小麦苗期耐低磷相关基因位点的挖掘与候选基因分析
 来源: 时间:2025-10-31 05:05
                    
                
            	[1] Niu Y N, Xie G D, Xiao Y, Liu J Y, Zou H X, Qin K Y, Wang Y Y, Huang M D. The story of grain self-sufficiency: China's food security and food for thought. Food Energy Secur, 2022, 11: e344.[2] Zhang C, Tian H Q, Liu J Y, Wang S Q, Liu M L, Pan S F, Shi X Z. Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles, 2005, 19: 2004GB002296.[3] 戈应同, 王宇蕴, 徐翔, 李兰, 高江飞, 徐智. 有机肥增强植物磷素吸收利用机制研究进展. 中国土壤与肥料, 2024, (7): 228-235. Ge Y T, Wang Y Y, Xu X, Li L, Gao J F, Xu Z. Research progress on the mechanism of phosphorus absorption and utilization enhanced by organic fertilizer. Soil Fert Sci China, 2024, (7): 228-235 (in Chinese with English abstract).[4] Wang D, Lyu S L, Jiang P, Li Y X. Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci, 2017, 8: 817.
doi: 10.3389/fpls.2017.00817pmid: 28572810[5] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, Wang D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546.[6] Hari-Gowthem G, Kaur S, Sekhon B S, Sharma P, Chhuneja P. Genetic variation for phosphorus-use efficiency in diverse wheat germplasm. J Crop Improv, 2019, 33: 536-550.[7] Li X, Chen Y L, Xu Y Z, Sun H Y, Gao Y M, Yan P, Song Q L, Li S Q, Zhan A. Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 2024, 13: 3361.[8] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831-845.
doi: 10.3864/j.issn.0578-1752.2024.05.001 Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831-845 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.05.001[9] Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics, 2021, 22: 174.
doi: 10.1186/s12864-021-07425-4pmid: 33706703[10] Yuan Y, Zhang M, Zheng H, Kong F, Guo Y, Zhao Y, An Y. Detection of QTL for phosphorus efficiency and biomass traits at the seedling stage in wheat. Cereal Res Commun, 2020, 48: 517-524.
doi: 10.1007/s42976-020-00067-4[11] Dai Y, Li J F, Shi J T, Gao Y J, Ma H G, Wang Y G, Ma H X. Molecular characterization and marker development of the HMW-GS gene from Thinopyrum elongatum for improving wheat quality. Int J Mol Sci, 2023, 24: 11072.[12] Lin X L, Xu Y X, Wang D Z, Yang Y M, Zhang X Y, Bie X M, Gui L X, Chen Z X, Ding Y L, Mao L, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol Plant, 2024, 17: 438-459.[13] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742-2753.
doi: 10.3724/SP.J.1006.2024.41007 Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742-2753 (in Chinese with English abstract).[14] Seren Ü, Vilhjálmsson B J, Horton M W, Meng D Z, Forai P, Huang Y S, Long Q, Segura V, Nordborg M. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell, 2012, 24: 4793-4805.[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047 Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12047[16] Chao Z F, Chen Y Y, Ji C, Wang Y L, Huang X, Zhang C Y, Yang J, Song T, Wu J C, Guo L X, et al. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep, 2023, 24: e55542.[17] Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J, 2022, 20: 1807-1818.
doi: 10.1111/pbi.13865pmid: 35642379[18] Wang Q S, Tian F, Pan Y C, Buckler E S, Zhang Z W. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684.[19] Lin Y, Chen G D, Hu H Y, Yang X L, Zhang Z L, Jiang X J, Wu F K, Shi H R, Wang Q, Zhou K Y, et al. Phenotypic and genetic variation in phosphorous-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol, 2020, 20: 330.
doi: 10.1186/s12870-020-02492-3pmid: 32660424[20] Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal P K, Pandey R, Shrivastava M, Gaikwad K B, Bainsla N K, et al. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorus conditions in wheat (Triticum aestivum L.). Front Genet, 2022, 13: 984720.[21] Maqbool S, Saeed F, Maqbool A, Khan M I, Ali M, Rasheed A, Xia X C, He Z H. Genome-wide association study for phosphate responsive root hair length and density in bread wheat. Curr Plant Biol, 2023, 35: 100290.[22] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21: 431-445.
