Comprehensive Strategies for Increasing n
WU F C, TING Y Y, CHEN H Y. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus[J]. Fish & Shellfish Immunology, 2003, 14(3): 223-238.
[2]HUDSON E A, TISDALE M J. Comparison of the effectiveness of eicosapentaenoic acid administered as either the free acid or ethyl ester as an anticachectic and antitumour agent[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 1994, 51(2): 141-145. DOI:10.1016/0952-3278(94)90090-6
[3]DAS U N. Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory[J]. Nutrition, 2003, 19(1): 62-65. DOI:10.1016/S0899-9007(02)00852-3
[4]CRAWFORD M A, COSTELOE K, GHEBREMESKEL K, et al. Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies?[J]. The American Journal of Clinical Nutrition, 1997, 66(4): 1032S-1041S. DOI:10.1093/ajcn/66.4.1032S
[5]SPITE M. Deciphering the role of n-3 polyunsaturated fatty acid-derived lipid mediators in health and disease[J]. Proceedings of the Nutrition Society, 2013, 72(4): 441-450. DOI:10.1017/S0029665113003030
[6] [7] [8]SARAVANAN P, DAVIDSON N C, SCHMIDT E B, et al. Cardiovascular effects of marine omega-3 fatty acid[J]. The Lancet, 2010, 376(9740): 540-550. DOI:10.1016/S0140-6736(10)60445-X
[9]TOCHER D R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective[J]. Aquaculture, 2015, 449: 94-107. DOI:10.1016/j.aquaculture.2015.01.010
[10]RICHTER C K, SKULAS-RAY A C, KRIS-ETHERTON P M.Recommended intake of fish and fish oils worldwide[M]//RAATZ S K, BIBUS D M.Fish and fish oil in health and disease prevention.Commonwealth of Pennsylvania: Academic Press, 2016: 27-48.
[11]SALEM J N, EGGERSDORFER M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition?[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(2): 147-154. DOI:10.1097/MCO.0000000000000145
[12]农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴2019[M]. 北京: 中国农业出版社, 2019.
[13]TOYES-VARGAS E A, PARRISH C C, VIANA M T, et al. Replacement of fish oil with camelina (Camelina sativa) oil in diets for juvenile tilapia (var. GIFT Oreochromis niloticus) and its effect on growth, feed utilization and muscle lipid composition[J]. Aquaculture, 2020, 523: 735177. DOI:10.1016/j.aquaculture.2020.735177
[14]AYISI C L, ZHAO J L, WU J W. Replacement of fish oil with palm oil:effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus)[J]. PLoS One, 2018, 13(4): e0196100. DOI:10.1371/journal.pone.0196100
[15] [16] [17] [18]WANG S Q, LIU X B, XU S D, et al. Total replacement of dietary fish oil with a blend of vegetable oils in the marine herbivorous teleost, Siganus canaliculatus[J]. Journal of the World Aquaculture Society, 2018, 49(4): 692-702. DOI:10.1111/jwas.12434
[19]LI Y Y, HU C B, ZHENG Y J, et al. The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2008, 151(2): 183-190. DOI:10.1016/j.cbpb.2008.06.013
[20]MONGE-ORTIZ R, TOMÁS-VIDAL A, RODRIGUEZ-BARRETO D, et al. Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles:effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value[J]. Aquaculture Nutrition, 2018, 24(1): 605-615. DOI:10.1111/anu.12595
[21]ROMBENSO A N, TRUSHENSKI J T, SCHWARZ M H. Fish oil replacement in feeds for juvenile florida pompano:composition of alternative lipid influences degree of tissue fatty acid profile distortion[J]. Aquaculture, 2016, 458: 177-186. DOI:10.1016/j.aquaculture.2016.03.009
[22] [23]彭墨.饲料脂肪水平和脂肪酸组成对大菱鲆幼鱼脂沉积的影响[D].博士学位论文.青岛: 中国海洋大学, 2014.
[24]HIXSON S M, PARRISH C C, ANDERSON D M. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua)[J]. Fish Physiology and Biochemistry, 2013, 39(6): 1441-1456. DOI:10.1007/s10695-013-9798-2
[25]HIXSON S M, PARRISH C C, ANDERSON D M. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality[J]. Food Chemistry, 2014, 157: 51-61. DOI:10.1016/j.foodchem.2014.02.026
[26]TRUSHENSKI J, SCHWARZ M, LEWIS H, et al. Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobia Rachycentron canadum[J]. Aquaculture Nutrition, 2011, 17(2): e437-e447. DOI:10.1111/j.1365-2095.2010.00779.x
[27]SUN S, YE J, CHEN J, et al. Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus[J]. Aquaculture Nutrition, 2011, 17(4): 441-450. DOI:10.1111/j.1365-2095.2010.00822.x
[28] [29]FOUNTOULAKI E, VASILAKI A, HURTADO R, et al. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile:recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures[J]. Aquaculture, 2009, 289(3/4): 317-326.
[30]DU Z Y, CLOUET P, HUANG L M, et al. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella):mechanism related to hepatic fatty acid oxidation[J]. Aquaculture Nutrition, 2008, 14(1): 77-92. DOI:10.1111/j.1365-2095.2007.00507.x
[31]BAHURMIZ O M, NG W K. Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size[J]. Aquaculture, 2007, 262(2/3/4): 382-392.
