首页 分享 基于GWAS和WGCNA分析挖掘玉米花期相关候选基因

基于GWAS和WGCNA分析挖掘玉米花期相关候选基因

来源:花匠小妙招 时间:2025-09-02 10:52
[1] Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L, Zhang Y L, Zou C Y, Lin H J, Gao S B, Lee M, Lübberstedt T, Pan G T, Shen Y. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188pmid: 31199064[2] Maldonado C, Mora F, Bertagna F A B, Kuki M C, Scapim C A. SNP-and haplotype-based GWAS of flowering-related traits in maize with network-assisted gene prioritization. Agronomy, 2019, 9: 725.
doi: 10.3390/agronomy9110725[3] Zhang H Y, Gao S, Li B Y, Zhong H X, Zhang Z C, Luo B W. Genome-wide association analysis of maize flowering traits. Asian Agric Res, 2020, 12: 43-46.[4] Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Sanchez Villeda H, Da Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J M, Zhang Z W, Kresovich S, Mcmullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714-718.
doi: 10.1126/science.1174276pmid: 19661422[5] Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot, 2014, 114: 1445-1458.
doi: 10.1093/aob/mcu032[6] Li Y X, Li C H, Bradbury P J, Liu X L, Lu F, Romay C M, Glaubitz J C, Wu X, Peng B, Shi Y S, Song Y, C Zhang D F, Buckler E S, Zhang Z W, Li Y, Wang T Y. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J, 2016, 86: 391-402.
doi: 10.1111/tpj.2016.86.issue-5[7] Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012, 7: e43450.
doi: 10.1371/journal.pone.0043450[8] 李真, 刘文童, 杨硕, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米花期性状的全基因组关联分析. 分子植物育种, 2020, 18: 37-45. Li Z, Liu W T, Yang S, Guo J J, Zhao Y F, Huang Y Q, Chen J T, Zhu L Y. Genome-wide association analysis of flowering time related traits in maize (Zea mays L.). Mol Plant Breed, 2020, 18: 37-45. (in Chinese with English abstract)[9] Yuan Y B, Cairns J E, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y B, Wang N, Hao Z F, San Vicente F, Olsen M S, Prasanna B M, Lu Y L, Zhang X C. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci, 2019, 30:1919.[10] Wang X T, Wu L J, Zhang S F, Wu L C, Ku L X, Wei X M, Xie L L, Chen Y H. Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep, 2011, 30: 1261-1272.
doi: 10.1007/s00299-011-1036-8[11] Alter P, Bircheneder S, Zhou L Z, Schlüter U, Gahrtz M, Sonnewald U, Dresselhaus T. Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant Physiol, 2016, 172: 389-404.
doi: 10.1104/pp.16.00285[12] Jin M L, Liu X G, Jia W, Liu H J, Li W Q, Peng Y, Du Y F, Wang Y B, Yin Y J, Zhang X H, Liu Q, Deng M, Li N, Cui X Y, Hao D Y, Yan J B. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J Integr Plant Biol, 2018, 60: 465-480.
doi: 10.1111/jipb.v60.6[13] Muszynski M G, Dam T, Li B L, Shirbroun D M, Hou Z L, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N. Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006, 142: 1523-1536.
pmid: 17071646[14] Colasanti J, Tremblay R, Wong A Y, Coneva V, Kozaki A, Mable B K. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics, 2006, 7: 158.
pmid: 16784536[15] Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, Van Beuningen L, Isaac P, Edwards K, Phillips R L. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol, 2002, 48: 601-613.
doi: 10.1023/A:1014838024509[16] Guo L, Wang X H, Zhao M, Huang C, Li C, Li D, Yang C J, York A M, Xue W, Xu G H, Liang Y, Chen Q Y, Doebley J F, Tian F. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr Biol, 2018, 28: 3005-3015.
