细胞分裂素转运蛋白在细胞分裂素平衡和信号分布中的作用
来源:
时间:2025-09-23 14:53
[1] Zhao, J., Ding, B., Zhu, E., et al. (2021) Phloem Unloading via the Apoplastic Pathway Is Essential for Shoot Distribution of Root-Synthesized Cytokinins. Plant Physiology, 186, 2111-2123.
https://doi.org/10.1093/plphys/kiab188 [2] He, Q., Yuan, R., Zhang, T., et al. (2022) Arabidopsis TIE1 and TIE2 Transcriptional Repressors Dampen Cytokinin Response during Root Development. Science Advances, 8, eabn5057.
https://doi.org/10.1126/sciadv.abn5057 [3] Osugi, A. and Sakakibara, H. (2015) Q&A: How Do Plants Respond to Cytokinins and What Is Their Importance? BMC Biology, 13, Article No. 102.
https://doi.org/10.1186/s12915-015-0214-5 [4] Hwang, I., Sheen, J. and Müller, B. (2012) Cytokinin Signaling Networks. Annual Review of Plant Biology, 63, 353-380.
https://doi.org/10.1146/annurev-arplant-042811-105503 [5] Argueso, C.T., Ferreira, F.J., Epple, P., et al. (2012) Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLOS Genetics, 8, e1002448.
https://doi.org/10.1371/journal.pgen.1002448 [6] Zancani, M., Braidot, E., Filippi, A., et al. (2020) Structural and Functional Properties of Plant Mitochondrial F-ATP Synthase. Mitochondrion, 53, 178-193.
https://doi.org/10.1016/j.mito.2020.06.001 [7] Sakakibara, H. (2005) Cytokinin Biosynthesis and Regulation. Vitamins and Hormones, 72, 271-287.
https://doi.org/10.1016/S0083-6729(05)72008-2 [8] Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis Thaliana. The Journal of Biological Chemistry, 276, 26405-26410.
https://doi.org/10.1074/jbc.M102130200 [9] Kakimoto, T. (2001) Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferases. Plant & Cell Physiology, 42, 677-685.
https://doi.org/10.1093/pcp/pce112 [10] Takei, K., Yamaya, T. and Sakakibara, H. (2004) Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of Trans-Zeatin. The Journal of Biological Chemistry, 279, 41866-41872.
https://doi.org/10.1074/jbc.M406337200 [11] Kiba, T., Takei, K., Kojima, M., et al. (2013) Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 27, 452-461.
https://doi.org/10.1016/j.devcel.2013.10.004 [12] Tokunaga, H., Kojima, M., Kuroha, T., et al. (2012) Arabidopsis Lonely Guy (LOG) Multiple Mutants Reveal a Central Role of the LOG-Dependent Pathway in Cytokinin Activation. The Plant Journal, 69, 355-365.
https://doi.org/10.1111/j.1365-313X.2011.04795.x [13] Kuroha, T., Tokunaga, H., Kojima, M., et al. (2009) Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell, 21, 3152-3169.
https://doi.org/10.1105/tpc.109.068676 [14] Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., et al. (2008) Cytokinins Are Central Regulators of Cambial Activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 20027-20031.
https://doi.org/10.1073/pnas.0805619105 [15] Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., et al. (2006) Roles of Arabidopsis ATP/ADP Isopentenyltransferases and TRNA Isopentenyltransferases in Cytokinin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 16598-16603.
https://doi.org/10.1073/pnas.0603522103 [16] Kurakawa, T., Ueda, N., Maekawa, M., et al. (2007) Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature, 445, 652-655.
https://doi.org/10.1038/nature05504 [17] Samanovic, M.I., Tu, S., Novák, O., et al. (2015) Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium Tuberculosis against Nitric Oxide. Molecular Cell, 57, 984-994.
https://doi.org/10.1016/j.molcel.2015.01.024 [18] Radhika, V., Ueda, N., Tsuboi, Y., et al. (2015) Methylated Cytokinins from the Phytopathogen Rhodococcus Fascians Mimic Plant Hormone Activity. Plant Physiology, 169, 1118-1126.
https://doi.org/10.1104/pp.15.00787 [19] Hinsch, J., Vrabka, J., Oeser, B., et al. (2015) De Novo Biosynthesis of Cytokinins in the Biotrophic Fungus Claviceps Purpurea. Environmental Microbiology, 17, 2935-2951.
https://doi.org/10.1111/1462-2920.12838 [20] Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Dephosphorylation of Cytokinin Ribonucleotide by 5’-Nucleotidases from Wheat Germ Cytosol. Plant Physiology, 67, 494-498.
https://doi.org/10.1104/pp.67.3.494 [21] Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Deribosylation of Cytokinin Ribonucleoside by Adenosine Nucleosidase from Wheat Germ Cells. Plant Physiology, 68, 1020-1023.
https://doi.org/10.1104/pp.68.5.1020 [22] Wu, B., Meng, J., Liu, H., et al. (2023) Suppressing a Phosphohydrolase of Cytokinin Nucleotide Enhances Grain Yield in Rice. Nature Genetics, 55, 1381-1389.
https://doi.org/10.1038/s41588-023-01454-3 [23] Kojima, M., Makita, N., Miyata, K., et al. (2023) A Cell Wall-Localized Cytokinin/Purine Riboside Nucleosidase Is Involved in Apoplastic Cytokinin Metabolism in Oryza Sativa. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217708120.
https://doi.org/10.1073/pnas.2217708120 [24] Kasahara, H., Takei, K., Ueda, N., et al. (2004) Distinct Isoprenoid Origins of Cis-and Trans-Zeatin Biosyntheses in Arabidopsis. The Journal of Biological Chemistry, 279, 14049-14054.
https://doi.org/10.1074/jbc.M314195200 [25] Sharma, A., Prakash, S. and Chattopadhyay, D. (2022) Killing Two Birds with a Single Stone-Genetic Manipulation of Cytokinin Oxidase/Dehydrogenase (CKX) Genes for Enhancing Crop Productivity and Amelioration of Drought Stress Response. Frontiers in Genetics, 13, Article 941595.
