【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用
在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适中,包含了植物学中可量化的形态特征,以及明确的品种分类目标,几乎所有初学者的第一个分类模型都会基于此数据集构建。
本文将以鸢尾花识别任务为核心,从数据集背景出发,精准定义 “特征值” 与 “目标值” 的具体内容,通过数据可视化展示两者的关联关系,结合 Python 实战代码演示如何提取与使用这两类数据,最终说明它们在分类模型中的核心作用,为后续机器学习建模打下基础。
一、鸢尾花数据集背景:为什么它是入门首选?
鸢尾花数据集由英国统计学家罗纳德・费希尔(Ronald Fisher)在 1936 年发表的论文中提出,是机器学习领域最经典的 “多类别分类” 数据集之一,其核心优势在于:
数据量适中:包含 150 个样本,每个类别各 50 个样本,既避免了小样本的偶然性,又不会因数据量过大增加入门难度;
特征可量化:4 个特征均为连续型数值(如花瓣长度、萼片宽度),无需复杂的特征预处理;
类别易区分:3 个鸢尾花品种在形态特征上有明显差异,模型容易学习到分类规律;
无噪声干扰:数据集经过严格筛选,无缺失值、异常值,适合初学者专注于 “特征值 - 目标值” 的关联学习。
简言之,鸢尾花数据集是 “特征值” 与 “目标值” 对应关系的 “完美范例”,能帮助初学者快速建立对机器学习任务的基本认知。
二、核心定义 1:鸢尾花识别中的 “特征值”—— 哪些数据用于 “区分品种”?
在机器学习中,“特征值(Features)” 是指 “用于描述样本属性的可量化数据”,它们是模型判断 “样本属于哪个类别” 的依据。在鸢尾花识别任务中,特征值来源于鸢尾花的形态学特征—— 这些特征是植物学家长期观察后,确定的能区分不同品种的关键指标。
1. 4 个核心特征值:具体维度与含义
鸢尾花数据集的每个样本(即 1 株鸢尾花)包含 4 个特征值,均为长度类指标(单位:厘米),具体如下:
特征值名称(英文) 特征值名称(中文) 含义说明 取值范围(150 个样本统计) 核心作用 Sepal Length 萼片长度 鸢尾花萼片(花瓣外的绿色保护结构)的纵向长度 4.3~7.9 cm 区分 “山鸢尾” 与其他品种(山鸢尾萼片最短) Sepal Width 萼片宽度 鸢尾花萼片的横向宽度 2.0~4.4 cm 辅助区分 “山鸢尾”(山鸢尾萼片最宽) Petal Length 花瓣长度 鸢尾花花瓣(彩色观赏部分)的纵向长度 1.0~6.9 cm 最核心的区分特征(山鸢尾花瓣最短,维吉尼亚鸢尾最长) Petal Width 花瓣宽度 鸢尾花花瓣的横向宽度 0.1~2.5 cm 辅助验证花瓣长度的分类结果(与花瓣长度正相关)2. 特征值的本质:“可区分性” 是核心
为什么选择这 4 个特征作为 “区分品种的依据”?核心原因是不同品种的鸢尾花在这些特征上存在显著差异:
山鸢尾(Iris setosa):花瓣最短(1.0~2.0 cm)、萼片较宽(2.9~4.4 cm),特征与另外两个品种差异极大,仅凭花瓣长度就能轻松识别;
变色鸢尾(Iris versicolor):花瓣长度中等(3.0~5.1 cm)、花瓣宽度中等(1.0~1.8 cm),处于中间区间;
维吉尼亚鸢尾(Iris virginica):花瓣最长(4.5~6.9 cm)、花瓣宽度最宽(1.4~2.5 cm),与山鸢尾形成明显对比。
这种 “特征值差异” 是机器学习模型能实现分类的前提 —— 若所有品种的特征值都高度重叠(如花瓣长度都在 3~4 cm),则模型无法通过特征值判断品种。
三、核心定义 2:鸢尾花识别中的 “目标值”—— 模型要 “预测什么”?