doi: 10.13430/j.cnki.jpgr.20190509001 Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y H, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. J Plant Genet Resour, 2020, 21: 431-445 (in Chinese with English abstract).[23] Yang B, Qiao L, Zheng X W, Zheng J, Wu B B, Li X H, Zhao J J. Quantitative trait loci mapping of heading date in wheat under phosphorus stress conditions. Genes, 2024, 15: 1150.[24] Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.[25] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289-4302.[26] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46: 1984-1993.
doi: 10.3864/j.issn.0578-1752.2013.10.003 Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46: 1984-1993 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.10.003[27] Bates D, Mächler M, Bolker B, Walker S.Fitting linear mixed-effects models Usinglme4. J Stat Soft, 2015, 67: 1-48.[28] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702pmid: 16380716[29] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945pmid: 10835412[30] Turner S D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw, 2018, 3: 731.[31] 李龙.小麦根系形态及抗旱相关生理性状的遗传解析. 中国农业科学院博士学位论文, 北京, 2017. Li L. Genetic Dissection of Root Morphology and Drought- tolerant Related Physiological Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).[32] Luo D Z, Usman M, Pang F, Zhang W J, Qin Y, Li Q, Li Y R, Xing Y X, Dong D F. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Sci Rep, 2024, 14: 11050.[33] Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, et al. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling. Int J Mol Sci, 2023, 24: 14840.[34] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses. Plants, 2023, 12: 2861.[35] Fadiji A E, Yadav A N, Santoyo G, Babalola O O. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res, 2023, 271: 127368.[36] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.[37] Soumya P R, Burridge A J, Singh N, Batra R, Pandey R, Kalia S, Rai V, Edwards K J. Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder's Affymetrix array. Sci Rep, 2021, 11: 7601.[38] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究. 河南农业科学, 2014, 43(5): 24-29. Yang W B, Cheng Y, Zhang Y, Lin D L, Li X, Xing G Z, Xu J, Zheng W M. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture. J Henan Agric Sci, 2014, 43(5): 24-29 (in Chinese with English abstract).[39] 郑继周, 张廷封, 杨文涛, 郑天存. 国审小麦新品种: 丰德存麦1号. 麦类作物学报, 2017, 37: 855. Zheng J Z, Zhang T F, Yang W T, Zheng T C. A new wheat variety - Fengdecunmai 1 No. J Triticeaae Crops, 2017, 37: 855 (in Chinese with English abstract).[40] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354-1360.[41] Liu B, Xu W Y, Niu Y X, Li Q Y, Cao B L, Qi J Y, Zhao Y D, Zhou Y L, Song L, Cui D K, et al. TaTCP6is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun, 2025, 16: 1683.[42] Han Y C, Liu N, Li C, Wang S W, Jia L H, Zhang R, Li H, Tan J F, Xue H W, Zheng W M. TaMADS2-3D, a MADS transcription factor gene, regulates phosphate starvation responses in plants. Crop J, 2022, 10: 243-253.[43] Guo C J, Zhao X L, Liu X M, Zhang L J, Gu J T, Li X J, Lu W J, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013, 237: 1163-1178.[44] Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. Identification of major quantitative trait loci for root diameter in synthetic hexaploid wheat under phosphorus-deficient conditions. J Appl Genet, 2017, 58: 437-447.
doi: 10.1007/s13353-017-0406-5pmid: 28887804[45] Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631-638.
doi: 10.1016/j.pbi.2006.09.003pmid: 17005440[46] Chen Z H, Jenkins G I, Nimmo H G. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol, 2008, 49: 1902-1906.[47] Akash, Parida A P, Srivastava A, Mathur S, Sharma A K, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem, 2021, 162: 349-362.[48] Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.[49] Jose J, Ghantasala S, Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci, 2020, 21: 4000.[50] Shi J C, Zhao B Y, Jin R, Hou L, Zhang X W, Dai H L, Yu N, Wang E T. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytol, 2022, 236: 2282-2293.
doi: 10.1111/nph.18546pmid: 36254112
	  
