Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion
ArticleMarch 16, 2005
Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion
Click to copy article linkArticle link copied!
Lisa M. SullivanCharles M. LukehartView Author Information
Chemistry of Materials
Cite this: Chem. Mater. 2005, 17, 8
Click to copy citationCitation copied!
Published March 16, 2005
research-article
Copyright © 2005 American Chemical Society
Article Views
2258
Altmetric
3
Learn about these metrics
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Abstract
Click to copy section linkSection link copied!
ZrW2O8 is obtained as microparticulate powder following traditional methods or as nanoparticulate powder using an inverse micelle sol−gel synthesis strategy. As-prepared ZrW2O8 powders, surface-derivatized with (3-aminopropyl)siloxy linker molecules, disperse well in BTDA-ODA polyamic acid resins to give thermally cured ZrW2O8/polyimide hybrid films showing good wetting of embedded ceramic particles. Measured CTE values of ZrW2O8/BTDA-ODA hybrid films containing 0−50 wt % (0−22 vol %) ceramic loading show a controlled reduction in thermal expansion with increasing ceramic content. Reduction in CTE is modeled best assuming mixed-law behavior with incorporation of an interfacial phase region. A 22 vol % ceramic loading gives a 30% (10 ppm/K) reduction of CTE. ZrW2O8/BTDA-ODA films containing 0.8 vol % (3 wt %) ceramic loading exhibit unusually low thermal expansion, although the significance of this observation remains to be confirmed.
ACS Publications
Copyright © 2005 American Chemical Society
Supporting Information Available
Click to copy section linkSection link copied!
Thermogravimetric analysis curves, DSC curves, TMA scans, and a typical EDS spectrum (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
cm0482737si20041002_123502.pdf (191.91 kb)Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Cited By
Click to copy section linkSection link copied!
This article is cited by 136 publications.
Feng Bao, Fuling Qi, Huanyu Lei, Feng Luo, Yanchun Cai, Xuemin Dai, Zhixin Dong, Xuepeng Qiu. Near-Zero Thermal Expansion and High Heat-Resistance Polyimide Films Based on a Symmetric and Rigid Pyrazine Structure. ACS Applied Polymer Materials 2023, 5 (1) , 672-679. https://doi.org/10.1021/acsapm.2c01720Jiaqi Wang, Qilong Gao, Andrea Sanson, Qiang Sun, Erjun Liang. Insight into the Relationship between Negative Thermal Expansion and Structure Flexibility: The Case of Zn(CN)2-Type Compounds. Inorganic Chemistry 2022, 61 (34) , 13239-13243. https://doi.org/10.1021/acs.inorgchem.2c01722Yong-Zhu Yan, Sung Soo Park, Ha Ram Moon, Wei-Jin Zhang, Shuai Yuan, Liyi Shi, Dong Gi Seong, Chang-Sik Ha. Thermally Robust Zirconia Nanorod/Polyimide Hybrid Films as a Highly Flexible Dielectric Material. ACS Applied Nano Materials 2021, 4 (8) , 8217-8230. https://doi.org/10.1021/acsanm.1c01427Jeffrey C. Foster, Chad L. Staiger, Jason W. Dugger, Erica M. Redline. Tuning Epoxy Thermomechanics via Thermal Isomerization: A Route to Negative Coefficient of Thermal Expansion Materials. ACS Macro Letters 2021, 10 (7) , 940-944. https://doi.org/10.1021/acsmacrolett.1c00312Yuanqiang Wang, Junfeng Zhou, Jiaren Hou, Xiaoyao Chen, Jing Sun, Qiang Fang. High-Performance Polyimides with High Tg and Excellent Dimensional Stability at High Temperature Prepared via a Cooperative Action of Hydrogen-Bond Interaction and Cross-Linking Reaction. ACS Applied Polymer Materials 2019, 1 (8) , 2099-2107. https://doi.org/10.1021/acsapm.9b00400Subir K. Biswas, Supachok Tanpichai, Suteera Witayakran, Xianpeng Yang, Md. Iftekhar Shams, Hiroyuki Yano. Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns. ACS Nano 2019, 13 (2) , 2015-2023. https://doi.org/10.1021/acsnano.8b08477Yuhui Huang, Xingyuan Shen, Zhao Wang, Ke Jin, Jennifer Q. Lu, Changchun Wang. Zero Thermal Expansion Polyarylamide Film with Reversible Conformational Change Structure. Macromolecules 2018, 51 (21) , 8477-8485. https://doi.org/10.1021/acs.macromol.8b01890He Zhu, Qiang Li, Chao Yang, Qinghua Zhang, Yang Ren, Qilong Gao, Na Wang, Kun Lin, Jinxia Deng, Jun Chen, Lin Gu, Jiawang Hong, Xianran Xing. Twin Crystal Induced near Zero Thermal Expansion in SnO2 Nanowires. Journal of the American Chemical Society 2018, 140 (24) , 7403-7406. https://doi.org/10.1021/jacs.8b03232Hyungjoon Jeon, Cheolsang Yoon, Young-Geon Song, Junwon Han, Sujin Kwon, Seungwon Kim, Insu Chang, Kangtaek Lee. Reducing the Coefficient of Thermal Expansion of Polyimide Films in Microelectronics Processing Using ZnS Particles at Low Concentrations. ACS Applied Nano Materials 2018, 1 (3) , 1076-1082. https://doi.org/10.1021/acsanm.7b00259Carl P. Romao, Frédéric A. Perras, Ulrike Werner-Zwanziger, Joey A. Lussier, Kimberly J. Miller, Courtney M. Calahoo, Josef W. Zwanziger, Mario Bieringer, Bojan A. Marinkovic, David L. Bryce, and Mary Anne White . Zero Thermal Expansion in ZrMgMo3O12: NMR Crystallography Reveals Origins of Thermoelastic Properties. Chemistry of Materials 2015, 27 (7) , 2633-2646. https://doi.org/10.1021/acs.chemmater.5b00429Hongchao Wu, Mark Rogalski, and Michael R. Kessler . Zirconium Tungstate/Epoxy Nanocomposites: Effect of Nanoparticle Morphology and Negative Thermal Expansivity. ACS Applied Materials & Interfaces 2013, 5 (19) , 9478-9487. https://doi.org/10.1021/am402242gPrashanth Badrinarayanan, Mark K. Rogalski, and Michael R. Kessler . Carbon Fiber-Reinforced Cyanate Ester/Nano-ZrW2O8 Composites with Tailored Thermal Expansion. ACS Applied Materials & Interfaces 2012, 4 (2) , 510-517. https://doi.org/10.1021/am201165qJiahua Zhu, Suying Wei, Xuelong Chen, Amar B. Karki, Dan Rutman, David P. Young and Zhanhu Guo . Electrospun Polyimide Nanocomposite Fibers Reinforced with Core−Shell Fe-FeO Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (19) , 8844-8850. https://doi.org/10.1021/jp1020033K. Haman, P. Badrinarayanan and M. R. Kessler. Effect of a Zirconium Tungstate Filler on the Cure Behavior of a Cyanate Ester Resin. ACS Applied Materials & Interfaces 2009, 1 (6) , 1190-1195. https://doi.org/10.1021/am900051gLifeng Zhang, Jane Y. Howe, Yan Zhang and Hao Fong . Synthesis and Characterization of Zirconium Tungstate Ultra-Thin Fibers. Crystal Growth & Design 2009, 9 (2) , 667-670. https://doi.org/10.1021/cg801272mYuanQiao Rao and, Thomas N. Blanton. Polymer Nanocomposites with a Low Thermal Expansion Coefficient. Macromolecules 2008, 41 (3) , 935-941. https://doi.org/10.1021/ma7020216Tae Joo Shin and, Moonhor Ree. Thermal Imidization and Structural Evolution of Thin Films of Poly(4,4‘-oxydiphenylene p-pyromellitamic diethyl ester). The Journal of Physical Chemistry B 2007, 111 (50) , 13894-13900. https://doi.org/10.1021/jp075067oMaria N. Mancheva,*, Reni S. Iordanova,, Yanko B. Dimitriev,, Kostadin P. Petrov, and, Georgi V. Avdeev. Direct Synthesis of Metastable Nanocrystalline ZrW2O8 by a Melt-Quenching Method. The Journal of Physical Chemistry C 2007, 111 (41) , 14945-14947. https://doi.org/10.1021/jp074870fTianqi Hou, Xia Liu, Junwen Ren, Xianzhen Xu, Di Lan, Siyuan Zhang, Hua Guo, Guangrong Wu, Zirui Jia, Guanglei Wu. Mesoporous hollow silica with controlled particle size for optimizing dielectric properties and coefficient of thermal expansion of polyimide packaging materials. Journal of Materials Science & Technology 2025, 235 , 122-132. https://doi.org/10.1016/j.jmst.2025.03.014Carly