doi: S0960-9822(18)30928-Xpmid: 30220503[17] Liang Y M, Liu Q, Wang X F, Huang C, Xu G H, Hey S, Lin H Y, Li C, Xu D Y, Wu L S, Wang C L, Wu W H, Xia J L, Han X, Lu S J, Lai J S, Song W B, Schnable P S, Tian F. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol, 2019, 221: 2335-2347.
doi: 10.1111/nph.2019.221.issue-4[18] Huang C, Sun H Y, Xu D Y, Chen Q Y, Liang Y M, Wang X F, Xu G H, Tian J G, Wang C L, Li D, Wu L S, Yang X H, Jin W W, Doebley J F, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115: E334-E341.[19] Hung H Y, Shannon L M, Tian F, Bradbury P J, Chen C, Flint-Garcia S A, Mcmullen M D, Ware D, Buckler E S, Doebley J F, Holland J B. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA, 2012, 109: E 1913-E1921.
doi: 10.1073/pnas.1117158109[20] 姜洪真, 马伯军, 钱前, 高振宇. 全基因组关联分析(GWAS)在作物农艺性状研究中的应用. 农业生物技术学报, 2018, 26: 1244-1257. Jiang H Z, Ma B J, Qian Q, Gao Z Y. The application of genome-wide association study (GWAS) in crop agronomic traits. J Agric Biotechnol, 2018, 26: 1244-1257. (in Chinese with English abstract)[21] 杨宇昕, 桑志勤, 许诚, 代文双, 邹枨. 利用WGCNA进行玉米花期基因共表达模块鉴定. 作物学报, 2019, 45: 161-174.
doi: 10.3724/SP.J.1006.2019.83053 Yang Y X, Sang Z Q, Xu C, Dai W S, Zou C. Identification of maize flowering gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45: 161-174. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83053[22] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络. 作物学报, 2023, 49: 672-685.
doi: 10.3724/SP.J.1006.2023.23017 Deng Z, Jiang H Q, Cheng L S, Liu R, Huang M, Li M F. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA. Acta Agron Sin, 2023, 49: 672-685. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.23017[23] Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, De Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9, 1-16.[24] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x[25] 刘小磊. 一种交替运用固定效应和随机效应模型优化全基因组关联分析的算法开发. 华中农业大学博士学位论文,湖北武汉, 2016. Liu X L. Development of an Iterative Usage of Fixed Effect and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)[26] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfor, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559[27] 鲜小华, 王嘉, 徐新福, 曲存民, 卢坤, 李加纳, 刘列钊. 整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点. 作物学报, 2018, 44: 1105-1113.
doi: 10.3724/SP.J.1006.2018.01105 Xian X H, Wang J, Xu X F, Qu C M, Lu K, Li J N, Liu L D. Mining yellow-seeded micro effect loci in B. napus by integrated GWAS and WGCNA analysis. Acta Agron Sin, 2018, 44: 1105-1113. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01105[28] Downs G S, Bi Y M, Colasanti J, Wu W Q, Chen X, Zhu T, Rothstein S J, Lukens L N. A developmental transcriptional network for maize defines co-expression modules. Plant Physiol, 2013, 161: 1830-1843.
doi: 10.1104/pp.112.213231[29] Sheehan M J, Kennedy L M, Costich D E, Brutnell T P. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007, 49: 338-353.
pmid: 17181778[30] Barnes A C, Rodríguez-Zapata F, Juárez-Núñez K A, Gates D J, Janzen G M, Kur A, Wang L, Jensen S E, Estévez-Palmas J M, Crow T M, Kavi H S, Pil H D, Stokes R L, Knizner K T, Aguilar-Rangel M R, Demesa-Arévalo E, Skopelitis T, Pérez-Limón S, Stutts W L, Thompson P, Chiu Y C, Jackson D, Muddiman D C, Fiehn O, Runcie D, Buckler E S, Ross-Ibarra J, Hufford M B, Sawers R J H, Rellán-Álvarez R. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc Natl Acad Sci USA, 2022, 119: e2100036119.
