首页 分享 外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPase及矿质营养吸收的影响

外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPase及矿质营养吸收的影响

来源:花匠小妙招 时间:2025-09-03 06:27

摘要: 重金属污染已成为全球范围的主要问题之一,其中土壤镉(Cd)污染已成为当今社会普遍关注的问题。镉是植物生长发育的非必需元素,极小浓度即可产生较大危害。一氧化氮(NO)是一种氧化还原信号分子和活性氮(RNS), 参与植物对重金属镉胁迫的应答。长春花(Catharanthus roseus)是我国广泛栽培的兼具园林绿化和抗癌药源等有重要价值的多年生草本花卉植物。为了解镉胁迫下外源NO 对园林地被植物生理响应的调控机制,采用盆栽试验研究了外源NO(硝普钠SNP)对镉胁迫下长春花幼苗生长、 活性氧代谢、 质膜ATPase酶和5'-核苷酸酶活性以及矿质营养元素吸收的影响。结果表明, 25 mg/kg 镉胁迫严重抑制长春花幼苗的生长,显著增加地上部和根系镉的富集量,抑制对大量元素和微量元素的吸收。施加0.45、 0.90、 1.80 mg/kg 的SNP显著降低镉从根系向地上部的转运,缓解因镉胁迫对钾(K)、 钙(Ca)、 镁(Mg) 和 铁(Fe)、 铜(Cu)、 锌(Zn) 吸收产生的抑制效应,降低镉胁迫的毒害作用,促进植物生长。镉胁迫下,丙二醛(MDA)含量和活性氧(O2和H2O2)水平显著升高。施加低浓度 SNP 能够显著缓解细胞质膜过氧化,降低硫代巴比妥酸反应产物(TBARS)堆积,且对抗氧化酶和ATPase酶具有相同作用。添加0.45、 0.90、 1.80 mg/kg 的SNP 可提高镉胁迫下长春花地上部和根系的抗氧化酶[过氧化氢酶(CAT)、 超氧化物歧化酶(SOD)、 过氧化物酶(POD)]活性与抗氧化物(还原型谷胱甘肽GSH)含量,诱导质膜H+-ATPase、 Ca2+-ATPase和 5-AMPase 活性提升到正常水平(对照CK)。添加1.80 mg/kg 的SNP对镉毒害的缓解作用最有效,而添加3.60、 7.20 mg/kg 的SNP的处理则无明显效果。

Abstract: Heavy metal pollution has become one of the major problems in the world, and soil cadmium (Cd) pollution is the most widespread pollution. Cd is a heavy metal without biological functions and highly toxic to organism, and its accumulation in soil is becoming a severe threat to plant growth. Nitric oxide (NO) is an oxidation reduction signaling molecule and a reactive nitrogen species (RNS) with diverse physiological functions in plants. Recently, many researchers found that NO plays an important role in mediating some biotic and abiotic stress-induced oxidative stresses in plant kingdom. The valuable ornamental plant Catharanthus roseus is an important landscaping and anticancer drug source plant which is widely distributed in city gardens and on roadsides in China. Our objective was to investigate the effects of exogenous NO with the sodium nitroprusside (SNP, an exogenous NO donor) on the plant growth, reactive oxygen species (O2 and H2O2), antioxidative enzymes, ATPase enzyme and mineral nutrition absorption in C. roseus seedlings under cadmium stress. A controlled pot-experiment was arranged with seven concentrations (CK, 0; Cd, 25 mg/kg Cd2+; T1, Cd2++0.45 mg/kg SNP; T2, Cd2++0.90 mg/kg SNP; T3, Cd2++1.80 mg/kg SNP; T4, Cd2++3.60 mg/kg SNP; T5, Cd2++7.20 mg/kg SNP). Morphological, ecological, physiological indexes were observed during the growth of C. roseus. The distribution of Cd, macro (K, Ca and Mg) and micronutrients (Fe, Cu and Zn) in C. roseus plants was determined after harvest. The results show that the addition of 25 mg/kg CdCl2 inhibits the growth of C. roseus seedlings, and dramatically increases accumulation of Cd in both shoots and roots, furthermore, the absorptions of macro and micronutrients are inhibited. Addition of 0.45 mg/kg, 0.90 mg/kg and 1.80 mg/kg SNP significantly decrease the transport of Cd from roots to shoots, alleviate the inhibition of K, Ca, Mg and Fe, Cu, Zn absorption induced by cadmium, reduce the toxicity symptoms, and promote the plant growth. The accumulation of ROS, including malondialdehyde (MDA) and superoxide radicals (O2) generation rate, significantly is increased in C. roseus seedlings exposed to the cadmium stress, and is resulted in the lipid peroxidation, which is indicated by accumulated concentration of thiobarbituric acid-reactive substances (TBARS). Addition of 0.45 mg/kg, 0.90 mg/kg and 1.80 mg/kg SNP significantly decrease the levels of O2 and H2O2, and lipid peroxidation. The activities of antioxidant enzymes also show the same changes. Addition of 0.45, 0.90 and 1.80 mg/kg SNP increase the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione (GSH) in C. roseus seedlings exposed to Cd. Simultaneously, addition of 0.45 mg/kg, 0.90 mg/kg and 1.80 mg/kg SNP can induce H+-ATPase, Ca2+-ATPase and 5-AMPase enzyme activity of plasma membrane to normal levels in shoots and roots. Addition of 1.80 mg/kg exogenous SNP has the most significant alleviating effect against cadmium toxicity, while the addition of 3.60 mg/kg and 7.20 mg/kg SNP have no significant effects with cadmium treatments.