https://doi.org/10.3389/fgene.2022.941595 [26] Schmülling, T., Werner, T., Riefler, M., et al. (2003) Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. Journal of Plant Research, 116, 241-252.
https://doi.org/10.1007/s10265-003-0096-4 [27] Houba-Hérin, N., Pethe, C., D’alayer, J., et al. (1999) Cytokinin Oxidase from Zea Mays: Purification, CDNA Cloning and Expression in Moss Protoplasts. The Plant Journaly, 17, 615-626.
https://doi.org/10.1046/j.1365-313X.1999.00408.x [28] Morris, R.O., Bilyeu, K.D., Laskey, J.G., et al. (1999) Isolation of a Gene Encoding a Glycosylated Cytokinin Oxidase from Maize. Biochemical and Biophysical Research Communications, 255, 328-333.
https://doi.org/10.1006/bbrc.1999.0199 [29] Werner, T., Motyka, V., Laucou, V., et al. (2003) Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell, 15, 2532-2550.
https://doi.org/10.1105/tpc.014928 [30] Bartrina, I., Otto, E., Strnad, M., et al. (2011) Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis Thaliana. Plant Cell, 23, 69-80.
https://doi.org/10.1105/tpc.110.079079 [31] Fusconi, A. (2014) Regulation of Root Morphogenesis in Arbuscular Mycorrhizae: What Role Do Fungal Exudates, Phosphate, Sugars and Hormones Play in Lateral Root Formation? Annals of Botany, 113, 19-33.
https://doi.org/10.1093/aob/mct258 [32] Albacete, A., Ghanem, M.E., Martínez-Andújar, C., et al. (2008) Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. Journal of Experimental Botany, 59, 4119-4131.
https://doi.org/10.1093/jxb/ern251 [33] Wang, Y., Li, K. and Li, X. (2009) Auxin Redistribution Modulates Plastic Development of Root System Architecture Under Salt Stress in Arabidopsis Thaliana. Journal of Plant Physiology, 166, 1637-1645.
https://doi.org/10.1016/j.jplph.2009.04.009 [34] Jeon, J., Kim, N.Y., Kim, S., et al. (2010) A Subset of Cytokinin Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. The Journal of Biological Chemistry, 285, 23371-23386.
https://doi.org/10.1074/jbc.M109.096644 [35] Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of Cytokinin Biosynthetic Isopentenyltransferase Genes in Arabidopsis: Tissue Specificity and Regulation by Auxin, Cytokinin, and Nitrate. The Plant Journal, 37, 128-138.
https://doi.org/10.1046/j.1365-313X.2003.01945.x [36] Huo, R., Liu, Z., Yu, X., et al. (2020) The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. International Journal of Molecular Sciences, 21, Article 4898.
https://doi.org/10.3390/ijms21144898 [37] Kroll, C.K. and Brenner, W.G. (2020) Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 11, Article 604489.
https://doi.org/10.3389/fpls.2020.604489 [38] Müller, B. and Sheen, J. (2007) Cytokinin Signaling Pathway. Science’s STKE, 2007, cm4.
https://doi.org/10.1126/stke.4072007cm4 [39] Yamada, H., Suzuki, T., Terada, K., et al. (2001) The Arabidopsis AHK4 Histidine Kinase Is a Cytokinin-Binding Receptor That Transduces Cytokinin Signals across the Membrane. Plant & Cell Physiology, 42, 1017-1023.
https://doi.org/10.1093/pcp/pce127 [40] Kieber, J.J. and Schaller, G.E. (2018) Cytokinin Signaling in Plant Development. Development, 145, dev149344.
https://doi.org/10.1242/dev.149344 [41] Caesar, K., Thamm, A.M., Witthoft, J., et al. (2011) Evidence for the Localization of the Arabidopsis Cytokinin Receptors AHK3 and AHK4 in the Endoplasmic Reticulum. Journal of Experimental Botany, 62, 5571-5580.
https://doi.org/10.1093/jxb/err238 [42] Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., et al. (2017) Opposite Roles of the Arabidopsis Cytokinin Receptors AHK2 and AHK3 in the Expression of Plastid Genes and Genes for the Plastid Transcriptional Machinery during Senescence. Plant Molecular Biology, 93, 533-546.
https://doi.org/10.1007/s11103-016-0580-6 [43] Sun, L., Zhang, Q., Wu, J., et al. (2014) Two Rice Authentic Histidine Phosphotransfer Proteins, OsAHP1 and OsAHP2, Mediate Cytokinin Signaling and Stress Responses in Rice. Plant Physiology, 165, 335-345.
https://doi.org/10.1104/pp.113.232629 [44] Lomin, S.N., Yonekura-Sakakibara, K., Romanov, G.A., et al. (2011) Ligand-Binding Properties and Subcellular Localization of Maize Cytokinin Receptors. Journal of Experimental Botany, 62, 5149-5159.
https://doi.org/10.1093/jxb/err220 [45] Ding, W., Tong, H., Zheng, W., et al. (2017) Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. Frontiers in Plant Science, 8, Article 88.
https://doi.org/10.3389/fpls.2017.00088 [46] Wulfetange, K., Lomin, S.N., Romanov, G.A., et al. (2011) the Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum. Plant Physiology, 156, 1808-1818.
https://doi.org/10.1104/pp.111.180539 [47] Hejátko, J., Ryu, H., Kim, G.T., et al. (2009) the Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots. Plant Cell, 21, 2008-2021.
https://doi.org/10.1105/tpc.109.066696 [48] Hwang, I. and Sheen, J. (2001) Two-Component Circuitry in Arabidopsis Cytokinin Signal Transduction. Nature, 413, 383-389.