doi: 10.1073/pnas.2100036119[31] Bendix C, Mendoza J M, Stanley D N, Meeley R, Harmon F G. The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ, 2013, 36: 1379-1390.
doi: 10.1111/pce.2013.36.issue-7[32] Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010, 5: e12887.
doi: 10.1371/journal.pone.0012887[33] Castelletti S, Tuberosa R, Pindo M, Salvi S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. Genes Genet Genomic, 2014, 4: 805-812.[34] Liu L, Wu Y, Liao Z, Xiong J, Wu F, Xu J, Lan H, Tang Q, Zhou S, Liu Y, Lu Y. Evolutionary conservation and functional divergence of the LFK gene family play important roles in the photoperiodic flowering pathway of land plants. Heredity, 2018, 120: 310-328.
doi: 10.1038/s41437-017-0006-5pmid: 29225355[35] Li Q L, Liu B S. Genetic regulation of maize flower development and sex determination. Planta, 2017, 245:1-14.
doi: 10.1007/s00425-016-2607-2pmid: 27770199[36] Li D, Wang X F, Zhang X B, Chen Q Y, Xu G H, Xu D Y, Wang C L, Liang Y M, Wu L S, Huang C, Tian J G, Wu Y Y, Tian F. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol, 2016, 210: 256-268
doi: 10.1111/nph.13765pmid: 26593156[37] Mascheretti I, Battaglia R, Mainieri D, Altana A, Lauria M, Rossi V. The WD40-repeat proteins NFC101 and NFC102 regulate different aspects of maize development through chromatin modification. Plant Cell, 2013, 25: 404-420.
doi: 10.1105/tpc.112.107219[38] Pandey P, Srivastava P K, Pandey S P. Prediction of plant miRNA targets. Methods Mol Biol, 2019, 1932: 99-107.
doi: 10.1007/978-1-4939-9042-9_7pmid: 30701494[39] Ligaba-Osena A, Dimarco K, Richard T L, Hankoua B. The maize Corngrass1 miRNA-regulated developmental alterations are restored by a bacterial ADP-glucose pyrophosphorylase in transgenic tobacco. Int J Genomics, 2018, 2018: 8581258.[40] Piñeiro M, Gómez-Mena C, Schaffer R, Martínez-Zapater J M, Coupland G. Early bolting in short days is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell, 2003, 15: 1552-1562
pmid: 12837946[41] Mccormick A J, Kruger N J. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments. Plant J, 2015, 81: 670-683.
doi: 10.1111/tpj.2015.81.issue-5[42] 钱景华, 李增强, 廖小芳, 汤丹峰, 史奇奇, 周瑞阳, 陈鹏. 调控植物花发育的MYB类转录因子研究进展. 生物技术通讯, 2016, 27: 283-288. Qian J H, Li Z Q, Liao X F, Tang D F, Shi Q Q, Zhou R Y, Chen P. Advance on MYB transcription factors in regulating plant flower development. Lett Biotechnol, 2016, 27: 283-288. (in Chinese with English abstract)
doi: 10.1007/s10529-005-1811-0[43] Zhang X B, Chen Y H, Wang Z Y, Chen Z L, Gu H Y, Qu L J. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant J, 2007, 51: 512-525.
doi: 10.1111/tpj.2007.51.issue-3[44] Barth C, Tullio M D, Conklin P L. The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot, 2006, 57: 1657-1665.
pmid: 16698812[45] Liu H Y, Zhou X C, Li Q P, Wang L, Xing Y Z. CCT domain-containing genes in cereal crops: flowering time and beyond. Theor Appl Genet, 2020, 133: 1385-1396.
doi: 10.1007/s00122-020-03554-8pmid: 32006055[46] Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen M L, Gil E, Puga M I, Bligny R, Nussaume L, Geldner N, Paz-Ares J, Rubio V. ESCRT-III-associated protein ALIX mediates high- affinity phosphate transporter trafficking to maintain phosphate homeostasis in Arabidopsis. Plant Cell, 2015, 27: 2560-2581.