[null] [1] Wu F Z, Yang W Q, Zhang J et al. Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil[J]. J. Hazard. Mater., 2010, 177, 268–273. [2] Wang Q H, Liang X, Dong Y J et al. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass[J]. Plant Growth Regul., 2013, 69, 11–20. [3] Prasad K V S K, Saradhi P P, Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea[J]. Environ. Exp. Bot., 1999, 42, 1–10. [4] Janicka–Russak M, Kaba?a K, Burzyński M. Different effect of cadmium and copper on H+–ATPase activity in plasma membrane vesicles from Cucumis sativus roots[J]. J. Exp. Bot., 2012, 63, 4133–4142. [5] Nocito F F, Lancilli C, Dendena B et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant Cell Environ., 2011, 34, 994–1008. [6] Wdowikowska A, K?obus G. Plant P–type ATPases[J]. Postepy Biochem., 2011, 57, 85–91. [7] Sgherri C L M, Maffei M,Navari–Izzo F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J]. Journal Plant Physiol., 2000, 157, 273–279. [8] Hsu Y T, Kao C H. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant Soil, 2007, 298, 231–241. [9] 刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响[J]. 草业学报, 2013, 22(3), 112–120. Liu SL, Shi XS, Pan YZ et al. Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus[J]. Acta Prat. Sin., 2013(3), 22, 112–120. [10] 刘柿良, 杨容孑, 潘远智, 等. 镉胁迫对长春花质膜过氧化、ATP酶及5'–核苷酸酶活性的影响[J]. 农业环境科学学报, 2013, 32(5): 916–914. Liu SL, Yang RJ, Pan YZ et al. Effects of cadmium on lipid peroxidation, ATPase and 5′–AMPase activity of plasma membrane in Catharanthus roseus tissues[J]. J. Agro-Environ. Sci., 2013, 32(5), 916–914. [11] 赵杨迪, 潘远智, 刘碧英. 玉竹对土壤Cd Pb的吸收和耐性研究[J]. 农业环境科学学报, 2012, 29(11), 2087–2093. Zhao YD, Pan YZ, Liu BY. Absorption and tolerance of Polygonatum odoratum to Cd and Pb in soil[J]. J. Agro-Environ. Sci., 2012, 29(11), 2087–2093. [12] Mujib A, Ilah A, Aslam J et al. Catharanthus roseus alkaloids: application of biotechnology for improving yield[J]. Plant Growth Regul., 2012, 68, 111–127. [13] Olivia G, Audrey O, Gégory G et al. A type-B response regulator drives the expression of the hydroxymethyl butenyl diphosphate synthase gene in periwinkle[J]. J. Plant Physiol., 2012, 169, 1571–1574. [14] Xu J, Wang W Y, Yin H X et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant Soil, 2010, 326, 321–330. [15] 刘建新, 胡浩斌, 王鑫. 外源一氧化氮供体对镉胁迫下黑麦草幼苗活性氧代谢、光合作用和叶黄素循环的影响[J]. 环境科学学报, 2009, 29(03), 626–633. Liu JX, Hu HB, Wang X. Effects of an exogenous nitric oxide donor on active oxygen metabolism, photosynthesis and the xanthophyll cycle in Ryegrass (Lolium perenne L.) seedlings under cadmium stress[J]. Acta Sci. Circumstantiae, 2009, 29(03), 626–633. [16] 刘柿良, 马明东, 潘远智, 等. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10), 1062–1074. Liu SL, Ma MD, Pan YZ et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chi. J. Plant Ecol., 2012, 36(10), 1062–1074. [17] Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV) [J]. Anal. Bioch., 1984, 139, 487–492. [18] Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxyl ammonium–chloride: a simple assay for superoxide dismutase[J]. Anal. Bioch., 1976, 70, 616–620. [19] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiol., 1992, 98, 1222–1227. [20] Jablonski P P, Anderson J W. Light–dependent reduction of dehydroascorbate by ruptured pea chloroplasts[J]. Plant Physiology, 1981,67, 1239–1244. [21] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiol., 1977, 59, 309–314. [22] Nickel R S, Cunningham B A. Improved peroxidase assay method using Ieuco 2, 3, 6–trichlcroindophenol and application to comparative measurements of peroxidase catalysis[J]. Anal. Bioch., 1969, 27, 292–299. [23] Nagalakshmi N, Prasad M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus[J]. Plant Sci., 2001, 160, 291–299. [24] Wang Y, Sze H. Similarities and differences between the tonoplast–type and the mitochondrial H+–ATPase of oat roots[J]. J. Biol. Chem., 1985, 260, 10434–10443. [25] 缪颖, 曹家树, 将有条, 等. 