https://doi.org/10.1038/35096500 [49] Romanov, G.A., Lomin, S.N. and Schmülling, T. (2018) Cytokinin Signaling: from the ER or from the PM? That Is the Question! The New Phytologist, 218, 41-53.
https://doi.org/10.1111/nph.14991 [50] Lomin, S.N., Krivosheev, D.M., Steklov, M.Y., et al. (2012) Receptor Properties and Features of Cytokinin Signaling. Acta Naturae, 4, 31-45.
https://doi.org/10.32607/20758251-2012-4-3-31-45 [51] Jeon, J. and Kim, J. (2013) Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling. Plant Physiology, 161, 408-424.
https://doi.org/10.1104/pp.112.207621 [52] Hirose, N., Makita, N., Kojima, M., et al. (2007) Overexpression of a Type—A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant & Cell Physiology, 48, 523-539.
https://doi.org/10.1093/pcp/pcm022 [53] To, J.P. and Kieber, J.J. (2008) Cytokinin Signaling: Two-Components and More. Trends in Plant Science, 13, 85-92.
https://doi.org/10.1016/j.tplants.2007.11.005 [54] Horák, J., Grefen, C., Berendzen, K.W., et al. (2008) The Arabidopsis Thaliana Response Regulator ARR22 Is a Putative AHP Phospho-Histidine Phosphatase Expressed in the Chalaza of Developing Seeds. BMC Plant Biology, 8, Article No. 77.
https://doi.org/10.1186/1471-2229-8-77 [55] Feng, J., Shi, Y., Yang, S., et al. (2017) 3—Cytokinins. In: Li, J., Li, C. and Smith, S.M., Eds., Hormone Metabolism and Signaling in Plants, Academic Press, Cambridge, 77-106.
https://doi.org/10.1016/B978-0-12-811562-6.00003-7 [56] Perilli, S., Moubayidin, L. and Sabatini, S. (2010) The Molecular Basis of Cytokinin Function. Current Opinion in Plant Biology, 13, 21-26.
https://doi.org/10.1016/j.pbi.2009.09.018 [57] Wybouw, B. and De Rybel, B. (2019) Cytokinin—A Developing Story. Trends in Plant Science, 24, 177-185.
https://doi.org/10.1016/j.tplants.2018.10.012 [58] Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al. (2012) Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends in Plant Science, 17, 172-179.
https://doi.org/10.1016/j.tplants.2011.12.005 [59] Takei, K., Ueda, N., Aoki, K., et al. (2004) AtIPT3 Is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in Arabidopsis. Plant & Cell Physiology, 45, 1053-1062.
https://doi.org/10.1093/pcp/pch119 [60] Kang, J., Lee, Y., Sakakibara, H. and Martinoia, E. (2017) Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 22, 455-461.
https://doi.org/10.1016/j.tplants.2017.03.003 [61] Kamada-Nobusada, T. and Sakakibara, H. (2009) Molecular Basis for Cytokinin Biosynthesis. Phytochemistry, 70, 444-449.
https://doi.org/10.1016/j.phytochem.2009.02.007 [62] Mok, D.W. and Mok, M.C. (2001) Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118.
https://doi.org/10.1146/annurev.arplant.52.1.89 [63] Kakimoto, T. (2003) Perception and Signal Transduction of Cytokinins. Annual Review of Plant Biology, 54, 605-627.
https://doi.org/10.1146/annurev.arplant.54.031902.134802 [64] Zhang, K., Novak, O., Wei, Z., et al. (2014) Arabidopsis ABCG14 Protein Controls the Acropetal Translocation of Root-Synthesized Cytokinins. Nature Communications, 5, Article No. 3274.
https://doi.org/10.1038/ncomms4274 [65] Sasaki, T., Suzaki, T., Soyano, T., et al. (2014) Shoot-Derived Cytokinins Systemically Regulate Root Nodulation. Nature Communications, 5, Article No. 4983.
https://doi.org/10.1038/ncomms5983 [66] Liu, C.J., Zhao, Y. and Zhang, K. (2019) Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Frontiers in Plant Science, 10, Article 693.
https://doi.org/10.3389/fpls.2019.00693 [67] Do, T.H, T., Martinoia, E., Lee, Y., et al. (2021) 2021 Update on ATP-Binding Cassette (ABC) Transporters: How They Meet the Needs of Plants. Plant Physiology, 187, 1876-1892.
https://doi.org/10.1093/plphys/kiab193 [68] Zürcher, E., Liu, J., Di, Donato, M., et al. (2016) Plant Development Regulated by Cytokinin Sinks. Science, 353, 1027-1030.
https://doi.org/10.1126/science.aaf7254 [69] BÜRkle, L., Cedzich, A., Döpke, C., et al. (2003) Transport of Cytokinins Mediated by Purine Transporters of the PUP Family Expressed in Phloem, Hydathodes, and Pollen of Arabidopsis. The Plant Journal, 34, 13-26.
https://doi.org/10.1046/j.1365-313X.2003.01700.x [70] Tessi, T.M., Maurino, V.G., Shahriari, M., et al. (2023) AZG1 Is A Cytokinin Transporter That Interacts with Auxin Transporter PIN1 and Regulates the Root Stress Response. The New Phytologist, 238, 1924-1941.
https://doi.org/10.1111/nph.18879 [71] Tessi, T.M., Brumm, S., Winklbauer, E., et al. (2021) Arabidopsis AZG2 Transports Cytokinins in Vivo and Regulates Lateral Root Emergence. The New Phytologist, 229, 979-993.
https://doi.org/10.1111/nph.16943 [72] Girke, C., Daumann, M., Niopek-Witz, S., et al. (2014) Nucleobase and Nucleoside Transport and Integration into Plant Metabolism. Frontiers in Plant Science, 5, Article 443.
https://doi.org/10.3389/fpls.2014.00443 [73] Zhang, Y., Berman, A. and Shani, E. (2023) Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 74, 453-479.