doi: 10.1105/tpc.15.00393[47] Mai Y X, Wang L, Yang H Q. A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis. J Integr Plant Biol, 2011, 53: 480-492.
doi: 10.1111/j.1744-7909.2011.01050.x[48] Doukhanina E V, Chen S R, Van Der Zalm E, Godzik A, Reed J, Dickman M B. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem, 2006, 281: 18793-18801.
doi: 10.1074/jbc.M511794200pmid: 16636050[49] Huang J, Sun W, Ren J X, Yang R C, Fan J S, Li Y F, Wang X, Joseph S, Deng W B, Zhai L H. Genome-wide identification and characterization of actin-depolymerizing factor (ADF) family genes and expression analysis of responses to various stresses in Zea Mays L. Int J Mol Sci, 2020, 21: 1751.
doi: 10.3390/ijms21051751[50] Yu Y C, Qiao L F, Chen J C, Rong Y H, Zhao Y H, Cui X K, Xu J P, Hou X M, Dong C H. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. Plant J, 2020, 103: 1386-1398.
doi: 10.1111/tpj.v103.4[51] 邢瑞霞, 朱金洁, 祁显涛, 谢传晓, 江海洋, 刘昌林. 玉米开花期调控机制研究进展. 安徽农业科学, 2022, 50(9): 23-26. Xing R X, Zhu J J, Qi X T, Xie C X, Jiang H Y, Liu C L. Research progress on the regulation mechanism of maize flowering period. J Anhui Agric Sci, 2022, 50(9): 23-26. (in Chinese with English abstract)[52] Xu J, Liu Y X, Liu J, Cao M J, Wang J, Lan H, Xu Y B, Lu Y L, Pan G T, Rong T Z. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. J Integr Plant Biol, 2012, 54: 358-373.
doi: 10.1111/j.1744-7909.2012.01128.x[53] Wang L W, Zhou Z Q, Li R G, Weng J F, Zhang Q G, Li X H, Wang B Q, Zhang W Y, Song W, Li X H. Mapping QTL for flowering time-related traits under three plant densities in maize. Crop J, 2021, 9: 372-379.
doi: 10.1016/j.cj.2020.07.009[54] Khairallah M M, Bohn M, Jiang C, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, González-De-León D, Hoisington D A. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309-318.
doi: 10.1111/pbr.1998.117.issue-4[55] 侯清桂, 张君, 田磊, 徐梦真, 邹欢, 毛棣, 陈彦惠, 吴连成. 基于SNP标记连锁图谱的玉米花期性状QTL定位. 玉米科学, 2021, 29(6): 41-49. Hou Q G, Zhang J, Tian L, Xu M Z, Zou H, Mao L, Chen Y H, Wu L C. QTL mapping of maize flowering traits based on SNP molecular maker linkage map. J Maize Sci, 2021, 29(6): 41-49. (in Chinese with English abstract)[56] 杨慧丽, 林亚楠, 张怀胜, 卫晓轶, 丁冬, 薛亚东. 玉米开花期性状的QTL及杂种优势位点定位. 作物学报, 2017, 43: 678-690.
doi: 10.3724/SP.J.1006.2017.00678 Yang H L, Lin Y N, Zhang H S, Wei X T, Ding D, Xue Y D. Mapping of QTLs and heterotic loci for flowering time-related traits in maize. Acta Agron Sin, 2017, 43: 678-690. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00678[57] 袁亮, 孟鑫, 汪亚龙, 廖长见, 李高科, 吕桂华, 宋军, 邱正高, 林海建. 镉胁迫下甜、糯玉米开花期性状的全基因组关联分析. 植物遗传资源学报, 2021, 22: 438-447.