            
            
            
            
            doi: 10.3389/fpls.2017.00817pmid: 28572810[5] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, Wang D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546.[6] Hari-Gowthem G, Kaur S, Sekhon B S, Sharma P, Chhuneja P. Genetic variation for phosphorus-use efficiency in diverse wheat germplasm. J Crop Improv, 2019, 33: 536-550.[7] Li X, Chen Y L, Xu Y Z, Sun H Y, Gao Y M, Yan P, Song Q L, Li S Q, Zhan A. Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 2024, 13: 3361.[8] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831-845.
doi: 10.3864/j.issn.0578-1752.2024.05.001 Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831-845 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.05.001[9] Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics, 2021, 22: 174.
doi: 10.1186/s12864-021-07425-4pmid: 33706703[10] Yuan Y, Zhang M, Zheng H, Kong F, Guo Y, Zhao Y, An Y. Detection of QTL for phosphorus efficiency and biomass traits at the seedling stage in wheat. Cereal Res Commun, 2020, 48: 517-524.
doi: 10.1007/s42976-020-00067-4[11] Dai Y, Li J F, Shi J T, Gao Y J, Ma H G, Wang Y G, Ma H X. Molecular characterization and marker development of the HMW-GS gene from Thinopyrum elongatum for improving wheat quality. Int J Mol Sci, 2023, 24: 11072.[12] Lin X L, Xu Y X, Wang D Z, Yang Y M, Zhang X Y, Bie X M, Gui L X, Chen Z X, Ding Y L, Mao L, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol Plant, 2024, 17: 438-459.[13] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742-2753.
doi: 10.3724/SP.J.1006.2024.41007 Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742-2753 (in Chinese with English abstract).[14] Seren Ü, Vilhjálmsson B J, Horton M W, Meng D Z, Forai P, Huang Y S, Long Q, Segura V, Nordborg M. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell, 2012, 24: 4793-4805.[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047 Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12047[16] Chao Z F, Chen Y Y, Ji C, Wang Y L, Huang X, Zhang C Y, Yang J, Song T, Wu J C, Guo L X, et al. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep, 2023, 24: e55542.[17] Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J, 2022, 20: 1807-1818.
doi: 10.1111/pbi.13865pmid: 35642379[18] Wang Q S, Tian F, Pan Y C, Buckler E S, Zhang Z W. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684.[19] Lin Y, Chen G D, Hu H Y, Yang X L, Zhang Z L, Jiang X J, Wu F K, Shi H R, Wang Q, Zhou K Y, et al. Phenotypic and genetic variation in phosphorous-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol, 2020, 20: 330.
doi: 10.1186/s12870-020-02492-3pmid: 32660424[20] Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal P K, Pandey R, Shrivastava M, Gaikwad K B, Bainsla N K, et al. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorus conditions in wheat (Triticum aestivum L.). Front Genet, 2022, 13: 984720.[21] Maqbool S, Saeed F, Maqbool A, Khan M I, Ali M, Rasheed A, Xia X C, He Z H. Genome-wide association study for phosphate responsive root hair length and density in bread wheat. Curr Plant Biol, 2023, 35: 100290.[22] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21: 431-445.
doi: 10.13430/j.cnki.jpgr.20190509001 Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y H, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. J Plant Genet Resour, 2020, 21: 431-445 (in Chinese with English abstract).[23] Yang B, Qiao L, Zheng X W, Zheng J, Wu B B, Li X H, Zhao J J. Quantitative trait loci mapping of heading date in wheat under phosphorus stress conditions. Genes, 2024, 15: 1150.[24] Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.[25] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289-4302.[26] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46: 1984-1993.