J. Dolgos, Mackenzie E. Donald, Michael J. Forrester, Connor Pearson, Sabrina Torres, Eric W. Cochran. Surviving nanoscale interfacial stability in extreme thermal expansion contrast Zn(CN) 2 -epoxy resin matrix composites. Composites Part A: Applied Science and Manufacturing 2025, 198 , 109026. https://doi.org/10.1016/j.compositesa.2025.109026Caroline F. Uncles, Kevin Hunt, Shirley Fong, James Mainwaring, Jasmine Bone, Andrew Viquerat. Glass transition and CTE properties of zirconium tungstate-filled bisphenol-A powder composites. Polymer Testing 2025, 149 , 108865. https://doi.org/10.1016/j.polymertesting.2025.108865Patricia I. Pontón, Jennifer Tejedor, Víctor H. Guerrero, Marco V. Guamán, Karina J. Lagos, Anaí Gálvez, Daniel Espinoza, Bojan A. Marinkovic. Thermal properties of Al 2 W 3 O 12 /epoxy composites at low filler volume loadings. Polymer Composites 2025, 46 (10) , 8883-8891. https://doi.org/10.1002/pc.29527Ahmed A. Eliwa, Ahmed M. Abdel-Razik, Mohamed S. Hagag, Ahmed M. Ismail, Amal E. Mubark. Synthesis and Characterization of Low-Cost Zirconium Nanocomposites as Novel Adsorbents for Arsenazo III Pollutant. Water, Air, & Soil Pollution 2024, 235 (11) https://doi.org/10.1007/s11270-024-07449-yHong Chen, Wei Ou, Yu Huang, Hongchang Huang, Junlan Li, Juncheng Liu. UiO-66 uniformly assembled foldable polyimide films with high transmittance and excellent ultraviolet resistance. Composites Science and Technology 2024, 252 , 110590. https://doi.org/10.1016/j.compscitech.2024.110590Zhaoyang Wang, Huawei Yang, Wenqing Zhang, Baotieliang Wang, Yonggang Qi, Jiawei Zou. Preparation of fluorinated poly(aryl ether) with high dimensional stability and high temperature resistance by photo‐thermal dual crosslinking reaction. Polymer Engineering & Science 2024, 64 (2) , 653-662. https://doi.org/10.1002/pen.26574Andreea Irina Barzic. Polyimide nanocomposites loaded with metal-derived fillers. 2024, 233-266. https://doi.org/10.1016/B978-0-323-90294-6.00005-9Congmei Lin, Yushi Wen, Liyuan Wei, Ruqin Liu, Xiaoqing Tu, Shiliang Huang, Cui Zhang, Wen Qian, Liangfei Bai, Liang Chen, Feiyan Gong, Ling Ding, Jianhu Zhang, Zhijian Yang. Construction of zirconium tungstate modified polymer bonded energetic composites with highly inhibited thermal expansion via bioinspired interfacial reinforcement. Composites Part A: Applied Science and Manufacturing 2023, 175 , 107794. https://doi.org/10.1016/j.compositesa.2023.107794Christopher Igwe Idumah. Thermal expansivity of polymer nanocomposites and applications. Polymer-Plastics Technology and Materials 2023, 62 (9) , 1178-1203. https://doi.org/10.1080/25740881.2023.2204952Yun Chan Hwang, Seongjun Khim, Ki-Ho Nam. Thermo-Viscoelastic residual stress behavior of fluorinated polyimide based on fluid Instability-Driven shear exfoliated graphenic nanosheet. Chemical Engineering Journal 2023, 455 , 140888. https://doi.org/10.1016/j.cej.2022.140888Savannah Egerton, Claudia Sim, Heon E. Park, Mark P. Staiger, Komal M. Patil, Matthew G. Cowan. Controlling coefficients of thermal expansion in thermoplastic materials: effects of zinc cyanide and ionic liquid. Materials Advances 2022, 3 (10) , 4155-4158. https://doi.org/10.1039/D2MA00338DNhat Tri Vo, Pil Jin Yoo, Gi-ra Yi, Marc Schroeder, Dukjoon Kim. Transparent poly(ether sulfone) nanocomposite film with low thermal expansion coefficient for flexible display substrates. Composites Part B: Engineering 2021, 224 , 109164. https://doi.org/10.1016/j.compositesb.2021.109164Erin B. Curry, Kaitlin Lyszak, Donal Sheets, Connor A. Occhialini, Michael G. Rozman, Jason N. Hancock. Soliton Generation in Negative Thermal Expansion Materials. Frontiers in Materials 2021, 8 https://doi.org/10.3389/fmats.2021.742195Chaofan Li, Suibin Luo, Shuhui Yu, Baojin Chu, Rong Sun. Thermomechanical and Electrical Properties of the $text{SiO}_{2}/text{ZrW}_{2}mathrm{O}_{8}/text{Epoxy}$ Composite. 