https://doi.org/10.1146/annurev-arplant-070722-015329 [74] Verrier, P.J., Bird, D., Burla, B., et al. (2008) Plant ABC Proteins—A Unified Nomenclature and Updated Inventory. Trends in Plant Science, 13, 151-159.
https://doi.org/10.1016/j.tplants.2008.02.001 [75] Higgins, C.F. (1992) ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology, 8, 67-113.
https://doi.org/10.1146/annurev.cb.08.110192.000435 [76] Kieber, J.J. and Schaller, G.E. (2014) Cytokinins. The Arabidopsis Book, 12, e0168.
https://doi.org/10.1199/tab.0168 [77] Chatfield, S.P., Stirnberg, P., Forde, B.G., et al. (2000) the Hormonal Regulation of Axillary Bud Growth in Arabidopsis. The Plant Journal, 24, 159-169.
https://doi.org/10.1046/j.1365-313x.2000.00862.x [78] Ko, D., Kang, J., Kiba, T., et al. (2014) Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 111, 7150-7155.
https://doi.org/10.1073/pnas.1321519111 [79] Zhao, J., Yu, N., Ju, M., et al. (2019) ABC Transporter OsABCG18 Controls the Shootward Transport of Cytokinins and Grain Yield in Rice. Journal of Experimental Botany, 70, 6277-6291.
https://doi.org/10.1093/jxb/erz382 [80] Durán-Medina, Y., Díaz-Ramírez, D. and Marsch-Martínez, N. (2017) Cytokinins on the Move. Frontiers in Plant Science, 8, Article 146.
https://doi.org/10.3389/fpls.2017.00146 [81] Gillissen, B., Bürkle, L., André, B., et al. (2000) A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell, 12, 291-300.
https://doi.org/10.1105/tpc.12.2.291 [82] Xiao, Y., Zhang, J., Yu, G., et al. (2020) Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 11, Article 618560.
https://doi.org/10.3389/fpls.2020.618560 [83] Hu, Y., Patra, P., Pisanty, O., et al. (2023) Multi-Knock—A Multi-Targeted Genome-Scale CRISPR Toolbox to Overcome Functional Redundancy in Plants. Nature Plants, 9, 572-587.
https://doi.org/10.1038/s41477-023-01374-4 [84] Cecchetto, G., Amillis, S., Diallinas, G., et al. (2004) The AzgA Purine Transporter of Aspergillus nidulans. Characterization of a Protein Belonging to a New Phylogenetic Cluster. The Journal of Biological Chemistry, 279, 3132-3141.
https://doi.org/10.1074/jbc.M308826200 [85] Mansfield, T.A., Schultes, N.P. and Mourad, G.S. (2009) AtAzg1 and AtAzg2 Comprise a Novel Family of Purine Transporters in Arabidopsis. FEBS Letters, 583, 481-486.
https://doi.org/10.1016/j.febslet.2008.12.048 [86] Gray, J.H., Owen, R.P. and Giacomini, K.M. (2004) The Concentrative Nucleoside Transporter Family, SLC28. Pflügers Archiv, 447, 728-734.
https://doi.org/10.1007/s00424-003-1107-y [87] Cabrita, M.A., Baldwin, S.A., Young, J.D., et al. (2002) Molecular Biology and Regulation of Nucleoside and Nucleobase Transporter Proteins in Eukaryotes and Prokaryotes. Biochemistry and Cell Biology, 80, 623-638.
https://doi.org/10.1139/o02-153 [88] Ritzel, M.W., Ng, A.M., Yao, S.Y., et al. (2001) Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na -Nucleoside Cotransporter Proteins (HCNT3 and MCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System Cib). The Journal of Biological Chemistry, 276, 2914-2927.
https://doi.org/10.1074/jbc.M007746200 [89] Hyde, R.J., Cass, C.E., Young, J.D., et al. (2001) The ENT Family of Eukaryote Nucleoside and Nucleobase Transporters: Recent Advances in the Investigation of Structure/Function Relationships and the Identification of Novel Isoforms. Molecular Membrane Biology, 18, 53-63.
https://doi.org/10.1080/09687680118799 [90] Hirose, N., Makita, N., Yamaya, T., et al. (2005) Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiology, 138, 196-206.
https://doi.org/10.1104/pp.105.060137 [91] Hirose, N., Takei, K., Kuroha, T., et al. (2008) Regulation of Cytokinin Biosynthesis, Compartmentalization and Translocation. Journal of Experimental Botany, 59, 75-83.
https://doi.org/10.1093/jxb/erm157 [92] Cornelius, S., Traub, M., Bernard, C., et al. (2012) Nucleoside Transport across the Plasma Membrane Mediated by Equilibrative Nucleoside Transporter 3 Influences Metabolism of Arabidopsis Seedlings. Plant Biology, 14, 696-705.
https://doi.org/10.1111/j.1438-8677.2012.00562.x [93] Korobova, A., Kuluev, B., Möhlmann, T., et al. (2021) Limitation of Cytokinin Export to the Shoots by Nucleoside Transporter ENT3 and Its Linkage with Root Elongation in Arabidopsis. Cells, 10, Article 350.
https://doi.org/10.3390/cells10020350 [94] Sun, J., Hirose, N., Wang, X., et al. (2005) Arabidopsis SOI33/AtENT8 Gene Encodes A Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport in Planta. Journal of Integrative Plant Biology, 47, 588-603.
https://doi.org/10.1111/j.1744-7909.2005.00104.x [95] Letham, D.S. (2019) Cytokinins as Phytohormones—Sites of Biosynthesis, Translocation, and Function of Translocated Cytokinin. In: Mok, D.W.S., Ed., Cytokinins, CRC Press, Boca Raton, 57-80.
https://doi.org/10.1201/9781351071284-5
https://doi.org/10.1093/plphys/kiab188 [2] He, Q., Yuan, R., Zhang, T., et al. (2022) Arabidopsis TIE1 and TIE2 Transcriptional Repressors Dampen Cytokinin Response during Root Development. Science Advances, 8, eabn5057.