大白菜干烧心病发生过程中Ca2+–ATPase 活性的变化[J]. 园艺学报, 1998, 25(01), 51–55. Miao Y, Cao J S, Jiang Y T et al. Changes of Ca2+–ATPase activity in Inner leaves during the development of tipburn in Chinese cabbage[J]. Acta Horticult. Sin., 1998, 25(01), 51–55. [26] 潘杰, 孙龙华, 简令成. 不同抗冷水稻质5′–核苷酸酶活性的生化及细胞化学研究[J]. 科学通报, 1992, 77(7), 653–656. Pan J, Sun L H, Jian L C. Research on different cold rice plasma membrane 5'–nucleotidase activity of biochemical and cell chemical[J]. Chin. Sci. Bul., 1992, 77(7), 653–656. [27] Dinakar N, Nagajyothi P C, Suresh S et al. Cadimum induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. [J]. J. Environ. Biol., 2009, 30, 289–294. [28] Leshem Y Y, Hamaraty E. Plant aging: The emission of NO and ethylene and effect of NO–releasing compoundson growth of pea(Pisum sativum)foliage. J. Plant Physiol., 1996, 148, 258–263. [29] Besson–Bard A, Gravot A, Richaud P et al. Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up–regulating genes related to iron uptake[J]. Plant Physiol., 2009, 149, 1302–1315. [30] 朱涵毅, 陈益军, 劳佳丽, 等. 外源 NO 对镉胁迫下水稻幼苗抗氧化系统和微量元素积累的影响[J]. 生态学报, 2013, 33(2), 0603–0609. Zhu H Y, Chen Y J, Lao J L et al. The effect of exogenous nitric oxide on activities of antioxidant enzymes and microelements accumulation of two rice genotypes seedlings under cadmium stress[J]. Acta Ecol. Sin., 2013, 33(2), 0603–0609. [31] Hassan S A, Hayat S, Ali B A. 28–homobrassinolide protection garbanzo beans (Cicer arietinum) from cadmium toxic by stimulating antioxidants[J]. Environmental Pollution, 2008, 151, 60–66. [32] Lamattina L, Garcia–Mata C, Graziano M et al. Nitric oxide: the versatility of an extensive signal molecule[J]. Annu. Rev. Plant Biol., 2003, 54, 109–136. [33] Cui X M, Zhang Y K, Wu X B et al. The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants[J]. Plant Soil Environ., 2010, 56, 274–281. [34] Arasimowicz–Jelonek M, Floryszak–Wieczorek J, Deckert J et al. Nitric oxide implication in cadmium–induced programmed cell death in roots and signaling response of yellow lupine plants[J]. Plant Physiol. Biochem., 2012, 58, 124–134. [35] Graziano M, Beligni M V, Lamattina L. Nitric oxide improves internal iron availability in plants[J]. Plant Physiol., 2002, 130, 1852–1859. [36] Shi G R, Cai Q S, Liu C F et al. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes[J]. Plant Growth Regul., 2010, 61, 45–52. [37] Mishra S, Srivastava S, Tripathi R D et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. [J]. Plant Physiol. Biochem., 2006, 44, 25–37.

相关知识

外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响
长春花幼苗生理代谢对锌胁迫的响应特点及其受乙烯调控的研究
镉胁迫对多花黑麦草镉积累特征、生理抗性及超微结构的影响
遮光胁迫下外源NO对盆栽长春花土壤养分含量及幼苗生长特征的影响
干旱胁迫下外源ABA对姜叶片活性氧代谢的影响
盐碱胁迫下7种百合的生理响应及外源褪黑素对百合耐盐碱性的影响
NaCl胁迫下棉花幼苗的离子平衡
有机肥对镉胁迫下不同类型水稻生长发育和镉积累的影响
辣椒幼苗生理生化指标对镉胁迫的响应
外源钙对干旱胁迫下岩溶山区白刺花幼苗生长、生理特性的影响

网址: 外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPase及矿质营养吸收的影响 https://www.huajiangbk.com/newsview2297348.html

所属分类:花卉
上一篇: 放牧、氮添加对荒漠草原植物和土壤
下一篇: DSSAT在灌溉决策中实时数据分

推荐分享