在机器学习中,“目标值(Target)” 是指 “模型最终要预测的结果”,也称为 “标签(Label)”。在鸢尾花识别任务中,目标值是鸢尾花的品种类别—— 即通过 4 个特征值,让模型判断 “这株鸢尾花属于哪个品种”。
1. 3 个目标值类别:品种定义与编码
鸢尾花数据集的目标值包含 3 个不同的鸢尾花品种,在数据集中通常以 “英文名称” 或 “数字编码” 两种形式存在,具体对应关系如下:
品种英文名称 品种中文名称 数字编码(常用) 样本数量 核心形态特征(与特征值对应) Iris setosa 山鸢尾 0 50 花瓣短(1.0~2.0 cm)、萼片宽(2.9~4.4 cm) Iris versicolor 变色鸢尾 1 50 花瓣中等(3.0~5.1 cm)、颜色多为蓝紫色 Iris virginica 维吉尼亚鸢尾 1 50 花瓣长(4.5~6.9 cm)、花瓣边缘有锯齿2. 目标值的本质:“分类任务的结果标签”
鸢尾花识别属于 “多类别分类任务”(3 个类别),目标值的作用是:
训练阶段:告诉模型 “当前样本的特征值对应哪个品种”,让模型学习 “特征值→目标值” 的映射规律;
预测阶段:模型根据新样本的特征值,输出对应的目标值(品种),完成 “识别” 任务。
例如:当模型输入 “萼片长度 5.1 cm、萼片宽度 3.5 cm、花瓣长度 1.4 cm、花瓣宽度 0.2 cm” 的特征值时,应输出目标值 “0(山鸢尾)”—— 这是因为这组特征值完全符合山鸢尾的形态特征。
四、实战演示:鸢尾花数据集的特征值与目标值提取(Python 代码)
通过 Python 的scikit-learn库可直接加载鸢尾花数据集,直观查看特征值与目标值的具体形式,以下是完整代码演示:
1. 加载数据集并查看基本信息
# 导入必要库
from sklearn.datasets import load_iris
import pandas as pd
# 加载鸢尾花数据集
iris = load_iris()
# 1. 查看特征值相关信息
print("=== 特征值(Features)信息 ===")
print(f"特征值名称:{iris.feature_names}") # 输出4个特征的名称
print(f"特征值数据形状:{iris.data.shape}") # 输出(150, 4):150个样本,4个特征
print("前5个样本的特征值:")
print(iris.data[:5]) # 输出前5个样本的4个特征值(每行对应1个样本)
# 2. 查看目标值相关信息
print("n=== 目标值(Target)信息 ===")
print(f"目标值名称(品种):{iris.target_names}") # 输出3个品种名称
print(f"目标值数据形状:{iris.target.shape}") # 输出(150,):150个样本的目标值
print("前5个样本的目标值:")
print(iris.target[:5]) # 输出前5个样本的目标值(均为0,对应山鸢尾)
# 3. 将特征值与目标值合并为DataFrame,更直观查看
iris_df = pd.DataFrame(
data=iris.data,
columns=iris.feature_names
)
iris_df["target"] = iris.target # 添加目标值列
iris_df["target_name"] = iris_df["target"].map({0: "setosa", 1: "versicolor", 2: "virginica"}) # 映射为品种名称
print("n=== 特征值与目标值合并后的前5行数据 ===")
print(iris_df.head())
2. 输出结果解读
特征值输出:前 5 个样本的特征值均为 “萼片长度约 5.0 cm、萼片宽度约 3.5 cm、花瓣长度约 1.4 cm、花瓣宽度约 0.2 cm”,对应目标值 “0(山鸢尾)”,符合山鸢尾的特征;
目标值输出:前 5 个样本的目标值均为 0,说明前 50 个样本(索引 0~49)均为山鸢尾,后续 50~99 为变色鸢尾(目标值 1),100~149 为维吉尼亚鸢尾(目标值 2),数据集按品种顺序排列。
五、特征值与目标值的关联:可视化展示 “特征如何区分品种”
通过数据可视化(如散点图)可直观看到 “特征值差异如何对应目标值(品种)”,以下以 “花瓣长度” 和 “花瓣宽度” 两个核心特征为例,展示三者的区分关系:
1. 可视化代码
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 提取特征值和目标值
petal_length = iris.data[:, 2] # 第3列:花瓣长度
petal_width = iris.data[:, 3] # 第4列:花瓣宽度
target = iris.target # 目标值
target_names = iris.target_names # 品种名称
# 创建散点图
plt.figure(figsize=(10, 6))
colors = ['red', 'green', 'blue'] # 每个品种对应一种颜色
markers = ['o', 's', '^'] # 每个品种对应一种标记
for i, (color, marker) in enumerate(zip(colors, markers)):
# 筛选当前品种的特征值
mask = (target == i)
plt.scatter(
petal_length[mask],
petal_width[mask],
c=color,
marker=marker,
label=f'{target_names[i]}(目标值{i})',
s=80 # 点的大小
)
# 添加图表标签和图例
plt.xlabel('花瓣长度(cm)', fontsize=12)