https://doi.org/10.1126/sciadv.abn5057 [3] Osugi, A. and Sakakibara, H. (2015) Q&A: How Do Plants Respond to Cytokinins and What Is Their Importance? BMC Biology, 13, Article No. 102.
https://doi.org/10.1186/s12915-015-0214-5 [4] Hwang, I., Sheen, J. and Müller, B. (2012) Cytokinin Signaling Networks. Annual Review of Plant Biology, 63, 353-380.
https://doi.org/10.1146/annurev-arplant-042811-105503 [5] Argueso, C.T., Ferreira, F.J., Epple, P., et al. (2012) Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLOS Genetics, 8, e1002448.
https://doi.org/10.1371/journal.pgen.1002448 [6] Zancani, M., Braidot, E., Filippi, A., et al. (2020) Structural and Functional Properties of Plant Mitochondrial F-ATP Synthase. Mitochondrion, 53, 178-193.
https://doi.org/10.1016/j.mito.2020.06.001 [7] Sakakibara, H. (2005) Cytokinin Biosynthesis and Regulation. Vitamins and Hormones, 72, 271-287.
https://doi.org/10.1016/S0083-6729(05)72008-2 [8] Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis Thaliana. The Journal of Biological Chemistry, 276, 26405-26410.
https://doi.org/10.1074/jbc.M102130200 [9] Kakimoto, T. (2001) Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferases. Plant & Cell Physiology, 42, 677-685.
https://doi.org/10.1093/pcp/pce112 [10] Takei, K., Yamaya, T. and Sakakibara, H. (2004) Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of Trans-Zeatin. The Journal of Biological Chemistry, 279, 41866-41872.
https://doi.org/10.1074/jbc.M406337200 [11] Kiba, T., Takei, K., Kojima, M., et al. (2013) Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 27, 452-461.
https://doi.org/10.1016/j.devcel.2013.10.004 [12] Tokunaga, H., Kojima, M., Kuroha, T., et al. (2012) Arabidopsis Lonely Guy (LOG) Multiple Mutants Reveal a Central Role of the LOG-Dependent Pathway in Cytokinin Activation. The Plant Journal, 69, 355-365.
https://doi.org/10.1111/j.1365-313X.2011.04795.x [13] Kuroha, T., Tokunaga, H., Kojima, M., et al. (2009) Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell, 21, 3152-3169.
https://doi.org/10.1105/tpc.109.068676 [14] Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., et al. (2008) Cytokinins Are Central Regulators of Cambial Activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 20027-20031.
https://doi.org/10.1073/pnas.0805619105 [15] Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., et al. (2006) Roles of Arabidopsis ATP/ADP Isopentenyltransferases and TRNA Isopentenyltransferases in Cytokinin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 16598-16603.
https://doi.org/10.1073/pnas.0603522103 [16] Kurakawa, T., Ueda, N., Maekawa, M., et al. (2007) Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature, 445, 652-655.
https://doi.org/10.1038/nature05504 [17] Samanovic, M.I., Tu, S., Novák, O., et al. (2015) Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium Tuberculosis against Nitric Oxide. Molecular Cell, 57, 984-994.
https://doi.org/10.1016/j.molcel.2015.01.024 [18] Radhika, V., Ueda, N., Tsuboi, Y., et al. (2015) Methylated Cytokinins from the Phytopathogen Rhodococcus Fascians Mimic Plant Hormone Activity. Plant Physiology, 169, 1118-1126.
https://doi.org/10.1104/pp.15.00787 [19] Hinsch, J., Vrabka, J., Oeser, B., et al. (2015) De Novo Biosynthesis of Cytokinins in the Biotrophic Fungus Claviceps Purpurea. Environmental Microbiology, 17, 2935-2951.
https://doi.org/10.1111/1462-2920.12838 [20] Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Dephosphorylation of Cytokinin Ribonucleotide by 5’-Nucleotidases from Wheat Germ Cytosol. Plant Physiology, 67, 494-498.
https://doi.org/10.1104/pp.67.3.494 [21] Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Deribosylation of Cytokinin Ribonucleoside by Adenosine Nucleosidase from Wheat Germ Cells. Plant Physiology, 68, 1020-1023.
https://doi.org/10.1104/pp.68.5.1020 [22] Wu, B., Meng, J., Liu, H., et al. (2023) Suppressing a Phosphohydrolase of Cytokinin Nucleotide Enhances Grain Yield in Rice. Nature Genetics, 55, 1381-1389.
https://doi.org/10.1038/s41588-023-01454-3 [23] Kojima, M., Makita, N., Miyata, K., et al. (2023) A Cell Wall-Localized Cytokinin/Purine Riboside Nucleosidase Is Involved in Apoplastic Cytokinin Metabolism in Oryza Sativa. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217708120.
https://doi.org/10.1073/pnas.2217708120 [24] Kasahara, H., Takei, K., Ueda, N., et al. (2004) Distinct Isoprenoid Origins of Cis-and Trans-Zeatin Biosyntheses in Arabidopsis. The Journal of Biological Chemistry, 279, 14049-14054.
https://doi.org/10.1074/jbc.M314195200 [25] Sharma, A., Prakash, S. and Chattopadhyay, D. (2022) Killing Two Birds with a Single Stone-Genetic Manipulation of Cytokinin Oxidase/Dehydrogenase (CKX) Genes for Enhancing Crop Productivity and Amelioration of Drought Stress Response. Frontiers in Genetics, 13, Article 941595.
https://doi.org/10.3389/fgene.2022.941595 [26] Schmülling, T., Werner, T., Riefler, M., et al. (2003) Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. Journal of Plant Research, 116, 241-252.
https://doi.org/10.1007/s10265-003-0096-4 [27] Houba-Hérin, N., Pethe, C., D’alayer, J., et al. (1999) Cytokinin Oxidase from Zea Mays: Purification, CDNA Cloning and Expression in Moss Protoplasts. The Plant Journaly, 17, 615-626.
