首页 分享 揭示啶虫脒对蜜蜂神经氧化还原平衡的急性亚致死效应

揭示啶虫脒对蜜蜂神经氧化还原平衡的急性亚致死效应

来源:花匠小妙招 时间:2025-11-10 18:42

AbstractUnderstanding the off-target effects of neonicotinoid insecticides, including acetamiprid, which is the most commonly applied agricultural chemical, is crucial as it may be an important factor of negative impact on pollinator insects causing a number of problems such as colony collapse disorder (CCD) of honey bees.

摘要了解新烟碱类杀虫剂(包括啶虫脒)的脱靶效应是至关重要的,啶虫脒是最常用的农用化学品,因为它可能是对传粉昆虫产生负面影响的重要因素,导致许多问题,如蜂群衰竭障碍(CCD)蜜蜂。

While CCD is known as a multifactorial disease, the role of pesticides in this context is not negligible. Therefore, it is essential to gain a deeper comprehension of the mechanisms through which they function. The aim of this research was to study the effects of sublethal acetamiprid doses on honey bees, specifically focusing on the redox homeostasis of the brain.

虽然CCD被称为多因素疾病,但农药在这方面的作用不容忽视。因此,必须更深入地了解它们发挥作用的机制。这项研究的目的是研究亚致死啶虫脒剂量对蜜蜂的影响,特别关注大脑的氧化还原稳态。

According to our findings, it can be confirmed that acetamiprid detrimentally impacts the redox balance of the brain increasing hydrogen peroxide and malondialdehyde levels, suggesting consequential lipid peroxidation and membrane damage as consequences. Moreover, acetamiprid had negative effects on the glutathione system and total antioxidant capacity, as well as key enzymes involved in the maintenance of redox homeostasis.

根据我们的研究结果,可以证实啶虫脒会对大脑的氧化还原平衡产生不利影响,从而增加过氧化氢和丙二醛的水平,从而导致脂质过氧化和膜损伤。此外,啶虫脒对谷胱甘肽系统和总抗氧化能力以及参与维持氧化还原稳态的关键酶具有负面影响。

In summary, it can be concluded that acetamiprid adversely affected the redox balance of the central nervous system of honey bees in our study. Our findings could potentially contribute to a better understanding of pesticide-related consequences and to improvement of bee health..

总之,可以得出结论,在我们的研究中,啶虫脒对蜜蜂中枢神经系统的氧化还原平衡产生不利影响。我们的研究结果可能有助于更好地了解农药相关的后果,并改善蜜蜂的健康。。

IntroductionOne of the most significant pollinator species globally, the western honey bee (Apis mellifera) is economically important and is in charge of pollinating 87.5% of flowering plants1. A number of factors have contributed to the decline in honey bee populations and other pollinating insect species in recent decades2.

引言西方蜜蜂(Apis mellifera)是全球最重要的授粉物种之一,在经济上很重要,负责87.5%的开花植物的授粉1。近十年来,许多因素导致蜜蜂种群和其他授粉昆虫物种的减少2。

These factors include habitat degradation and shrinkage, crop monoculture, excessive pesticide use, the presence of pathogens and parasites, inadequate forage nutrient content, and the detrimental impacts of climate change3. Subsequently in the 2000s, honey bee colonies have been affected by CCD, a serious issue that was initially identified in the United States and then identified in Europe a few years later.

这些因素包括栖息地退化和萎缩,作物单一种植,农药过量使用,病原体和寄生虫的存在,饲料养分含量不足以及气候变化的不利影响3。随后在2000年代,蜜蜂群落受到CCD的影响,这是一个严重的问题,最初在美国发现,几年后在欧洲发现。

The disorder has subsequently expanded throughout the world4. Since then, a significant amount of research has been performed regarding the topic, leading to the conclusion that several factors must be taken into account rather than just one5. These include parasitic infections, pathogenic bacteria or viruses, pesticide exposure, temperature fluctuations, crowded living arrangements, a lack of pollen and nectar, modification of the sensitive bee microbiome as a result of inadequate foraging, and scarce or contaminated water sources6.

这种疾病随后在全世界范围内蔓延4。从那时起,就这个话题进行了大量的研究,得出的结论是必须考虑几个因素,而不仅仅是一个因素5。这些包括寄生虫感染,病原菌或病毒,农药暴露,温度波动,拥挤的生活安排,缺乏花粉和花蜜,由于觅食不足而改变敏感的蜜蜂微生物群,以及稀缺或受污染的水源6。

Regarding parasites, not all infestations have been reported in the impacted colonies; nonetheless, it is important to draw attention to the infection with the Varroa destructor mite and the unicellular parasite Nosema ceranae, which are suggested to be predisposing factors7.Understanding the etiology and causes of CCD requires research on the effects of certain insecticides such as neonicotinoids.