doi: 10.3864/j.issn.0578-1752.2013.10.003 Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46: 1984-1993 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.10.003[27] Bates D, Mächler M, Bolker B, Walker S.Fitting linear mixed-effects models Usinglme4. J Stat Soft, 2015, 67: 1-48.[28] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702pmid: 16380716[29] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945pmid: 10835412[30] Turner S D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw, 2018, 3: 731.[31] 李龙.小麦根系形态及抗旱相关生理性状的遗传解析. 中国农业科学院博士学位论文, 北京, 2017. Li L. Genetic Dissection of Root Morphology and Drought- tolerant Related Physiological Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).[32] Luo D Z, Usman M, Pang F, Zhang W J, Qin Y, Li Q, Li Y R, Xing Y X, Dong D F. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Sci Rep, 2024, 14: 11050.[33] Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, et al. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling. Int J Mol Sci, 2023, 24: 14840.[34] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses. Plants, 2023, 12: 2861.[35] Fadiji A E, Yadav A N, Santoyo G, Babalola O O. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res, 2023, 271: 127368.[36] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.[37] Soumya P R, Burridge A J, Singh N, Batra R, Pandey R, Kalia S, Rai V, Edwards K J. Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder's Affymetrix array. Sci Rep, 2021, 11: 7601.[38] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究. 河南农业科学, 2014, 43(5): 24-29. Yang W B, Cheng Y, Zhang Y, Lin D L, Li X, Xing G Z, Xu J, Zheng W M. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture. J Henan Agric Sci, 2014, 43(5): 24-29 (in Chinese with English abstract).[39] 郑继周, 张廷封, 杨文涛, 郑天存. 国审小麦新品种: 丰德存麦1号. 麦类作物学报, 2017, 37: 855. Zheng J Z, Zhang T F, Yang W T, Zheng T C. A new wheat variety - Fengdecunmai 1 No. J Triticeaae Crops, 2017, 37: 855 (in Chinese with English abstract).[40] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354-1360.[41] Liu B, Xu W Y, Niu Y X, Li Q Y, Cao B L, Qi J Y, Zhao Y D, Zhou Y L, Song L, Cui D K, et al. TaTCP6is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun, 2025, 16: 1683.[42] Han Y C, Liu N, Li C, Wang S W, Jia L H, Zhang R, Li H, Tan J F, Xue H W, Zheng W M. TaMADS2-3D, a MADS transcription factor gene, regulates phosphate starvation responses in plants. Crop J, 2022, 10: 243-253.[43] Guo C J, Zhao X L, Liu X M, Zhang L J, Gu J T, Li X J, Lu W J, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013, 237: 1163-1178.[44] Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. Identification of major quantitative trait loci for root diameter in synthetic hexaploid wheat under phosphorus-deficient conditions. J Appl Genet, 2017, 58: 437-447.
doi: 10.1007/s13353-017-0406-5pmid: 28887804[45] Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631-638.
doi: 10.1016/j.pbi.2006.09.003pmid: 17005440[46] Chen Z H, Jenkins G I, Nimmo H G. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol, 2008, 49: 1902-1906.[47] Akash, Parida A P, Srivastava A, Mathur S, Sharma A K, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem, 2021, 162: 349-362.[48] Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.[49] Jose J, Ghantasala S, Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci, 2020, 21: 4000.[50] Shi J C, Zhao B Y, Jin R, Hou L, Zhang X W, Dai H L, Yu N, Wang E T. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytol, 2022, 236: 2282-2293.
doi: 10.1111/nph.18546pmid: 36254112
相关知识
利用GWAS关联分析挖掘调控小麦根系吸收矿质元素的基因
《大豆花色调控位点遗传定位及候选基因分析》.docx
菊花耐涝性的全基因组关联分析及候选基因挖掘
花生响应青枯菌侵染的转录组分析和抗病相关基因挖掘
月季等蔷薇科园林植物色香关联候选基因的挖掘
油菜紫薹性状调控位点图位克隆和候选基因功能分析
候选基因策略在植物遗传学中的应用
向日葵油酸含量QTL定位与关键候选基因的挖掘
牡丹花期相关性状的遗传解析及候选基因挖掘
十字花科蔬菜根肿病抗性基因挖掘与分子育种
网址: 小麦苗期耐低磷相关基因位点的挖掘与候选基因分析 https://www.huajiangbk.com/newsview2451009.html
| 上一篇: 关于拟推荐参加浙江省第十九届“挑 | 下一篇: 全球大豆用农药市场及新产品 | 
推荐分享
 
                
                
                
                - 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名
                                                
                        