https://doi.org/10.1046/j.1365-313X.1999.00408.x [28] Morris, R.O., Bilyeu, K.D., Laskey, J.G., et al. (1999) Isolation of a Gene Encoding a Glycosylated Cytokinin Oxidase from Maize. Biochemical and Biophysical Research Communications, 255, 328-333.
https://doi.org/10.1006/bbrc.1999.0199 [29] Werner, T., Motyka, V., Laucou, V., et al. (2003) Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell, 15, 2532-2550.
https://doi.org/10.1105/tpc.014928 [30] Bartrina, I., Otto, E., Strnad, M., et al. (2011) Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis Thaliana. Plant Cell, 23, 69-80.
https://doi.org/10.1105/tpc.110.079079 [31] Fusconi, A. (2014) Regulation of Root Morphogenesis in Arbuscular Mycorrhizae: What Role Do Fungal Exudates, Phosphate, Sugars and Hormones Play in Lateral Root Formation? Annals of Botany, 113, 19-33.
https://doi.org/10.1093/aob/mct258 [32] Albacete, A., Ghanem, M.E., Martínez-Andújar, C., et al. (2008) Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. Journal of Experimental Botany, 59, 4119-4131.
https://doi.org/10.1093/jxb/ern251 [33] Wang, Y., Li, K. and Li, X. (2009) Auxin Redistribution Modulates Plastic Development of Root System Architecture Under Salt Stress in Arabidopsis Thaliana. Journal of Plant Physiology, 166, 1637-1645.
https://doi.org/10.1016/j.jplph.2009.04.009 [34] Jeon, J., Kim, N.Y., Kim, S., et al. (2010) A Subset of Cytokinin Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. The Journal of Biological Chemistry, 285, 23371-23386.
https://doi.org/10.1074/jbc.M109.096644 [35] Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of Cytokinin Biosynthetic Isopentenyltransferase Genes in Arabidopsis: Tissue Specificity and Regulation by Auxin, Cytokinin, and Nitrate. The Plant Journal, 37, 128-138.
https://doi.org/10.1046/j.1365-313X.2003.01945.x [36] Huo, R., Liu, Z., Yu, X., et al. (2020) The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. International Journal of Molecular Sciences, 21, Article 4898.
https://doi.org/10.3390/ijms21144898 [37] Kroll, C.K. and Brenner, W.G. (2020) Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 11, Article 604489.
https://doi.org/10.3389/fpls.2020.604489 [38] Müller, B. and Sheen, J. (2007) Cytokinin Signaling Pathway. Science’s STKE, 2007, cm4.
https://doi.org/10.1126/stke.4072007cm4 [39] Yamada, H., Suzuki, T., Terada, K., et al. (2001) The Arabidopsis AHK4 Histidine Kinase Is a Cytokinin-Binding Receptor That Transduces Cytokinin Signals across the Membrane. Plant & Cell Physiology, 42, 1017-1023.
https://doi.org/10.1093/pcp/pce127 [40] Kieber, J.J. and Schaller, G.E. (2018) Cytokinin Signaling in Plant Development. Development, 145, dev149344.
https://doi.org/10.1242/dev.149344 [41] Caesar, K., Thamm, A.M., Witthoft, J., et al. (2011) Evidence for the Localization of the Arabidopsis Cytokinin Receptors AHK3 and AHK4 in the Endoplasmic Reticulum. Journal of Experimental Botany, 62, 5571-5580.
https://doi.org/10.1093/jxb/err238 [42] Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., et al. (2017) Opposite Roles of the Arabidopsis Cytokinin Receptors AHK2 and AHK3 in the Expression of Plastid Genes and Genes for the Plastid Transcriptional Machinery during Senescence. Plant Molecular Biology, 93, 533-546.
https://doi.org/10.1007/s11103-016-0580-6 [43] Sun, L., Zhang, Q., Wu, J., et al. (2014) Two Rice Authentic Histidine Phosphotransfer Proteins, OsAHP1 and OsAHP2, Mediate Cytokinin Signaling and Stress Responses in Rice. Plant Physiology, 165, 335-345.
https://doi.org/10.1104/pp.113.232629 [44] Lomin, S.N., Yonekura-Sakakibara, K., Romanov, G.A., et al. (2011) Ligand-Binding Properties and Subcellular Localization of Maize Cytokinin Receptors. Journal of Experimental Botany, 62, 5149-5159.
https://doi.org/10.1093/jxb/err220 [45] Ding, W., Tong, H., Zheng, W., et al. (2017) Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. Frontiers in Plant Science, 8, Article 88.
https://doi.org/10.3389/fpls.2017.00088 [46] Wulfetange, K., Lomin, S.N., Romanov, G.A., et al. (2011) the Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum. Plant Physiology, 156, 1808-1818.
https://doi.org/10.1104/pp.111.180539 [47] Hejátko, J., Ryu, H., Kim, G.T., et al. (2009) the Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots. Plant Cell, 21, 2008-2021.
https://doi.org/10.1105/tpc.109.066696 [48] Hwang, I. and Sheen, J. (2001) Two-Component Circuitry in Arabidopsis Cytokinin Signal Transduction. Nature, 413, 383-389.
https://doi.org/10.1038/35096500 [49] Romanov, G.A., Lomin, S.N. and Schmülling, T. (2018) Cytokinin Signaling: from the ER or from the PM? That Is the Question! The New Phytologist, 218, 41-53.
https://doi.org/10.1111/nph.14991 [50] Lomin, S.N., Krivosheev, D.M., Steklov, M.Y., et al. (2012) Receptor Properties and Features of Cytokinin Signaling. Acta Naturae, 4, 31-45.
https://doi.org/10.32607/20758251-2012-4-3-31-45 [51] Jeon, J. and Kim, J. (2013) Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling. Plant Physiology, 161, 408-424.