关于寄生虫,在受影响的殖民地中并没有报告所有的侵染;尽管如此,重要的是要提请注意瓦罗破坏螨和单细胞寄生虫金枪鱼微孢子虫的感染,这被认为是诱发因素7。了解CCD的病因和原因需要研究某些杀虫剂(如新烟碱类)的作用。

Pest control has become increasingly important recently as agriculture has grown quickly. Imidacloprid, the first co.

随着农业的快速发展,害虫防治变得越来越重要。吡虫啉,第一个co。

Data availability

数据可用性

All datasets are available through the following link: https://doi.org/https://doi.org/10.6084/m9.figshare.26346565.

所有数据集均可通过以下链接获得:https://doi.org/https://doi.org/10.6084/m9.figshare.26346565.

ReferencesHung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B. 285, 20172140 (2018).Article

参考文献Sung,K.-L.J.,Kingston,J.M.,Albrecht,M.,Holway,D.A。&Kohn,J.R。蜜蜂作为自然栖息地传粉者的全球重要性。。R、 Soc.B.28520172140(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Neov, B., Shumkova, R., Palova, N. & Hristov, P. The health crisis in managed honey bees (Apis mellifera). Which factors are involved in this phenomenon?. Biologia 76, 2173–2180 (2021).Article

Neov,B.,Shumkova,R.,Palova,N。和Hristov,P。管理蜜蜂(Apis mellifera)的健康危机。这种现象涉及哪些因素?。生物学762173-2180(2021)。文章

Google Scholar

谷歌学者

Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing?. Sociobiology 68, e5851 (2021).Article

Hristov,P.,Shumkova,R.,Palova,N。和Neov,B。蜜蜂群落损失:为什么蜜蜂正在消失?。社会生物学68,e5851(2021)。文章

Google Scholar

谷歌学者

Dainat, B., vanEngelsdorp, D. & Neumann, P. Colony collapse disorder in Europe. Environ. Microbiol. Rep. 4, 123–125 (2012).Article

Dainat,B.,vanEngelsdorp,D。&Neumann,P。欧洲殖民地崩溃障碍。。微生物。代表4123-125(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Watson, K. & Stallins, J. A. Honey bees and colony collapse disorder: A pluralistic reframing. Geography Compass 10, 222–236 (2016).Article

Watson,K.&Stallins,J.A。蜜蜂和群体崩溃障碍:多元重构。地理指南针10222-236(2016)。文章

Google Scholar

谷歌学者

Suryanarayanan, S. & Kleinman, D. L. Be(e)coming experts: The controversy over insecticides in the honey bee colony collapse disorder. Soc. Stud. Sci. 43, 215–240 (2013).Article

Suryanarayanan,S.&Kleinman,D.L.Be(e)即将到来的专家:蜜蜂群体崩溃障碍中杀虫剂的争议。社会科学。43215-240(2013)。文章

Google Scholar

谷歌学者

Flores, J. M. et al. Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Res. Vet. Sci. 135, 85–95 (2021).Article

Flores,J.M.等人,《瓦罗破坏因子及其相关病理学对影响蜜蜂的菌落崩溃障碍的影响》。兽医研究所。科学。135,85-95(2021)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Goulson, D. REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article

Goulson,D。评论:新烟碱类杀虫剂造成的环境风险概述。J、 应用。Ecol公司。50977-987(2013)。文章

Google Scholar

谷歌学者

Insect Nicotinic Acetylcholine Receptors. (Springer, New York, 2010).Phogat, A., Singh, J., Kumar, V. & Malik, V. Toxicity of the acetamiprid insecticide for mammals: A review. Environ. Chem. Lett. 20, 1453–1478 (2022).Article

昆虫烟碱乙酰胆碱受体。(斯普林格,纽约,2010)。Phogat,A.,Singh,J.,Kumar,V。&Malik,V。啶虫脒杀虫剂对哺乳动物的毒性:综述。。化学。利特。201453-1478(2022)。文章

Google Scholar

谷歌学者

Kluser, S., Neumann, P., Chauzat, M.-P. & Jefferey, P. Disorders of bee colonies around the world and other threats to insect pollinators. Vida Apícola 168, 8–24 (2010).

Kluser,S.,Neumann,P.,Chauzat,M.-P。&Jefferey,P。世界各地蜂群的紊乱以及对昆虫传粉者的其他威胁。维达·阿皮科拉168,8-24(2010)。

Google Scholar

谷歌学者

Decourtye, A. & Devillers, J. Ecotoxicity of neonicotinoid insecticides to bees. In Insect Nicotinic Acetylcholine Receptors Vol. 683 (ed. Thany, S. H.) 85–95 (Springer, 2010).Chapter

Decourtye,A。&Devillers,J。新烟碱类杀虫剂对蜜蜂的生态毒性。昆虫烟碱型乙酰胆碱受体第683卷(编辑:Thany,S.H.)85-95(Springer,2010)。第章

Google Scholar

谷歌学者

Van Der Sluijs, J. P. et al. Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr. Opin. Environ. Sustain. 5, 293–305 (2013).Article

