首页 分享 姜花杂交群体极端株高的表型差异及转录组分析

姜花杂交群体极端株高的表型差异及转录组分析

来源:花匠小妙招 时间:2026-02-12 21:39

摘要:

目的

姜花Hedychium‘白泰’与金姜花杂交F1代群体内株高差异显著,本研究通过株高表型分析和转录组测序(RNA-seq)分析,深入挖掘影响姜花株高的关键基因,为姜花分子育种和株型改良提供重要的参考依据。

方法

选用姜花杂交群体中最高的20株及最矮的20株进行株高、节间长度和节间细胞长度统计。建立地上茎分区A~D,通过相关性分析确定影响株高差异的主要因素,通过节间长度与节间细胞长度的差异比较分析确定差异生长部位。利用RNA-seq检测高、矮单株差异生长部位的mRNA表达水平。利用生物信息学方法筛选差异表达基因(DEGs),结合文献支撑筛选株高调控相关基因并进行qRT-PCR验证。

结果

姜花杂交群体植株的节间长度与节间细胞长度呈显著正相关,且高、矮植株在C区间的节间长度及节间细胞生长差异最为显著。通过对高、矮表型植株进行RNA-seq分析过滤得到269个差异表达基因,基于转录组数据筛选出13个显著差异表达的株高调控相关基因,其中,HcMYB136、HcNAC140、HcEXPA4、HcEXPB3、HcXTH28、HcXTH8、HcCYCB1-1和HcCYCD3-2在3株极端矮单株中表达下调,而HcMYB238、HcMYB254、HcNAC126、HcbZIP50和HcCDC27B在3株极端矮单株中表达上调。qRT-PCR结果表明,这13个基因的表达变化趋势与转录组数据高度一致。

结论

姜花杂交群体植株极端株高的表型差异主要影响因素是节间细胞长度,高、矮植株在C区间的生长差异最为显著。姜花极端株高表型的差异是一个复杂的生物学过程,可能由多个基因的协同调控所致。

Abstract:

Objective

There were significant differences in plant height within the F1 hybrid population derived from the cross between Hedychium ‘Baitai’ and H. gardnerianum. This study was aimed to identify key genes regulating plant height of Hedychium through phenotypic and transcriptome sequencing (RNA-seq) analyses, thereby providing an important reference basis for the molecular breeding and plant architecture improvement of Hedychium.

Method

The twenty tallest and twenty shortest plants in the Hedychium hybrid population were selected for statistics of plant height, internode length, and internode cell length. The aboveground stem was partitioned into A–D segments, and correlation analysis was performed to determine the factors influencing plant height variation. By comparing and analyzing the differences in internode length and internode cell length, the growth parts with differences were determined. RNA-seq was used to detect the mRNA expression levels of the differential growth parts of the tall and dwarf individual plants. Bioinformatics tools were employed to screen differentially expressed genes (DEGs). Combined with literature support, genes related to plant height regulation were screened, and verified by qRT-PCR.

Result

There was a significant positive correlation between the internode length and internode cell length of plants in the Hedychium hybrid population. The differences in internode length and internode cell growth in the C segment between tall and dwarf plants were the most significant. A total of 269 DEGs were identified through RNA-seq analysis of the plant with tall and dwarf phenotypes. Thirteen genes related to plant height regulation with significant differential expression were screened out based on transcriptome data. Among them, HcMYB136, HcNAC140, HcEXPA4, HcEXPB3, HcXTH28, HcXTH8, HcCYCB1-1 and HcCYCD3-2 were down-regulated in the three extremely dwarf plants, while HcMYB238, HcMYB254, HcNAC126, HcbZIP50 and HcCDC27B were up-regulated in the three extremely dwarf plants. The qRT-PCR results showed that the expression change trends of these 13 genes were highly consistent with the transcriptome data.

Conclusion

The main influencing factor for the phenotypic variation of the extreme plant height in the Hedychium hybrid population is the internode cell length, and the growth differences in the C segment of the tall and dwarf plants are the most significant. The phenotypic differences of the extreme plant height of Hedychium are a complex biological process, which may be caused by the coordinated regulation of multiple genes.

图  1   ‘白泰’姜花×金姜花F1代群体高、矮植株

Figure  1.   The tall and dwarf plants from the Hedychium ‘Bai Tai’ × H. gardnerianum F1 population

图  2   群体高、矮表型植株地上茎分区

a:矮表型单株,b:高表型单株;A、B、C和D为各单株的4个区间;P:花序;1~10:各节节间。

Figure  2.   Partition of aboveground stems for plants with tall and dwarf phenotypes

a: Dwarf individual plant, b: Tall individual plant; A, B, C and D represent the four segments of each plant; P: Panicle; 1−10: Internodes of each section.

图  3   20株高、矮表型植株株高

柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)。

Figure  3.   Heights of 20 plants with tall and dwarf phenotypes

Different lowercase letters above the bars indicate significant differences (P<0.05, LSD test).