https://doi.org/10.1104/pp.112.207621 [52] Hirose, N., Makita, N., Kojima, M., et al. (2007) Overexpression of a Type—A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant & Cell Physiology, 48, 523-539.
https://doi.org/10.1093/pcp/pcm022 [53] To, J.P. and Kieber, J.J. (2008) Cytokinin Signaling: Two-Components and More. Trends in Plant Science, 13, 85-92.
https://doi.org/10.1016/j.tplants.2007.11.005 [54] Horák, J., Grefen, C., Berendzen, K.W., et al. (2008) The Arabidopsis Thaliana Response Regulator ARR22 Is a Putative AHP Phospho-Histidine Phosphatase Expressed in the Chalaza of Developing Seeds. BMC Plant Biology, 8, Article No. 77.
https://doi.org/10.1186/1471-2229-8-77 [55] Feng, J., Shi, Y., Yang, S., et al. (2017) 3—Cytokinins. In: Li, J., Li, C. and Smith, S.M., Eds., Hormone Metabolism and Signaling in Plants, Academic Press, Cambridge, 77-106.
https://doi.org/10.1016/B978-0-12-811562-6.00003-7 [56] Perilli, S., Moubayidin, L. and Sabatini, S. (2010) The Molecular Basis of Cytokinin Function. Current Opinion in Plant Biology, 13, 21-26.
https://doi.org/10.1016/j.pbi.2009.09.018 [57] Wybouw, B. and De Rybel, B. (2019) Cytokinin—A Developing Story. Trends in Plant Science, 24, 177-185.
https://doi.org/10.1016/j.tplants.2018.10.012 [58] Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al. (2012) Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends in Plant Science, 17, 172-179.
https://doi.org/10.1016/j.tplants.2011.12.005 [59] Takei, K., Ueda, N., Aoki, K., et al. (2004) AtIPT3 Is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in Arabidopsis. Plant & Cell Physiology, 45, 1053-1062.
https://doi.org/10.1093/pcp/pch119 [60] Kang, J., Lee, Y., Sakakibara, H. and Martinoia, E. (2017) Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 22, 455-461.
https://doi.org/10.1016/j.tplants.2017.03.003 [61] Kamada-Nobusada, T. and Sakakibara, H. (2009) Molecular Basis for Cytokinin Biosynthesis. Phytochemistry, 70, 444-449.
https://doi.org/10.1016/j.phytochem.2009.02.007 [62] Mok, D.W. and Mok, M.C. (2001) Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118.
https://doi.org/10.1146/annurev.arplant.52.1.89 [63] Kakimoto, T. (2003) Perception and Signal Transduction of Cytokinins. Annual Review of Plant Biology, 54, 605-627.
https://doi.org/10.1146/annurev.arplant.54.031902.134802 [64] Zhang, K., Novak, O., Wei, Z., et al. (2014) Arabidopsis ABCG14 Protein Controls the Acropetal Translocation of Root-Synthesized Cytokinins. Nature Communications, 5, Article No. 3274.
https://doi.org/10.1038/ncomms4274 [65] Sasaki, T., Suzaki, T., Soyano, T., et al. (2014) Shoot-Derived Cytokinins Systemically Regulate Root Nodulation. Nature Communications, 5, Article No. 4983.
https://doi.org/10.1038/ncomms5983 [66] Liu, C.J., Zhao, Y. and Zhang, K. (2019) Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Frontiers in Plant Science, 10, Article 693.
https://doi.org/10.3389/fpls.2019.00693 [67] Do, T.H, T., Martinoia, E., Lee, Y., et al. (2021) 2021 Update on ATP-Binding Cassette (ABC) Transporters: How They Meet the Needs of Plants. Plant Physiology, 187, 1876-1892.
https://doi.org/10.1093/plphys/kiab193 [68] Zürcher, E., Liu, J., Di, Donato, M., et al. (2016) Plant Development Regulated by Cytokinin Sinks. Science, 353, 1027-1030.
https://doi.org/10.1126/science.aaf7254 [69] BÜRkle, L., Cedzich, A., Döpke, C., et al. (2003) Transport of Cytokinins Mediated by Purine Transporters of the PUP Family Expressed in Phloem, Hydathodes, and Pollen of Arabidopsis. The Plant Journal, 34, 13-26.
https://doi.org/10.1046/j.1365-313X.2003.01700.x [70] Tessi, T.M., Maurino, V.G., Shahriari, M., et al. (2023) AZG1 Is A Cytokinin Transporter That Interacts with Auxin Transporter PIN1 and Regulates the Root Stress Response. The New Phytologist, 238, 1924-1941.
https://doi.org/10.1111/nph.18879 [71] Tessi, T.M., Brumm, S., Winklbauer, E., et al. (2021) Arabidopsis AZG2 Transports Cytokinins in Vivo and Regulates Lateral Root Emergence. The New Phytologist, 229, 979-993.
https://doi.org/10.1111/nph.16943 [72] Girke, C., Daumann, M., Niopek-Witz, S., et al. (2014) Nucleobase and Nucleoside Transport and Integration into Plant Metabolism. Frontiers in Plant Science, 5, Article 443.
https://doi.org/10.3389/fpls.2014.00443 [73] Zhang, Y., Berman, A. and Shani, E. (2023) Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 74, 453-479.
https://doi.org/10.1146/annurev-arplant-070722-015329 [74] Verrier, P.J., Bird, D., Burla, B., et al. (2008) Plant ABC Proteins—A Unified Nomenclature and Updated Inventory. Trends in Plant Science, 13, 151-159.
https://doi.org/10.1016/j.tplants.2008.02.001 [75] Higgins, C.F. (1992) ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology, 8, 67-113.
https://doi.org/10.1146/annurev.cb.08.110192.000435 [76] Kieber, J.J. and Schaller, G.E. (2014) Cytokinins. The Arabidopsis Book, 12, e0168.