Van Der Sluijs,J.P.等人,《新烟碱类、蜜蜂疾病和传粉服务的可持续性》。货币。奥平。。维持。5293-305(2013)。文章

Google Scholar

谷歌学者

Mitchell, E. A. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).Article

Mitchell,E.A.D.等人,《蜂蜜中新烟碱类物质的全球调查》。科学358109-111(2017)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Mechanism of neonicotinoid toxicity: Impact on oxidative stress and metabolism. Annu. Rev. Pharmacol. Toxicol. 58, 471–507 (2018).Article

Wang,X。等。新烟碱类毒性的机制:对氧化应激和代谢的影响。年。药理学杂志。毒理学。58471-507(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xu, X. et al. Neonicotinoids: mechanisms of systemic toxicity based on oxidative stress-mitochondrial damage. Arch. Toxicol. 96, 1493–1520 (2022).Article

Xu,X。等。新烟碱类:基于氧化应激线粒体损伤的全身毒性机制。拱门。毒理学。961493-1520(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Han, W., Tian, Y. & Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 192, 59–65 (2018).Article

Han,W.,Tian,Y。&Shen,X。人类暴露于新烟碱类杀虫剂及其潜在毒性的评估:概述。Chemosphere 192,59-65(2018)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Karaca, B. U. et al. Toxic effects of subchronic oral acetamiprid exposure in rats. Toxicol. Ind. Health 35, 679–687 (2019).Article

Karaca,B.U.等人。亚慢性口服啶虫脒暴露对大鼠的毒性作用。毒理学。《印度卫生》35679-687(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lu, Z. et al. Low concentration acetamiprid-induced oxidative stress hinders the growth and development of silkworm posterior silk glands. Pesticide Biochem. Physiol. 174, 104824 (2021).Article

Lu,Z.等人。低浓度啶虫脒诱导的氧化应激阻碍了家蚕后丝腺的生长和发育。农药生物化学。生理学。174104824(2021)。文章

Google Scholar

谷歌学者

Marzouki, S. et al. Specific immune responses in mice following subchronic exposure to acetamiprid. Life Sci. 188, 10–16 (2017).Article

Marzouki,S.等人。亚慢性暴露于啶虫脒后小鼠的特异性免疫反应。生命科学。188,10-16(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Saggioro, E. M., Do Espírito Santo, D. G., Sales Júnior, S. F., Hauser-Davis, R. A. & Correia, F. V. Lethal and sublethal effects of acetamiprid on Eisenia andrei: Behavior, reproduction, cytotoxicity and oxidative stress. Ecotoxicol. Environ. Saf. 183, 109572 (2019).Preiser, J. Oxidative stress.

Saggioro,E.M.,Do Espírito Santo,D.G.,Sales Júnior,S.F.,Hauser-Davis,R.A。&Correia,F.V。啶虫脒对艾森氏菌的致死和亚致死作用:行为,繁殖,细胞毒性和氧化应激。生态毒性。。南非。183109572(2019)。Preiser,J。氧化应激。

J. Parenter Enteral. Nutr. 36, 147–154 (2012).Article .

J、 父母肠内。营养。36147-154(2012)。文章。

Google Scholar

谷歌学者

Yan, S. et al. Neonicotinoid insecticides exposure cause amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice. Chemosphere 246, 125661 (2020).Article

Yan,S.等人。新烟碱类杀虫剂暴露会导致ICR小鼠的氨基酸代谢紊乱,脂质积累和氧化应激。化学圈246125661(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Martelli, F. et al. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proc. Natl. Acad. Sci. USA 117, 25840–25850 (2020).Article

Martelli,F。等人。低剂量的新烟碱类杀虫剂吡虫啉诱导ROS引发果蝇的神经和代谢损伤。。纳特尔。。科学。美国11725840–25850(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, J. et al. Association between urinary neonicotinoid insecticide levels and dyslipidemia risk: A cross-sectional study in Chinese community-dwelling elderly. J. Hazard. Mater. 459, 132159 (2023).Article

Sun,J。等人。尿中新烟碱类杀虫剂水平与血脂异常风险之间的关系:中国社区老年人的横断面研究。J、 危险。马特。459132159(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Williams, G. R. et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apicult. Res. 52, 1–36 (2013).Article

Williams,G.R.等人。在体外实验室条件下将成年意大利蜜蜂饲养在笼子中的标准方法。J、 阿皮考特。第52、1-36号决议(2013年)。文章

Google Scholar

谷歌学者

Gauthier, M., Aras, P., Paquin, J. & Boily, M. Chronic exposure to imidacloprid or thiamethoxam neonicotinoid causes oxidative damages and alters carotenoid-retinoid levels in caged honey bees (Apis mellifera). Sci. Rep. 8, 16274 (2018).Article