doi: 10.13430/j.cnki.jpgr.20200903002 Yuan L, Meng X, Wang Y L, Liao C J, Li G K, Lyu G H, Song J, Qiu Z G, Lin H J. Genome wide association analysis of flowering traits in sweet and waxy maize under cadmium stress. J Plant Genet Resour, 2021, 22: 438-447 (in Chinese with English abstract).[58] Shi J, Wang Y H, Wang C H, Wang L, Zeng W, Han G M, Qiu C H, Wang T Y, Tao Z, Wang K J, Huang S J, Yu S S, Wang W Y, Chen H Y, Chen C, He C, Wang H, Zhu P L, Hu Y Y, Zhang X, Xie C X, Lu X D, Li P J. Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits. BMC Plant Biol, 2022, 22: 328.
doi: 10.1186/s12870-022-03711-9pmid: 35799118[59] 魏海忠, 商伟, 钟世宜, 张彦军, 徐长利, 赵燕, 王红红, 刘保申. 利用重组自交系群体定位玉米生育期相关性状QTL. 玉米科学, 2014, 22(1): 49-55. Wei H Z, Shang W, Zhong S W, Zhang Y J, Zhao Y, Wang H H, Liu B S. Mapping of growth period related traits in maize using recombinant inbred lines. J Maize Sci, 2014, 22(1): 49-55 ). (in Chinese with English abstract)[60] 李凯, 姜涛, 才源, 王丕武, 陈雪峰, 马科, 周元元, 卢石. 玉米花期性状的主效SSR标记筛选. 玉米科学, 2015, 23(1): 33-38. Li K, Jiang T, Cai Y, Wang P W, Chen X F, Ma K, Zhou Y Y, Lu S. Screening of the main effect SSR markers of maize flowering. J Maize Sci, 2015, 23(1): 33-38. (in Chinese with English abstract)[61] 郭向阳, 陈建军, 卫晓轶, 祝云芳, 王安贵, 刘鹏飞, 汤继华, 陈泽辉. 施氮与不施氮条件下玉米开花期相关性状的QTL定位. 植物营养与肥料学报, 2017, 23: 297-303. Guo X Y, Chen J J, Wei X Y, Zhu Y F, Wang A G, Liu P F, Tang J H, Chen Z H. QTL mapping of flowering related traits of maize with and without nitrogen application. J Plant Nutr Fert, 2017, 23: 297-303. (in Chinese with English abstract)[62] 何文昭, 王红武, 胡小娇, 李坤, 王琪, 吴宇锦, 刘志芳, 黄长玲. 玉米株高和穗位高在不同环境下的数量遗传分析. 作物杂志, 2017, (3): 13-18. He W Z, Wang H W, Hu X J, Li K, Wang Q, Wu Y J, Liu Z F, Huang C L. Quantitative genetic research of plant height and ear height in maize under different environments. Crops, 2017, (3): 13-18. (in Chinese with English abstract)[63] 曾群, 赵仲华, 赵淑清. 植物开花时间调控的信号途径. 遗传, 2006, 28: 1031-1036. Zeng Q, Zhao Z H, Zhao S Q. Signal pathways of flowering time regulation in plant. Hereditas, 2006, 28: 1031-1036. (in Chinese with English abstract)[64] Huang D M, Lin W F, Deng B, Ren Y J, Miao Y. Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis. Int J Mol Sci, 2017, 18: 2352.
doi: 10.3390/ijms18112352[65] Su H H, Liang J C, Abou-Elwafa S F, Cheng H Y, Dou D D, Ren Z Z, Xie J R, Chen Z H, Gao F G, Ku L X, Chen Y H. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biol, 2021, 21: 453.
doi: 10.1186/s12870-021-03231-y[66] Guo J, Li C H, Zhang X Q, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Yang D G, Wang T Y. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380[67] Ma L L, Zhang M Y, Chen J, Qing C Y, He S J, Zou C Y, Yuan G S, Yang C, Peng H, Pan G T, Lübberstedt T, Shen Y. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet, 2021, 134: 3305-3318.