图  4   高(a1~a4)、矮(b1~b4)表型植株各区间节间长度与细胞长度相关性分析

Figure  4.   Correlation analysis between internode length and cell length in different segments for plants with tall (a1−a4) and dwarf (b1−b4) phenotypes

图  5   高、矮表型植株的节间细胞观测

Figure  5.   Observations of internode cells in plants with tall and dwarf phenotypes

图  6   高、矮表型植株各区间内平均节间长度比较与区间内平均细胞长度比较

*和****分别表示在0.05和 of CDC27 function in the anaphase-promoting complex (APC/C)[J]. Plant Journal, 2008, 53(1): 78-89. doi: 10.1111/j.1365-313X.2007.03312.x

[24]

WANG C H, YAO H X, WANG C, et al. Transcription factor CsMYB36 regulates fruit neck length via mediating cell expansion in cucumber[J]. Plant Physiology, 2024, 195(2): 958-969. doi: 10.1093/plphys/kiae140

[25]

KIM J S, CHAE S, JO J E, et al. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice[J]. Molecules and Cells, 2024, 47(8): 100093.

[26]

KIM D, JEON S J, YANDERS S, et al. MYB3 plays an important role in lignin and anthocyanin biosynthesis under salt stress condition in Arabidopsis[J]. Plant Cell Reports, 2022, 41(7): 1549-1560. doi: 10.1007/s00299-022-02878-7

[27]

CONG L, SHI Y K, GAO X Y, et al. Transcription factor PbNAC71 regulates xylem and vessel development to control plant height[J]. Plant Physiology, 2024, 195(1): 395-409. doi: 10.1093/plphys/kiae011

[28]

JIA D F, GONG X Q, LI M J, et al. Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple[J]. Genes, 2018, 9(5): 229. doi: 10.3390/genes9050229

[29]

ZHANG X W, WANG Y, LIU M Y, et al. OsEXPA7 encoding an expansin affects grain size and quality traits in rice[J]. Rice, 2024, 17(1): 36. doi: 10.1186/s12284-024-00715-x

[30]

INZE D. Green light for the cell cycle[J]. EMBO Journal, 2005, 24(4): 657-662. doi: 10.1038/sj.emboj.7600561

[31]

MCQUEEN-MASON S, DURACHKO D M, COSGROVE D J. Two endogenous proteins that induce cell wall extension in plants[J]. Plant Cell, 1992, 4(11): 1425-1433.

[32]

CHOI D, KIM J H, LEE Y. Expansins in plant development[J]. Advances in Botanical Research, 2008, 47: 47-97.

[33]

MÉNDEZ-YÁÑEZ A, CARRASCO-ORELLANA C, RAMOS P, et al. Alpha-expansins: More than three decades of wall creep and loosening in fruits[J]. Plant Molecular Biology, 2024, 114(4): 84.

[34]

REN H, WEN L Z, GUO Y H, et al. Expressional and functional verification of the involvement of CmEXPA4 in Chrysanthemum root development[J]. Journal of Plant Growth Regulation, 2019, 38(4): 1375-1386. doi: 10.1007/s00344-019-09940-x

[35]

SHI Y Z, ZHU X F, MILLER J G, et al. Distinct catalytic capacities of two aluminium-repressed xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia[J]. Phytochemistry, 2015, 112: 160-169. doi: 10.1016/j.phytochem.2014.09.020

[36]

MURRAY A W. Recycling the cell cycle: Cyclins revisited[J]. Cell, 2004, 116(2): 221-234. doi: 10.1016/S0092-8674(03)01080-8

[37]

QI F F, ZHANG F X. Cell cycle regulation in the plant response to stress[J]. Frontiers in Plant Science, 2020, 10: 1765. doi: 10.3389/fpls.2019.01765

[38]

FERREIRA P, HEMERLY A, DE ALMEIDA ENGLER J, et al. Three discrete classes of Arabidopsis cyclins are expressed during different intervals of the cell cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(24): 11313-11317.

[39]

BREYNE P, ZABEAU M. Genome-wide expression analysis of plant cell cycle modulated genes[J]. Current Opinion Plant Biology, 2001, 4(2): 136-142. doi: 10.1016/S1369-5266(00)00149-7

[40]

ZHANG Y, GU M, XIA X, et al. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.)[J]. Journal of Chemical Ecology, 2009, 35(6): 679-88.

[41]

LI Y Y, CHEN Q Z, NAN H Y, et al. Overexpression of GmFDL9 enhances tolerance to drought and salt stresses in soybean[J]. PLoS One, 2017, 12(6): e0179554. doi: 10.1371/journal.pone.0179554

相关知识

三色堇转录组SSR分析及分子标记开发
深海化能极端环境中长角阿尔文虾眼睛适应性的转录组学解析
水仙杂交后代性状评价及花色形成机理研究
大花紫薇与紫薇杂交F1群体表型评价及分子标记连锁分析
6个铁线莲品种杂交F1代表型性状遗传分析
猕猴桃砧木抗旱性评价及转录组分析
不同品种桂花转录组分析及桂花精油成分差异的初步探讨
【转录组蛋白组联合分析】邦菲生物客户文章解读
基于泛转录组学分析不同色系报春苣苔属植物花色素苷差异积累的机制
花叶唐竹叶色表型及光合生理差异分子机理研究

网址: 姜花杂交群体极端株高的表型差异及转录组分析 https://www.huajiangbk.com/newsview2560013.html

所属分类:花卉
上一篇: 克拉克亚麻(柳叶菜科)叶片的发育
下一篇: 过门石有什么作用?你家需要安装过

推荐分享