Gauthier,M.,Aras,P.,Paquin,J。&Boily,M。长期暴露于吡虫啉或噻虫嗪新烟碱类药物会导致氧化损伤并改变笼养蜜蜂(Apis mellifera)中类胡萝卜素-类维生素A的水平。科学。代表816274(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jumarie, C., Aras, P. & Boily, M. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere 168, 163–170 (2017).Article

Jumarie,C.,Aras,P。&Boily,M。除草剂和金属的混合物影响蜜蜂的氧化还原系统。Chemosphere 168163-170(2017)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021 (2015).Article

Helmer,S.H.,Kerbaol,A.,Aras,P.,Jumarie,C。&Boily,M。实际剂量的阿特拉津,异丙甲草胺和草甘膦对笼养蜜蜂(Apis mellifera)脂质过氧化和饮食衍生抗氧化剂的影响。。科学。。第228010–8021号决议(2015年)。文章

Google Scholar

谷歌学者

Iwasa, T., Motoyama, N., Ambrose, J. T. & Roe, R. M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protect. 23, 371–378 (2004).Article

Iwasa,T.,Motoyama,N.,Ambrose,J.T。&Roe,R.M。新烟碱类杀虫剂对蜜蜂Apis mellifera的不同毒性机制。作物保护。23371-378(2004)。文章

Google Scholar

谷歌学者

Mackei, M. et al. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. Insect Biochem. Mol. Biol. 159, 103990 (2023).Article

戊唑醇对蜜蜂大脑氧化还原稳态和脂肪酸谱的有害影响。昆虫生物化学。分子生物学。159103990(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schneider, U. A. et al. Impacts of population growth, economic development, and technical change on global food production and consumption. Agricult. Syst. 104, 204–215 (2011).Article

Schneider,U.A.等人,《人口增长、经济发展和技术变革对全球粮食生产和消费的影响》。农业。系统。104204-215(2011)。文章

Google Scholar

谷歌学者

Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 113, 225–245 (2013).Article

Anwar,M.R.,Liu,D.L.,Macadam,I。&Kelly,G。使农业适应气候变化:综述。理论。应用。气候。113225-245(2013)。文章

ADS

广告

Google Scholar

谷歌学者

Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. IJERPH 18, 1112 (2021).Article

Tudi,M.等人,《农业发展、农药应用及其对环境的影响》。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Evans, J. D. & Chen, Y. (Judy). Colony Collapse Disorder and Honey Bee Health. In Honey Bee Medicine for the Veterinary Practitioner (eds Kane, T. R. & Faux, C. M.) 229–234 (Wiley, 2021). https://doi.org/10.1002/9781119583417.ch19.Chapter

Evans,J.D。和Chen,Y。(朱迪)。蜂群衰竭障碍与蜜蜂健康。《兽医蜜蜂医学》(eds Kane,T.R.&Faux,C.M.)229-234(Wiley,2021)。https://doi.org/10.1002/9781119583417.ch19.Chapter

Google Scholar

谷歌学者

Lu, C., Hung, Y.-T. & Cheng, Q. A Review of Sub-lethal neonicotinoid insecticides exposure and effects on pollinators. Curr. Pollut. Rep. 6, 137–151 (2020).Article

Lu,C.,Hung,Y.-T.&Cheng,Q。亚致死性新烟碱类杀虫剂暴露及其对传粉者影响的综述。货币。。代表6137-151(2020)。文章

Google Scholar

谷歌学者

Zuščíková, L. et al. Screening of toxic effects of neonicotinoid insecticides with a focus on Acetamiprid: A review. Toxics 11, 598 (2023).Article

Zuščíková,L.等人。以啶虫脒为重点的新烟碱类杀虫剂毒性作用筛选:综述。毒物11598(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jacob, C. R. O. et al. Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology 28, 744–753 (2019).Tison, L. et al. Honey Bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field.

Jacob,C.R.O.等人。新烟碱类化合物对意大利蜜蜂和后肩captotrigona postica Latreille的口服急性毒性和影响(膜翅目:蜂科)。生态毒理学28744-753(2019)。蜜蜂在野外长期接触新烟碱类噻虫啉会损害蜜蜂的行为。

Environ. Sci. Technol. 50, 7218–7227 (2016).Article .

。科学。技术。507218-7227(2016)。文章。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Czerska, M., Mikołajewska, K., Zieliński, M., Gromadzińska, J. & Wąsowicz, W. Today’s oxidative stress markers. Med. Pr. 66, 393–405 (2015).Article

Czerska,M.,Mikołajewska,K.,Zieliński,M.,Gromadzińska,J.&Wąsowicz,W.今天的氧化应激标志物。《医学杂志》66393-405(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chung, H. Y. et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. AGE 20, 127–140 (1997).Article

Chung,H.Y.等人。黄嘌呤脱氢酶/黄嘌呤氧化酶和氧化应激。年龄20127-140(1997)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, J. et al. Tissue protective effect of xanthine oxidase inhibitor, polymer conjugate of (styrene–maleic acid copolymer) and (4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine), on hepatic ischemia–reperfusion injury. Exp. Biol. Med. (Maywood) 235, 487–496 (2010).Article