2021, 1-5. https://doi.org/10.1109/ICEPT52650.2021.9568088S. Shi, L. Yao, P. Ma, Y. Jiao, X. Zheng, D. Ning, M. Chen, F. Sui, H. Liu, C. Yang, W. Li. Recent progress in the high-temperature-resistant PI substrate with low CTE for CIGS thin-film solar cells. Materials Today Energy 2021, 20 , 100640. https://doi.org/10.1016/j.mtener.2021.100640Qian Yin, Yingyue Hu, Yitian Qin, Zheng Cheng, Longbo Luo, Xiangyang Liu. Construction of polyimide films with excellent dimensional stability and toughness via incorporating point-to-face multi-coordination structure. Composites Part B: Engineering 2021, 208 , 108566. https://doi.org/10.1016/j.compositesb.2020.108566L.V.B. Diop, O. Isnard, M. Amara, F. Gay, J.P. Itié. Giant negative thermal expansion across the first-order magnetoelastic transition in Hf0.86Ta0.14Fe2. Journal of Alloys and Compounds 2020, 845 , 156310. https://doi.org/10.1016/j.jallcom.2020.156310M. Yu. Petrushina, S. V. Korenev, E. S. Dedova, A. I. Gubanov. MATERIALS AM2О8 (А = Zr, Hf; М = W, Mo) WITH NEGATIVE THERMAL EXPANSION. Journal of Structural Chemistry 2020, 61 (11) , 1655-1680. https://doi.org/10.1134/S0022476620110013L.V.B. Diop, O. Isnard. Magnetically driven giant negative thermal expansion covering room temperature in Hf0.875Ta0·125Fe2. Solid State Communications 2020, 320 , 114021. https://doi.org/10.1016/j.ssc.2020.114021Koshi TAKENAKA. Thermal Management of Advanced Electronic Devices by Negative Thermal Expansion Particulates. Journal of the Japan Society of Powder and Powder Metallurgy 2020, 67 (9) , 499-504. https://doi.org/10.2497/jjspm.67.499Zhi-Yuan Yao, Guo-Qin Zhang, Wan-Wan Yao, Xiao-Zu Wang, Yin Qian, Xiao-Ming Ren. Uniaxial thermal expansion behaviors and ionic conduction in a layered (NH 4 ) 2 V 3 O 8. Dalton Transactions 2020, 49 (30) , 10638-10644. https://doi.org/10.1039/D0DT01833CM. Sato, V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, K. Takenaka. Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion. AIP Advances 2020, 10 (7) https://doi.org/10.1063/5.0010631Masaki Ozeki, Victoria Warne-Lang, Hirofumi Tsukasaki, Yuki Sakai, Naoyuki Katayama, Yoshihiko Okamoto, Masaki Azuma, Shigeo Mori, Koshi Takenaka. Annealing effect on local structure and negative thermal expansion of antiperovskite manganese nitride fine particles. Applied Physics Express 2020, 13 (7) , 075501. https://doi.org/10.35848/1882-0786/ab92f0Koshi Takenaka, Miku Sato, Tomohiro Nishikawa, Takuya Omura, Nobuya Yamada, Yasunori Yokoyama, Naoyuki Katayama, Yoshihiko Okamoto. Negative Thermal Expansion of β-Cu1.8Zn0.2V2O7 Ceramic Fine Particles Synthesized by a Spray-Drying Method. Journal of the Japan Institute of Metals and Materials 2020, 84 (5) , 161-166. https://doi.org/10.2320/jinstmet.J2019053Koshi Takenaka, Miku Sato, Masaya Mitamura, Yasunori Yokoyama, Naoyuki Katayama, Yoshihiko Okamoto. Spray‐dry synthesis of β ‐Cu 1.8 Zn 0.2 V 2 O 7 ceramic fine particles showing giant negative thermal expansion. Journal of the American Ceramic Society 2020, 103 (4) , 2757-2763. https://doi.org/10.1111/jace.16931Hiremath Shivashankar, Rajole Sangamesh, S.M. Kulkarni. Analysis of Coefficient of Thermal Expansion in Carbon Black Filled PDMS Composite. Materials Science Forum 2020, 978 , 237-244. https://doi.org/10.4028/www.scientific.net/MSF.978.237Yanbin Ma, Qiangqiang Zhang, Keren Zhao, Cong Liu, Baoqiang Zhang, Xingyi Zhang, Youhe Zhou. Tunable negative thermal expansion of ultralight ZrW2O8/Graphene hybrid metamaterial. Carbon 