doi: 10.1007/s00122-021-03897-w[68] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因. 作物学报, 2021, 47: 1491-1510.
doi: 10.3724/SP.J.1006.2021.04175 Wang Y H, Liu J S, Li J N. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. Acta Agron Sin, 2021, 47: 1491-1510. (in Chinese with English abstract)[69] Francisco F R, Aono A H, Da Silva C C, Gonçalves P S, Scaloppi Junior E J, Le Guen V, Fritsche-Neto R, Souza L M, De Souza A P. Unravelling rubber tree growth by integrating GWAS and biological network-based approaches. Front Plant Sci, 2021, 12: 768589.
doi: 10.3389/fpls.2021.768589[70] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis E S, Balasubramanian S. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016, 39: 1228-1239.
doi: 10.1111/pce.v39.6[71] Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 2000, 21: 351-360.
doi: 10.1046/j.1365-313x.2000.00682.xpmid: 10758486[72] 王佳丽, 王鹤冰, 杨慧勤, 胡若琳, 魏大勇, 汤青林, 王志敏. NAC转录因子在植物花发育中的作用. 生物工程学报, 2022, 38: 2687-2699. Wang J L, Wang H B, Yang H Q, Hu R L, Wei D Y, Tang Q L, Wang Z M. The role of NAC transcription factors in flower development in plants. Chin J Biotechnol, 2022, 38: 2687-2699. (in Chinese with English abstract)[73] Kim S G, Kim S Y, Park C M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 2007, 226: 647-654.
doi: 10.1007/s00425-007-0513-3[74] 陈旭. NAC家族转录因子OsNAC2介导赤霉素信号通路参与调控水稻株高和开花时间. 复旦大学博士学位论文,上海, 2013. Chen X. Expression of Rice NAC Transcription Factor OsNAC2 Reduced the Height of Rice and Delayed the Flowering Time by Gibberellin Pathway. PhD Dissertation of Graduate School of Fudan University, Shanghai, China, 2013. (in Chinese with English abstract)[75] Pimenta M R, Silva P A, Mendes G C, Alves J R, Caetano H D, Machado J P, Brustolini O J, Carpinetti P A, Melo B P, Silva J C, Rosado G L, Ferreira M F, Dal-Bianco M, Picoli E A, Aragao F J, Ramos H J, Fontes E P. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant Cell Physiol, 2016, 57: 1098-1114.
doi: 10.1093/pcp/pcw059pmid: 27016095[76] Du Y F, Lunde C, Li Y F, Jackson D, Hake S, Zhang Z X. Gene duplication at the fascicled ear1 locus controls the fate of inflorescence meristem cells in maize. Proc Natl Acad Sci USA, 2021, 118: e2019218118.

相关知识

利用GWAS关联分析挖掘调控小麦根系吸收矿质元素的基因
牡丹花期相关性状的遗传解析及候选基因挖掘
菊花耐涝性的全基因组关联分析及候选基因挖掘
揭秘调控杜鹃树皮粗糙、光滑的关键基因——基因组和GWAS分析带来新发现
关联分析及其在植物遗传学研究中的应用
菊花主要园艺性状的关联分析及候选基因功能鉴定
昆明植物所挖掘野生杜鹃树皮粗糙、光滑关键调控基因取得新进展
种质库挖掘野生杜鹃树皮粗糙、光滑关键调控基因取得新进展
月季等蔷薇科园林植物色香关联候选基因的挖掘
环艺所在墨兰花朵性状分子标记和功能基因挖掘研究方面取得新进展

网址: 基于GWAS和WGCNA分析挖掘玉米花期相关候选基因 https://www.huajiangbk.com/newsview2294005.html

所属分类:花卉
上一篇: 玉米氮状况相关生物标记物的筛选和
下一篇: Nature Plants |

推荐分享