Fang,J.等。黄嘌呤氧化酶抑制剂(苯乙烯-马来酸共聚物)和(4-氨基-6-羟基吡唑并[3,4-d]嘧啶)的聚合物缀合物对肝脏缺血再灌注损伤的组织保护作用。实验生物。医学(梅伍德)235487-496(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, B. et al. Evaluation of acetamiprid-induced genotoxic and oxidative responses in Eisenia fetida. Ecotoxicol. Environ. Saf. 161, 610–615 (2018).Article

Li,B.等人。评估啶虫脒诱导的赤子爱胜蚓的遗传毒性和氧化反应。生态毒性。。南非。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sies, H. Role of metabolic H2O2 generation. J. Biol. Chem. 289, 8735–8741 (2014).Article

Sies,H。代谢H2O2产生的作用。J、 生物。化学。2898735-8741(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Halliwell, B., Long, L. H., Yee, T. P., Lim, S. & Kelly, R. Establishing biomarkers of oxidative stress: The measurement of hydrogen peroxide in human urine. Curr. Med. Chem. 11, 1085–1092 (2004).Article

Halliwell,B.,Long,L.H.,Yee,T.P.,Lim,S。&Kelly,R。建立氧化应激的生物标志物:人体尿液中过氧化氢的测量。货币。医学化学。111085-1092(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sukkar, D. et al. Differential production of nitric oxide and hydrogen peroxide among Drosophila melanogaster, Apis mellifera, and Mamestra brassicae immune-activated hemocytes after exposure to imidacloprid and amitraz. Insects 14, 174 (2023).Article

Sukkar,D.等人。暴露于吡虫啉和阿米特拉唑后,黑腹果蝇,意大利蜜蜂和甘蓝型哺乳动物免疫激活血细胞中一氧化氮和过氧化氢的差异产生。昆虫14174(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 524, 13–30 (2017).Article

Tsikas,D。通过测量生物样品中的丙二醛(MDA)和亲属来评估脂质过氧化:分析和生物学挑战。肛门。生物化学。524,13-30(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidat. Med. Cell. Longevity 2014, 1–31 (2014).Article

Ayala,A.,Muñoz,M.F。&Argüelles,S。脂质过氧化:丙二醛和4-羟基-2-壬烯醛的产生,代谢和信号传导机制。。医学细胞。长寿2014,1-31(2014)。文章

Google Scholar

谷歌学者

Morales, M. & Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiol. 180, 1246–1250 (2019).Article

Morales,M。&Munné-Bosch,S。丙二醛:事实和人工制品。植物生理学。1801246-1250(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, W. et al. Insight into the toxic effects, bioconcentration and oxidative stress of acetamiprid on Rana nigromaculata tadpoles. Chemosphere 305, 135380 (2022).Article

郭,W。等。深入了解啶虫脒对黑斑蛙蝌蚪的毒性作用,生物浓缩和氧化应激。化学圈305135380(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kenfack, A. et al. Reproductive toxicity of acetamiprid in male Guinea pig (Cavia porcellus). J. Anim. Sci. Vet. Med. 3, 105–111 (2018).Article

。J、 动画。科学。兽医。医学杂志3105-111(2018)。文章

Google Scholar

谷歌学者

Zhang, J. et al. Oxidative stress: Role in acetamiprid-induced impairment of the male mice reproductive system. Agricult. Sci. China 10, 786–796 (2011).Article

Zhang,J。等人。氧化应激:在啶虫脒诱导的雄性小鼠生殖系统损伤中的作用。农业。科学。。文章

Google Scholar

谷歌学者

Prabhulkar, S. & Li, C.-Z. Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens. Bioelectron. 26, 1743–1749 (2010).Article

Prabhulkar,S.&Li,C.-Z.通过实时监测8-OHdG生物标志物评估单细胞水平的氧化性DNA损伤和修复。比森。生物电子。261743-1749(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tian, X. et al. Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. Chemosphere 210, 1006–1012 (2018).Article

Tian,X。等。中国稀有鳉鲫幼鱼对新烟碱类杀虫剂吡虫啉和烯啶虫胺的慢性脑毒性反应。Chemosphere 2101006-1012(2018)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X., Wang, X., Liu, Y., Fang, K. & Liu, T. The toxic effects of sulfoxaflor induced in earthworms (Eisenia fetida) under effective concentrations. IJERPH 17, 1740 (2020).Article

Zhang,X.,Wang,X.,Liu,Y.,Fang,K。&Liu,T。有效浓度下蚯蚓(Eisenia fetida)中磺酰沙氟的毒性作用。IJERPH 171740(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Almroth, B. C., Sturve, J., Berglund, Å. & Förlin, L. Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic Toxicol. 73, 171–180 (2005).Article

阿尔姆罗斯(Almroth),不列颠哥伦比亚省(B.C.),斯特夫(Sturve),J。伯格隆德(Berglund)Förlin,L。鳗鱼(Zoarces viviparus)的氧化损伤,以蛋白质羰基和TBARS作为生物标志物。水生毒物。73171-180(2005)。文章