https://doi.org/10.1199/tab.0168 [77] Chatfield, S.P., Stirnberg, P., Forde, B.G., et al. (2000) the Hormonal Regulation of Axillary Bud Growth in Arabidopsis. The Plant Journal, 24, 159-169.
https://doi.org/10.1046/j.1365-313x.2000.00862.x [78] Ko, D., Kang, J., Kiba, T., et al. (2014) Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 111, 7150-7155.
https://doi.org/10.1073/pnas.1321519111 [79] Zhao, J., Yu, N., Ju, M., et al. (2019) ABC Transporter OsABCG18 Controls the Shootward Transport of Cytokinins and Grain Yield in Rice. Journal of Experimental Botany, 70, 6277-6291.
https://doi.org/10.1093/jxb/erz382 [80] Durán-Medina, Y., Díaz-Ramírez, D. and Marsch-Martínez, N. (2017) Cytokinins on the Move. Frontiers in Plant Science, 8, Article 146.
https://doi.org/10.3389/fpls.2017.00146 [81] Gillissen, B., Bürkle, L., André, B., et al. (2000) A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell, 12, 291-300.
https://doi.org/10.1105/tpc.12.2.291 [82] Xiao, Y., Zhang, J., Yu, G., et al. (2020) Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 11, Article 618560.
https://doi.org/10.3389/fpls.2020.618560 [83] Hu, Y., Patra, P., Pisanty, O., et al. (2023) Multi-Knock—A Multi-Targeted Genome-Scale CRISPR Toolbox to Overcome Functional Redundancy in Plants. Nature Plants, 9, 572-587.
https://doi.org/10.1038/s41477-023-01374-4 [84] Cecchetto, G., Amillis, S., Diallinas, G., et al. (2004) The AzgA Purine Transporter of Aspergillus nidulans. Characterization of a Protein Belonging to a New Phylogenetic Cluster. The Journal of Biological Chemistry, 279, 3132-3141.
https://doi.org/10.1074/jbc.M308826200 [85] Mansfield, T.A., Schultes, N.P. and Mourad, G.S. (2009) AtAzg1 and AtAzg2 Comprise a Novel Family of Purine Transporters in Arabidopsis. FEBS Letters, 583, 481-486.
https://doi.org/10.1016/j.febslet.2008.12.048 [86] Gray, J.H., Owen, R.P. and Giacomini, K.M. (2004) The Concentrative Nucleoside Transporter Family, SLC28. Pflügers Archiv, 447, 728-734.
https://doi.org/10.1007/s00424-003-1107-y [87] Cabrita, M.A., Baldwin, S.A., Young, J.D., et al. (2002) Molecular Biology and Regulation of Nucleoside and Nucleobase Transporter Proteins in Eukaryotes and Prokaryotes. Biochemistry and Cell Biology, 80, 623-638.
https://doi.org/10.1139/o02-153 [88] Ritzel, M.W., Ng, A.M., Yao, S.Y., et al. (2001) Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na -Nucleoside Cotransporter Proteins (HCNT3 and MCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System Cib). The Journal of Biological Chemistry, 276, 2914-2927.
https://doi.org/10.1074/jbc.M007746200 [89] Hyde, R.J., Cass, C.E., Young, J.D., et al. (2001) The ENT Family of Eukaryote Nucleoside and Nucleobase Transporters: Recent Advances in the Investigation of Structure/Function Relationships and the Identification of Novel Isoforms. Molecular Membrane Biology, 18, 53-63.
https://doi.org/10.1080/09687680118799 [90] Hirose, N., Makita, N., Yamaya, T., et al. (2005) Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiology, 138, 196-206.
https://doi.org/10.1104/pp.105.060137 [91] Hirose, N., Takei, K., Kuroha, T., et al. (2008) Regulation of Cytokinin Biosynthesis, Compartmentalization and Translocation. Journal of Experimental Botany, 59, 75-83.
https://doi.org/10.1093/jxb/erm157 [92] Cornelius, S., Traub, M., Bernard, C., et al. (2012) Nucleoside Transport across the Plasma Membrane Mediated by Equilibrative Nucleoside Transporter 3 Influences Metabolism of Arabidopsis Seedlings. Plant Biology, 14, 696-705.
https://doi.org/10.1111/j.1438-8677.2012.00562.x [93] Korobova, A., Kuluev, B., Möhlmann, T., et al. (2021) Limitation of Cytokinin Export to the Shoots by Nucleoside Transporter ENT3 and Its Linkage with Root Elongation in Arabidopsis. Cells, 10, Article 350.
https://doi.org/10.3390/cells10020350 [94] Sun, J., Hirose, N., Wang, X., et al. (2005) Arabidopsis SOI33/AtENT8 Gene Encodes A Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport in Planta. Journal of Integrative Plant Biology, 47, 588-603.
https://doi.org/10.1111/j.1744-7909.2005.00104.x [95] Letham, D.S. (2019) Cytokinins as Phytohormones—Sites of Biosynthesis, Translocation, and Function of Translocated Cytokinin. In: Mok, D.W.S., Ed., Cytokinins, CRC Press, Boca Raton, 57-80.
https://doi.org/10.1201/9781351071284-5
相关知识
细胞分裂素的功能作用
LC-MS-植物细胞分裂素检测
一文了解植物细胞分裂素
【知识拓展】细胞分裂素能解除植物顶端优势的原理
细胞分裂素(细胞分裂素)
生长素和细胞分裂素对棉花幼苗根系顶端优势的调控作用
细胞分裂素概述.ppt
KNUCKLES 通过控制生长素分布和细胞分裂素活性来调节花分生组织终止,The Plant Cell
细胞分裂素的作用
细胞分裂素在植物有什么作用
网址: 细胞分裂素转运蛋白在细胞分裂素平衡和信号分布中的作用 https://www.huajiangbk.com/newsview2364878.html
上一篇: 细胞分裂素作用 |
下一篇: 细胞分裂素在草莓花和花托发育过程 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039
分享热点排名