2019, 153 , 32-39. https://doi.org/10.1016/j.carbon.2019.07.005Akilarasan Muthumariyappan, Umamaheswari Rajaji, Shen-Ming Chen, Tse-Wei Chen, Yi-Ling Li, R. Jothi Ramalingam. One-pot sonochemical synthesis of Bi2WO6 nanospheres with multilayer reduced graphene nanosheets modified electrode as rapid electrochemical sensing platform for high sensitive detection of oxidative stress biomarker in biological sample. Ultrasonics Sonochemistry 2019, 57 , 233-241. https://doi.org/10.1016/j.ultsonch.2019.04.011Subir Kumar Biswas, Hironari Sano, Xianpeng Yang, Supachok Tanpichai, Md. Iftekhar Shams, Hiroyuki Yano. Highly Thermal‐Resilient AgNW Transparent Electrode and Optical Device on Thermomechanically Superstable Cellulose Nanorod‐Reinforced Nanocomposites. Advanced Optical Materials 2019, 7 (15) https://doi.org/10.1002/adom.201900532Yan Zhang, Yingkui Guo, Lei Chen, Yujin Wang, Guangwei Zhang, Yuansong Zhou. Particle size and purity control study on ZrW2O8 powders using coprecipitation method. Materials Science and Engineering: B 2019, 246 , 27-33. https://doi.org/10.1016/j.mseb.2019.05.019Zhanning Liu, Kun Lin, Yang Ren, Kenichi Kato, Yili Cao, Jinxia Deng, Jun Chen, Xianran Xing. Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC 4 O 4 (M = Ba, Pb). Chemical Communications 2019, 55 (28) , 4107-4110. https://doi.org/10.1039/C9CC00226JL. J. Brown, S. A. Dickerson, R. D. Curry, S. A. Mounter, J. A. McFarland. Characterization of the temperature dependence of the electrical and mechanical properties of a high breakdown strength nanodielectric composite. IEEE Transactions on Dielectrics and Electrical Insulation 2019, 26 (2) , 455-460. https://doi.org/10.1109/TDEI.2018.007756Gang Li, Tao Zhao, Pengli Zhu, Yachuan He, Rong Sun, Daoqiang Lu, Ching-ping Wong. Structure-property relationships between microscopic filler surface chemistry and macroscopic rheological, thermo-mechanical, and adhesive performance of SiO2 filled nanocomposite underfills. Composites Part A: Applied Science and Manufacturing 2019, 118 , 223-234. https://doi.org/10.1016/j.compositesa.2018.12.008Sarah N. Ellis, Carl P. Romao, Mary Anne White. Near-Zero Thermal Expansion in Freeze-Cast Composite Materials. Ceramics 2019, 2 (1) , 112-125. https://doi.org/10.3390/ceramics2010011Niknam Momenzadeh, Carson M. Stewart, Thomas Berfield. Mechanical and Thermal Characterization of Fused Filament Fabrication Polyvinylidene Fluoride (PVDF) Printed Composites. 2019, 59-65. https://doi.org/10.1007/978-3-319-95083-9_11Connor A. Occhialini, Gian G. Guzmán-Verri, Sahan U. Handunkanda, Jason N. Hancock. Negative Thermal Expansion Near the Precipice of Structural Stability in Open Perovskites. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00545Lindsay Young, Jennifer Gadient, Cora Lind. High Pressure Behavior of Chromium and Yttrium Molybdate (Cr2Mo3O12, Y2Mo3O12). Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00478Hideki Sugimoto, Chiko Naruse, Yuta Takayanagi, Katsuhiro Inomata, Shogo Nobukawa, Eiji Nakanishi. Preparation of flexible transparent acryl/alumina nano-hybrid materials exhibiting low thermal expansion coefficient. Journal of Polymer Research 2018, 25 (10) https://doi.org/10.1007/s10965-018-1627-yFengxia Hu, Feiran Shen, Jiazheng Hao, Yao Liu, Jing Wang, Jirong Sun, Baogen Shen. Negative Thermal Expansion in the Materials With Giant Magnetocaloric Effect. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00438Hongfei Liu, Weikang Sun, Xiang Xie, Lu Yang, Zhiping Zhang, Min Zhou, Xianghua Zeng, Xiaobing Chen. Adjustable Thermal Expansion Properties in Zr2MoP2O12/ZrO2 Ceramic Composites. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00347Koshi Takenaka. Progress of Research in Negative Thermal Expansion Materials: Paradigm Shift in the Control of Thermal Expansion. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00267J.C. Lin, P. Tong, W. Tong, Y.M. Zou, C. Yang, F. Zhu, X.K. Zhang, L.F. Li, M. Wang, Y. Wu, S. Lin, W.H. Song, X.B. Zhu, Y.P. Sun. Large and constant coefficient of negative thermal expansion covering a wide temperature range in Zn1−Mn NMn3 (0 ≤x≤ 0.3). Scripta Materialia 2018, 152 , 6-10. https://doi.org/10.1016/j.scriptamat.2018.04.004Patricia I. Pontón, Luciana P. Prisco, Bojan A. Marinkovic. Effects of low contents of A 2 M 3 O 12 submicronic thermomiotic‐like fillers on thermal expansion and mechanical properties of HDPE‐based composites. Polymer Composites 2018, 39 (S3) https://doi.org/10.1002/pc.24811Hongfei Liu, Weikang Sun, Zhiping Zhang, Min Zhou, Xiangdong Meng, Xianghua Zeng. Tailorable thermal expansion and hygroscopic properties of cerium-substituted Y 2 W 3 O 12 ceramics. Journal of Alloys and Compounds 2018, 751 , 49-55. https://doi.org/10.1016/j.jallcom.2018.04.081Ageetha Vanamudan, Mohini Sadhu, Padmaja Sudhakar Pamidimukkala. Nanostructured zirconium tungstate and its bionanocomposite with chitosan: Wet peroxide photocatalytic degradation of dyes. Journal of the Taiwan Institute of Chemical Engineers 2018, 85 , 74-82. https://doi.org/10.1016/j.jtice.2017.12.018Jinjin Miao, Jiaqi Liu, Xiao Wu, Han Zou, Dawei Sha, Jie Ren, Yu Dai, Xuehua Yan, Xiaonong Cheng. Thermal expansion, electrical conductivity and hardness of Mn 3 Zn 0.5 Sn 0.5 N/Al composites. Science and Engineering of Composite Materials 2018, 25 (1) , 95-100. https://doi.org/10.1515/secm-2015-0402Zhiping Zhang, Weikang Sun, Hongfei Liu, Guanhua Xie, Xiaobing Chen, Xianghua Zeng. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00105Jianchao Lin, Peng Tong, Kui Zhang, Xiaohang Ma, Haiyun Tong, Xinge Guo, Cheng Yang, Ying Wu, Meng Wang, Shuai Lin, Wenhai Song, Yuping Sun. The GaNMn 3 -Epoxy composites with tunable coefficient of thermal expansion and good dielectric performance. Composites Science and Technology 2017, 146 , 177-182. https://doi.org/10.1016/j.compscitech.2017.04.028Jianchao Lin, Peng Tong, Kui Zhang, Haiyun Tong, Xinge Guo, Cheng Yang, Ying Wu, Meng Wang, Shuai Lin, Li Chen, Wenhai Song, Yuping Sun. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe. Applied Physics Letters 2016, 109 (24) https://doi.org/10.1063/1.4972234Anton G. Akulichev, Ben Alcock, Avinash Tiwari, Andreas T. Echtermeyer. Thermomechanical properties of zirconium tungstate/hydrogenated nitrile butadiene rubber (HNBR) composites for low-temperature applications. Journal of Materials Science 2016, 51 (24) , 10714-10726. https://doi.org/10.1007/s10853-016-0236-6Luciana P. Prisco, Patricia I. Pontón, Marco V. Guamán, Roberto R. Avillez, Carl P. Romao, Michel B. Johnson, Mary Anne White, Bojan A. Marinkovic, . Assessment of the Thermal Shock Resistance Figures of Merit of Al 2 W 3 O 12 , a Low Thermal Expansion Ceramic. Journal of the American Ceramic Society 2016, 99 (5) , 1742-1748. https://doi.org/10.1111/jace.14160XinWei Shi, Hong Lian, Ruiqiong Qi, Libin Cui, Ning Yao. Preparation and properties of negative thermal expansion Zr2P2WO12 powders and Zr2P2WO12/TiNi composites. Materials Science and Engineering: B 2016, 203 , 1-6. https://doi.org/10.1016/j.mseb.2015.10.005Kengo OKA. High-Pressure Synthesis of Pb, Bi Containing Perovskites. THE REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 2016, 26 (2) , 178-188. https://doi.org/10.4131/jshpreview.26.178Cheol-Woon Kim, Seoung-Hun Kang, Young-Kyun Kwon. Rigid unit modes in s p − s p 2 hybridized carbon systems: Origin of negative thermal