Google Scholar

谷歌学者

Prior, R. L. & Cao, G. In vivo total antioxidant capacity: comparison of different analytical methods1. Free Radic. Biol. Med. 27, 1173–1181 (1999).Article

Prior,R.L。&Cao,G。体内总抗氧化能力:不同分析方法的比较1。。《生物医学》271173-1181(1999)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gheshlaghi-Ghadim, A., Mohammadi, V. & Zadeh-Hashem, E. Protective effects of quercetin on clothianidin-induced liver damage in the rat model. Evidence-Based Complement. Alternative Med. 2022, e9399695 (2022).Article

Gheshlaghi-Ghadim,A.,Mohammadi,V。&Zadeh-Hashem,E。槲皮素对大鼠模型中噻虫胺诱导的肝损伤的保护作用。基于证据的补充。。文章

Google Scholar

谷歌学者

Paleolog, J., Wilde, J., Miszczak, A., Gancarz, M. & Strachecka, A. Antioxidation defenses of apis mellifera queens and workers respond to imidacloprid in different age-dependent ways: old queens are resistant. Foragers Are Not. Animals 11, 1246 (2021).PubMed

Paleolog,J.,Wilde,J.,Miszczak,A.,Gancarz,M。&Stracheca,A。意大利蜜蜂皇后和工人的抗氧化防御以不同的年龄依赖性方式对吡虫啉作出反应:老皇后具有抗性。觅食者不是。动物111246(2021)。PubMed出版社

Google Scholar

谷歌学者

Słowińska, M. et al. Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie 47, 227–236 (2016).Article

Słowińska,M.等人。蜜蜂血淋巴的总抗氧化能力与年龄和农药暴露的关系,以及与精浆抗氧化能力的比较。Apidologie 47227-236(2016)。文章

Google Scholar

谷歌学者

Doltade, S., Lonare, M., Raut, S. & Telang, A. Evaluation of acetamiprid mediated oxidative stress and pathological changes in male rats: Ameliorative effect of curcumin. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 89, 191–199 (2019).Zitka, O. et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients.

Doltade,S.,Lonare,M.,Raut,S。&Telang,A。评估啶虫脒介导的雄性大鼠氧化应激和病理变化:姜黄素的改善作用。。纳特尔。。科学。印度教派。生物科学学士。89191-199(2019)。Zitka,O.等人。氧化还原状态表示为GSH:GSSG比率,作为儿科肿瘤患者氧化应激的标志。

Oncol. Lett. 4, 1247–1253 (2012).Article .

叔叔。信件4, 1247–1253 (2012).第[UNK]条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jones, D. P. [I i] Redox Potential of GSH/GSSG Couple: Assay and Biological Significance.Bravi, M. C. et al. Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus. Metabolism 55, 691–695 (2006).Article

Jones,D.P.[I I]GSH/GSSG对的氧化还原电位:测定和生物学意义。Bravi,M.C.等人。胰岛素降低2型糖尿病患者的细胞内氧化应激。新陈代谢55691-695(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cao, L. et al. Ratios of biliary glutathione disulfide (GSSG) to glutathione (GSH): A potential index to screen drug-induced hepatic oxidative stress in rats and mice. Anal. Bioanal. Chem. 405, 2635–2642 (2013).Article

Cao,L。等人。胆汁中谷胱甘肽二硫化物(GSSG)与谷胱甘肽(GSH)的比率:筛选大鼠和小鼠药物诱导的肝脏氧化应激的潜在指标。肛门。生物醛。化学。4052635-2642(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sentellas, S., Morales-Ibanez, O., Zanuy, M. & Albertí, J. J. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol. In Vitro 28, 1006–1015 (2014).Article

Sentellas,S.,Morales-Ibanez,O.,Zanuy,M。&Albertí,J.J。冷冻保存的大鼠和人肝细胞中的GSSG/GSH比率作为药物诱导的氧化应激的生物标志物。毒理学。体外281006-1015(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sánchez-Rodríguez, M. A. & Mendoza-Núñez, V. M. Oxidative stress indexes for diagnosis of health or disease in humans. Oxidat. Med. Cell. Longevity 2019, 1–32 (2019).Article

Sánchez-Rodríguez,M.A。和Mendoza-Núñez,V.M。用于诊断人类健康或疾病的氧化应激指数。。医学细胞。长寿2019,1-32(2019)。文章

Google Scholar

谷歌学者

Ono, H., Sakamoto, A. & Sakura, N. Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clin. Chim. Acta 312, 227–229 (2001).Article

Ono,H.,Sakamoto,A。和Sakura,N。健康儿科和成人受试者的血浆总谷胱甘肽浓度。临床。奇姆。Acta 312227–229(2001)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gibson, S. A., Korade, Ž & Shelton, R. C. Oxidative stress and glutathione response in tissue cultures from persons with major depression. J. Psychiatric Res. 46, 1326–1332 (2012).Article