plt.ylabel('花瓣宽度(cm)', fontsize=12)
plt.title('鸢尾花花瓣长度与宽度的分布(按品种区分)', fontsize=14)
plt.legend(fontsize=10)
plt.grid(alpha=0.3) # 添加网格线
plt.show()
2. 可视化结果解读
山鸢尾(目标值 0,红色圆点):花瓣长度集中在 1.0~2.0 cm,花瓣宽度集中在 0.1~0.6 cm,与另外两个品种完全分离,仅凭这两个特征就能 100% 正确识别;
变色鸢尾(目标值 1,绿色方形):花瓣长度 3.0~5.1 cm,花瓣宽度 1.0~1.8 cm,处于中间区域;
维吉尼亚鸢尾(目标值 2,蓝色三角形):花瓣长度 4.5~6.9 cm,花瓣宽度 1.4~2.5 cm,与变色鸢尾有少量重叠,但整体差异明显。
这一可视化结果清晰说明:特征值的差异是区分目标值(品种)的核心依据,而选择 “区分度高的特征”(如花瓣长度、花瓣宽度)能大幅提升模型的分类效果。
六、特征值与目标值在建模中的作用:从数据到模型的流程
理解特征值与目标值后,可进一步明确它们在鸢尾花识别建模中的具体作用,完整流程如下:
1. 数据拆分:特征值与目标值的 “训练 - 测试” 划分
将数据集分为 “训练集” 和 “测试集”,训练集用于让模型学习 “特征值→目标值” 的规律,测试集用于验证模型的识别效果:
from sklearn.model_selection import train_test_split
# 特征值X,目标值y
X = iris.data # 150×4的特征矩阵
y = iris.target # 150×1的目标向量
# 拆分训练集(80%)和测试集(20%)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42 # random_state确保结果可复现
)
print(f"训练集特征值形状:{X_train.shape},训练集目标值形状:{y_train.shape}")
print(f"测试集特征值形状:{X_test.shape},测试集目标值形状:{y_test.shape}")
2. 模型训练:用训练集的 “特征值 - 目标值” 学习规律
以简单的 “逻辑回归” 模型为例,训练模型学习特征值与目标值的映射关系:
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 初始化模型
model = LogisticRegression(max_iter=200) # max_iter增大以确保收敛
# 训练模型:输入训练集特征值X_train,目标值y_train
model.fit(X_train, y_train)
# 模型预测:输入测试集特征值X_test,输出预测目标值y_pred
y_pred = model.predict(X_test)
# 评估模型:比较预测目标值y_pred与真实目标值y_test的一致性(准确率)
accuracy = accuracy_score(y_test, y_pred)
print(f"模型在测试集上的准确率:{accuracy:.2f}") # 典型结果:准确率≈1.0(100%)
3. 结果解读:特征值与目标值的 “预测闭环”
模型训练阶段:通过 120 个训练样本的 “4 个特征值” 和对应的 “目标值”,学习到 “花瓣长度 > 4.5 cm→目标值 2(维吉尼亚鸢尾)”“花瓣长度 < 2.0 cm→目标值 0(山鸢尾)” 等规律;
模型预测阶段:输入测试集的特征值(如 “花瓣长度 5.1 cm、花瓣宽度 2.0 cm”),模型根据训练学到的规律,输出目标值 “2(维吉尼亚鸢尾)”,与真实目标值一致,实现准确识别。
七、总结:特征值与目标值是机器学习的 “基石”
在鸢尾花识别案例中,特征值与目标值的关系可概括为:
特征值是 “因”:是模型用于判断的 “依据”,需具备 “可量化、可区分” 的特点;
目标值是 “果”:是模型最终要预测的 “结果”,需明确、无歧义;
两者的关联是 “模型学习的核心”:模型的本质就是寻找 “特征值→目标值” 的映射规律,而高质量的 “特征值 - 目标值” 数据是模型效果的前提。
对初学者而言,通过鸢尾花案例理解这两个概念后,可轻松迁移到其他机器学习任务中 —— 例如:
手写数字识别:特征值是 “像素灰度值”,目标值是 “数字 0~9”;
客户流失预测:特征值是 “消费金额、登录频率”,目标值是 “是否流失(0/1)”。
掌握 “特征值是什么、目标值是什么”,是开启机器学习之旅的第一步,也是后续特征工程、模型选择的基础。
推荐学习书籍 《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~ !
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
相关知识
【CDA干货】鸢尾花判别分析:机器学习中的经典实践案例
案例:鸢尾花种类预测
机器学习 鸢尾花分类的原理和实现(二)
鸢尾花数据种类预测、分析与处理、scikit
使用KNN算法对鸢尾花种类预测【百变AI秀】
鸢尾花种类预测
机器学习(1)机器学习基础 && 鸢尾花数据集
【机器学习】任务二:波士顿房价的数据与鸢尾花数据分析及可视化
机器学习实战:鸢尾花分类
AI学习之 Hello World : 识别鸢尾花(Iris)【机器学习】
网址: 【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用 https://www.huajiangbk.com/newsview2438757.html
| 上一篇: 揭秘野生双肾草:图解识别与鉴别技 |
下一篇: 适合收藏的无刺仙人掌:品种、养护 |
推荐分享
- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