expansion. Physical Review B 2015, 92 (24) https://doi.org/10.1103/PhysRevB.92.245434X.Z. Liu, L.J. Hao, M.M. Wu, X.B. Ma, D.F. Chen, Y.T. Liu. The structure, thermal expansion and phase transition properties of Ho2Mo3−xWxO12 (x=0, 1.0, 2.0) solid solutions. Materials Research Bulletin 2015, 70 , 640-644. https://doi.org/10.1016/j.materresbull.2015.05.021Yingying Zhou, Wancheng Zhou, Hongyu Wang, Fa Luo, Dongmei Zhu. Preparation and properties of carbonyl iron particles (CIPs)/silicone resin composite with negative thermal expansion filler. Journal of Polymer Research 2015, 22 (7) https://doi.org/10.1007/s10965-015-0775-6Ikuya Yamada, Shohei Marukawa, Naoaki Hayashi, Masafumi Matsushita, Tetsuo Irifune. Room-temperature zero thermal expansion in a cubic perovskite oxide SrCu3Fe4− x Mn x O12. Applied Physics Letters 2015, 106 (15) https://doi.org/10.1063/1.4918293Gang Li, Peng Li Zhu, Tao Zhao, Rong Sun, Daniel Lu. Rheological and Thermomechanical Properties of Meso and Non-Porous Silica Filled Epoxy Composites. Materials Science Forum 2015, 815 , 67-71. https://doi.org/10.4028/www.scientific.net/MSF.815.67Yiying Yao, Guo-Quan Lu, Dushan Boroyevich, Khai D. T. Ngo. Survey of High-Temperature Polymeric Encapsulants for Power Electronics Packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology 2015, 5 (2) , 168-181. https://doi.org/10.1109/TCPMT.2014.2337300Jun Chen, Lei Hu, Jinxia Deng, Xianran Xing. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chemical Society Reviews 2015, 44 (11) , 3522-3567. https://doi.org/10.1039/C4CS00461BIkuya Yamada, Shohei Marukawa, Makoto Murakami, Shigeo Mori. “True” negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides. Applied Physics Letters 2014, 105 (23) https://doi.org/10.1063/1.4903890Alexandre Roberto Soares, Patricia I. Pontón, Lidija Mancic, José R. M. d’Almeida, Carl P. Romao, Mary Anne White, Bojan A. Marinkovic. Al2Mo3O12/polyethylene composites with reduced coefficient of thermal expansion. Journal of Materials Science 2014, 49 (22) , 7870-7882. https://doi.org/10.1007/s10853-014-8498-3Koshi Takenaka, Masayoshi Ichigo. Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Composites Science and Technology 2014, 104 , 47-51. https://doi.org/10.1016/j.compscitech.2014.08.029Jun Yan, Ying Sun, Cong Wang, Lihua Chu, Zaixing Shi, Sihao Deng, Kewen Shi, Huiqing Lu. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature. Scripta Materialia 2014, 84-85 , 19-22. https://doi.org/10.1016/j.scriptamat.2014.04.010X.S. Liu, F. Li, W.B. Song, B.H. Yuan, Y.G. Cheng, E.J. Liang, M.J. Chao. Control of reaction processes for rapid synthesis of low-thermal-expansion Ca1−Sr Zr4P6O24 ceramics. Ceramics International 2014, 40 (4) , 6013-6020. https://doi.org/10.1016/j.ceramint.2013.11.050Gang Li, Pengli Zhu, Liang Huang, Tao Zhao, Rong Sun, Daoqiang Daniel Lu. Investigating the rheological and thermomechanical properties of SiO2/epoxy nanocomposites: Probing the role of silane coupling agent. 2014, 391-395. https://doi.org/10.1109/ICEPT.2014.6922680Z. Peng, Y.Z. Sun, L.M. Peng. Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients. Materials & Design (1980-2015) 2014, 54 , 989-994. https://doi.org/10.1016/j.matdes.2013.09.012Lauren A. Neely, Vladimir Kochergin, Erich M. See, Hans D. Robinson. Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures. Journal of Materials Science 2014, 49 (1) , 392-396. https://doi.org/10.1007/s10853-013-7716-8Zhenxun Huang, Jianqing Zhao, Yanchao Yuan, Shijing Yan, Shumei Liu, Xingtao Zan. Preparation and characterization of polyimide/pure silica zeolite hybrid films. Polymers for Advanced Technologies 2013, 24 (6) , 600-608. https://doi.org/10.1002/pat.3127Prashanth Badrinarayanan, Mark Rogalski, Hongchao Wu, Xiaofeng Wang, Wonjong Yu, Michael R. Kessler. Epoxy Composites Reinforced with Negative‐CTE ZrW 2 O 8 Nanoparticles for Electrical Applications. Macromolecular Materials and Engineering 2013, 298 (2) , 136-144. https://doi.org/10.1002/mame.201100417Hongfei Liu, Xiaocen Wang, Zhiping Zhang, Xiaobing Chen. Synthesis and thermal expansion properties of Y2−xLaxMo3O12 (x=0, 0.5, 2). Ceramics International 2012, 38 (8) , 6349-6352. https://doi.org/10.1016/j.ceramint.2012.05.006Xinxin Chu, Zhixiong Wu, Chuanjun Huang, Rongjin Huang, Yuan Zhou, Laifeng Li. ZrW2O8-doped epoxy as low thermal expansion insulating materials for superconducting feeder system. Cryogenics 2012, 52 (12) , 638-641. https://doi.org/10.1016/j.cryogenics.2012.04.016Fuli Guo, Xi Chen, Xuebin Deng, Hui Ma, Xiaojing Yang, Xinhua Zhao. Synthesis and characterization of negative thermal expansion HfW2−xVxO8−x/2 solid solutions. Journal of Solid State Chemistry 2012, 196 , 119-124. https://doi.org/10.1016/j.jssc.2012.05.040Gayathri R. Sharma, Cora Lind, Maria R. Coleman. Preparation and properties of polyimide nanocomposites with negative thermal expansion nanoparticle filler. Materials Chemistry and Physics 2012, 137 (2) , 448-457. https://doi.org/10.1016/j.matchemphys.2012.09.009Jing Qin, Guoping Zhang, Rong Sun, Chingping Wong. Preparation and performance research on the Si<inf>3</inf>N<inf>4</inf>@SiO<inf>2</inf>/PI nanocomposite. 2012, 1-4. https://doi.org/10.1109/EMAP.2012.6507895Hongchao Wu, Prashanth Badrinarayanan, Michael R. Kessler, . Effect of Hydrothermal Synthesis Conditions on the Morphology and Negative Thermal Expansivity of Zirconium Tungstate Nanoparticles. Journal of the American Ceramic Society 2012, 95 (11) , 3643-3650. https://doi.org/10.1111/j.1551-2916.2012.05457.xK. Takenaka, T. Hamada, D. Kasugai, N. Sugimoto. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion. Journal of Applied Physics 2012, 112 (8) https://doi.org/10.1063/1.4759121Junwen Lu, Wei Wang, Aiqing Zhang, Fatang Tan, Xueliang Qiao. In situ sol–gel preparation of high transparent fluorinated polyimide/nano-MgO hybrid films. Journal of Sol-Gel Science and Technology 2012, 63 (3) , 495-500. https://doi.org/10.1007/s10971-012-2811-xMing Y. Chen, Chenggang Chen. Zirconium tungstate/bismaleimide composite. Polymers for Advanced Technologies 2012, 23 (6) , 958-966. https://doi.org/10.1002/pat.1998Cora Lind. Two Decades of Negative Thermal Expansion Research: Where Do We Stand?. Materials 2012, 5 (6) , 1125-1154. https://doi.org/10.3390/ma5061125Hongfei Liu, Wei Zhang, Zhiping Zhang, Xiaobing Chen. Synthesis and negative thermal expansion properties of solid solutions Yb2−La W3O12 (0 ≤x≤ 2). Ceramics International 2012, 38 (4) , 2951-2956. https://doi.org/10.1016/j.ceramint.2011.11.072Load all citations
Chemistry of Materials
Cite this: Chem. Mater. 2005, 17, 8
Click to copy citationCitation copied!
Published March 16, 2005
Copyright © 2005 American Chemical Society
Article Views
2258
Altmetric
3
Learn about these metrics
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
相关知识
Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion
三聚氰胺甲醛树脂/酸化蛭石硬质泡沫制备与性能
南京理工大学化工学院导师教师师资介绍简介
珍珠岩制备单一α
欢迎访问《稀有金属材料与工程》中、英文版(SCI、EI收录)
Research progress on the thermal environment of the urban surfaces
Recognition of spatial expansion patterns of invasive Spartina alterniflora and simulation of the resulting landscape
SiO2气凝胶提高岩棉和玻璃棉性能的实验研究
高寒草甸草地退化对土壤水热性质的影响及其环境效应
冶金专业—英语词汇
网址: Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion https://www.huajiangbk.com/newsview2215707.html
上一篇: 清明游玩英语日记(十五篇) |
下一篇: 游志雄 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039