Gibson,S.A.,Korade,Ž&Shelton,R.C。重度抑郁症患者组织培养中的氧化应激和谷胱甘肽反应。J、 精神病学第461326-1332号决议(2012年)。文章

Google Scholar

谷歌学者

Stanton, R. C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64, 362–369 (2012).Article

Stanton,R.C。葡萄糖-6-磷酸脱氢酶,NADPH和细胞存活。IUBMB Life 64362–369(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, H., Cheng, M. & Chiu, D. T. Glucose-6-phosphate dehydrogenase—From oxidative stress to cellular functions and degenerative diseases. Redox Report 12, 109–118 (2007).Article

Ho,H.,Cheng,M。&Chiu,D.T。葡萄糖-6-磷酸脱氢酶从氧化应激到细胞功能和退行性疾病。氧化还原报告12109-118(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013 (2020).Article

Almasri,H.等人。杀虫剂,杀菌剂和除草剂的混合物在冬季意大利蜜蜂中引起高毒性和全身生理紊乱。生态毒性。。南非。203111013(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Vohra, P. & Khera, K. A three generation study with effect of imidacloprid in rats: Biochemical and histopathological investigation. Toxicol. Int. 22, 119 (2015).Article

Vohra,P。&Khera,K。吡虫啉对大鼠影响的三代研究:生化和组织病理学研究。毒理学。Int.22119(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qi, S. et al. Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. Ecotoxicol. Environ. Saf. 148, 352–358 (2018).Article

Qi,S。等人。新烟碱类杀虫剂吡虫啉,愈创木酚和环磷酰胺诱导大型溞的急性氧化应激。生态毒性。。南非。148352-358(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gregorc, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. 8, 15003 (2018).Article

。科学。代表815003(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pal, E. et al. Toxicity of the pesticides imidacloprid, difenoconazole and glyphosate alone and in binary and ternary mixtures to winter honey bees: Effects on survival and antioxidative defenses. Toxics 10, 104 (2022).Article

Pal,E.等人,《杀虫剂吡虫啉、苯醚甲环唑和草甘膦单独以及二元和三元混合物对冬季蜜蜂的毒性:对存活和抗氧化防御的影响》。毒物10104(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, K. et al. Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida). Ecotoxicol. Environ. Saf. 114, 17–22 (2015).Article

。生态毒性。。南非。114,17-22(2015)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsSpecial thanks must be given to the apiary of Ildikó Mackeiné Aux and József Mackei for providing the laboratory animals and to Szilvia Pálinkás for her support and professional help in the laboratory measurements.FundingProject no. FK146534 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the NKFIH OTKA FK 23 funding scheme.

下载参考文献致谢特别感谢IldikóMackeinéAux和József Mackei的养蜂场提供了实验动物,并感谢Szilvia Pálinkás在实验室测量中的支持和专业帮助。资助项目FK146534由匈牙利文化和创新部提供支持,由国家研究、发展和创新基金资助,由NKFIH OTKA FK 23资助计划资助。

The study was supported by the ÚNKP-23-2-I-ÁTE-8 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. Project no. RRF-2.3.1-21-2022–00001 has been implemented with the support provided by the Recovery and Resilience Facility (RRF), financed under the National Recovery Fund budget estimate, RRF-2.3.1-21 funding scheme.

这项研究得到了国家研究、发展和创新基金来源的文化与创新部的ÚNKP-23-2-I-TE-8新国家卓越计划的支持。项目编号RRF-2.3.1-21-2022-00001已在恢复和复原基金(RRF)的支持下实施,该基金由国家恢复基金预算估算RRF-2.3.1-21资助计划资助。

This study was supported by the strategic research fund of the University of Veterinary Medicine Budapest (Grant No. SRF-001.).Author informationAuthors and AffiliationsDivision of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, Budapest, 1078, HungaryMáté Mackei, Fanni Huber, Csilla Sebők, Júlia Vöröházi, Patrik Tráj, Rege Anna Márton, Evelin Horváth, Zsuzsanna Neogrády & Gábor MátisNational Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, Budapest, 1078, HungaryMáté Mackei, Rege Anna Márton & Gábor MátisAuthorsMáté MackeiView author publicationsYou can also search for this author in.

