBank Accession No. AB849126), Arabidopsis ORE1 (NM_123323), and Lilium LhNAP (LC807006) polypeptide sequences. Identical amino acids are shown in reverse type. The overline indicates the conserved DNA-binding domain.
3 Everlastin1和Everlastin2对除EPH1.a以外的NAC-TF的DNA相互作用的影响,EPH1(GenBank登录号AB849126),拟南芥ORE1(NMU 123323)和百合LhNAP(LC807006)多肽序列的比对。。上划线表示保守的DNA结合结构域。
b, Phylogenic tree of EPH1, Arabidopsis ORE1 and Lilium LhNAP proteins. Sequence alignment with ClustalW2 and phylogenic tree analysis with the neighbor-joining method were performed using Geneious Prime software (Biomatters, Auckland, New Zealand). c, Interaction assay for NAC TFs and DNA. Interactions between DNA and full-length ORE1 or LhNAP in the presence of Everlasti.
b、 。使用Geneious Prime软件(Biomatters,奥克兰,新西兰)进行与ClustalW2的序列比对和与邻居连接方法的系统发育树分析。c、 NAC TFs和DNA的相互作用测定。在Everlasti存在下,DNA与全长ORE1或LhNAP之间的相互作用。
Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01767-zDownload citationReceived: 14 January 2023Accepted: 19 July 2024Published: 29 August 2024DOI: https://doi.org/10.1038/s41477-024-01767-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然植物》(2024)。https://doi.org/10.1038/s41477-024-01767-zDownload引文接收日期:2023年1月14日接收日期:2024年7月19日发布日期:2024年8月29日OI:https://doi.org/10.1038/s41477-024-01767-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
相关知识
西北农林科技大学揭示PhOBF1调节矮牵牛花衰老过程的作用机理
Nature Plants:瑞孚迪AlphaScreen如何为植物“保鲜”,延长花期?
日本科学家发现延长花朵寿命的方法
Nature Aging:这种植物天然提取物,可延缓衰老并延长寿命
【学术前沿】Nature Plants
Nature Plants | 乙烯调控CmHB40的表达以抑制植物雄蕊发育的分子机制
Nature Aging
Nature Plants
Nature Reviews:13种潜在抗衰物质
标签:“人均寿命”
网址: Nature Plants :通过抑制衰老调节因子EPHEMERAL1延长日本牵牛花寿命的化学方法 https://www.huajiangbk.com/newsview2564413.html
| 上一篇: 牵牛花种子怎么吃治咳嗽 |
下一篇: 牵牛子的功效与作用及食用方法 |
推荐分享
- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