这项研究得到了布达佩斯兽医大学战略研究基金的支持(批准号SRF-001)。作者信息作者和附属机构布达佩斯兽医大学生理学和生物化学系生物化学系,布达佩斯伊斯特万街2号,1078年,HungaryMátéMackei,Fanni Huber,Csilla Sebők,Júlia Vöröházi,Patrik TráJ,Rege Anna Márton,Evelin Horváth,Zsuzzanna Neogrády&Gábor Mátis传染病,抗菌素耐药性,兽医公共卫生和食品链安全国家实验室,布达佩斯兽医大学,伊斯特万街2号,布达佩斯Apest,1078,HungaryMátéMackei,Rege Anna Márton&Gábor MátisAuthorsMátéMackeiView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarFanni HuberView author publicationsYou can also search for this author in

PubMed Google ScholarFanni HuberView作者出版物您也可以在

PubMed Google ScholarCsilla SebőkView author publicationsYou can also search for this author in

PubMed Google ScholarCsilla SebőkView作者出版物您也可以在

PubMed Google ScholarJúlia VöröháziView author publicationsYou can also search for this author in

PubMed谷歌学术Júlia Vöröházi查看作者出版物您也可以在

PubMed Google ScholarPatrik TrájView author publicationsYou can also search for this author in

PubMed谷歌学术Patrik TrájView作者出版物您也可以在

PubMed Google ScholarRege Anna MártonView author publicationsYou can also search for this author in

PubMed Google ScholarRege Anna MártonView作者出版物您也可以在

PubMed Google ScholarEvelin HorváthView author publicationsYou can also search for this author in

PubMed Google ScholarEvelin HorváthView作者出版物您也可以在

PubMed Google ScholarZsuzsanna NeográdyView author publicationsYou can also search for this author in

PubMed谷歌奖学金Zsuzsanna Neogrády查看作者出版物您也可以在

PubMed Google ScholarGábor MátisView author publicationsYou can also search for this author in

PubMed Google ScholarGábor MátisView作者出版物您也可以在

PubMed Google ScholarContributionsMáté Mackei: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Project administration, Writing original draft, Writing review and editing, Software, Visualization, Supervision, Validation; Fanni Huber: Formal analysis, Investigation, Writing original draft, Software, Visualization; Csilla Sebők: Methodology, Supervision; Júlia Vörösházi: Investigation, Validation; Patrik Tráj: Investigation, Validation, Methodology; Rege Márton: Investigation, Formal analysis; Evelin Horváth: Investigation, Formal analysis; Zsuzsanna Neogrády: Conceptualization, Methodology, Resources, Writing review and editing, Supervision; Gábor Mátis: Conceptualization, Methodology, Investigation, Funding acquisition, Resources, Writing—Original Draft, Software, Visualization, Supervision.Corresponding authorCorrespondence to.

PubMed Google ScholarContributionsMátéMackei:概念化,方法论,形式分析,调查,资源,数据管理,项目管理,撰写原稿,撰写评论和编辑,软件,可视化,监督,验证;;Csilla Sebők:方法论,监督;Júlia Vörösházi:调查,验证;帕特里克·特拉杰:调查,验证,方法论;雷格·马尔顿:调查,形式分析;Evelin Horváth:调查,形式分析;Zsuzzanna Neogrady:概念化,方法论,资源,写作评论和编辑,监督;Gábor Mátis:概念化,方法论,调查,资金获取,资源,撰写原始草案,软件,可视化,监督。对应作者对应。

Máté Mackei.Ethics declarations

MátéMackei。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleMackei, M., Huber, F., Sebők, C. et al. Unraveling the acute sublethal effects of acetamiprid on honey bee neurological redox equilibrium.

转载和许可本文引用本文Mackei,M.,Huber,F.,Sebők,C。等人揭示了啶虫脒对蜜蜂神经氧化还原平衡的急性亚致死作用。

Sci Rep 14, 27514 (2024). https://doi.org/10.1038/s41598-024-79274-6Download citationReceived: 22 July 2024Accepted: 07 November 2024Published: 11 November 2024DOI: https://doi.org/10.1038/s41598-024-79274-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1427514(2024)。https://doi.org/10.1038/s41598-024-79274-6Download引文接收日期:2024年7月22日接受日期:2024年11月7日发布日期:2024年11月11日OI:https://doi.org/10.1038/s41598-024-79274-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsApis melliferaNeonicotinoidsOxidative stressGlutathioneMalondialdehydeColony collapse disorder

关键词SAPIS melliferaNeonicotinoidsOxidative stress谷胱甘肽二醛克隆衰竭障碍

相关知识

揭示啶虫脒对蜜蜂神经氧化还原平衡的急性亚致死效应
啶虫脒知识.doc
啶虫脒“高效杀虫指南”,6大注意!
呋虫胺和啶虫脒对韭菜蓟马防效较好
氟啶啶虫脒对蓟马有效吗
【五谷丰】啶虫脒“高效杀虫指南”,6大注意!
老牌农药吡虫啉与啶虫脒的科学使用
6%联菊·啶虫脒:绿色守护,精准击溃虫害新篇章!
土壤和叶际微生物对啶虫脒的降解作用
啶虫脒对花卉有药害? 花卉绿植有虫怎么办?

网址: 揭示啶虫脒对蜜蜂神经氧化还原平衡的急性亚致死效应 https://www.huajiangbk.com/newsview2465954.html

所属分类:花卉
上一篇: 三叶木通叶斑病防治药剂的室内筛选
下一篇: 华中农业大学植物科学技术学院导师

推荐分享