[32]BALLESTRAZZI R, RAINIS S, MAXIA M. The replacement of fish oil with refined coconut oil in the diet of large rainbow trout (Oncorhynchus mykiss)[J]. Italian Journal of Animal Science, 2006, 5(2): 155-164. DOI:10.4081/ijas.2006.155
[33]MONTERO D, ROBAINA L, CABALLERO M J, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils:a time-course study on the effect of a re-feeding period with a 100% fish oil diet[J]. Aquaculture, 2005, 248(1/2/3/4): 121-134.
[34]LI Y Y, MONROIG O, ZHANG L, et al. Vertebrate fatty acyl desaturase with Δ4 activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16840-16845. DOI:10.1073/pnas.1008429107
[35]MONROIG O, WANG S Q, ZHANG L, et al. Elongation of long-chain fatty acids in rabbitfish Siganus canaliculatus:cloning, functional characterisation and tissue distribution of Elovl5-and Elovl4-like elongases[J]. Aquaculture, 2012, 350/351/352/353: 63-70.
[36]XIE D Z, WANG S Q, YOU C H, et al. Characteristics of LC-PUFA biosynthesis in marine herbivorous teleost Siganus canaliculatus under different ambient salinities[J]. Aquaculture Nutrition, 2015, 21(5): 541-551. DOI:10.1111/anu.12178
[37]CLARKE D C, MISKOVIC D, HAN X X, et al. Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism[J]. Physiological Genomics, 2004, 17(1): 31-37. DOI:10.1152/physiolgenomics.00190.2003
[38]GUO J, SHU G, ZHOU L, et al. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers[J]. Animal, 2013, 7(3): 422-429. DOI:10.1017/S1751731112001619
[39]LARQUÉ E, KRAUSS-ETSCHMANN S, CAMPOY C, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins[J]. The American Journal of Clinical Nutrition, 2006, 84(4): 853-861. DOI:10.1093/ajcn/84.4.853
[40]KOONEN D P Y, GLATZ J F C, BONEN A, et al. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle[J]. Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids, 2005, 1736(3): 163-180. DOI:10.1016/j.bbalip.2005.08.018
[41]POLAKOF S, PANSERAT S, PLAGNES-JUAN E, et al. Altered dietary carbohydrates significantly affect gene expression of the major glucosensing components in brockmann bodies and hypothalamus of rainbow trout[J]. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 2008, 295(4): R1077-R1088. DOI:10.1152/ajpregu.90476.2008
[42]ZECHNER R. The tissue-specific expression of lipoprotein lipase:implications for energy and lipoprotein metabolism[J]. Current Opinion in Lipidology, 1997, 8(2): 77-88. DOI:10.1097/00041433-199704000-00005
[43]TOCHER D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107-184. DOI:10.1080/713610925
[44] [45]DE SILVA S S. Performance of Oreochromis niloticus (L.) fry maintained on mixed feeding schedules of differing protein content[J]. Aquaculture Research, 1985, 16(4): 331-340. DOI:10.1111/j.1365-2109.1985.tb00075.x
[46]BROWN T D, FRANCIS D S, TURCHINI G M. Can dietary lipid source circadian alternation improve omega-3 deposition in rainbow trout?[J]. Aquaculture, 2010, 300(1/2/3/4): 148-155.
[47]TURCHINI G M, FRANCIS D S, DE SILVA S S. Finishing diets stimulate compensatory growth:results of a study on Murray cod, Maccullochella peelii peelii[J]. Aquaculture Nutrition, 2007, 13(5): 351-360. DOI:10.1111/j.1365-2095.2007.00483.x
[48]FRANCIS D S, TURCHINI G M, SMITH B K, et al. Effects of alternate phases of fish oil and vegetable oil-based diets in Murray cod[J]. Aquaculture Research, 2009, 40(10): 1123-1134. DOI:10.1111/j.1365-2109.2009.02208.x
[49]GARRIDO D, MONROIG O, GALINDO A, et al.Molecular and functional characterization and expression of desaturase and elongase genes involved in ω3 LC-PUFA biosynthesis in Sarpa salpa and Pegusa lascaris[C]. Cork: Aquaculture Europe, 2017.
[50]GARRIDO D, KABEYA N, BETANCOR M B, et al. Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level[J]. Scientific Reports, 2019, 9: 11199. DOI:10.1038/s41598-019-47709-0
[51]施培松.匙吻鲟和鳙的生长、肌肉品质比较及FAS基因克隆与表达[D].博士学位论文.武汉: 华中农业大学, 2013.
[52] [53]BELL J G, HENDERSON R J, TOCHER D R, et al. Substituting fish oil with crude palm oil in the diet of atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism[J]. The Journal of Nutrition, 2002, 132(2): 222-230. DOI:10.1093/jn/132.2.222
[54]BOURAOUI L, SÁNCHEZ-GURMACHES J, CRUZ-GARCIA L, et al. Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata)[J]. Aquaculture Nutrition, 2011, 17(1): 54-63. DOI:10.1111/j.1365-2095.2009.00706.x
[55]TORSTENSEN B E, NANTON D A, OLSVIK P A, et al. Gene expression of fatty acid-binding proteins, fatty acid transport proteins (CD36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil[J]. Aquaculture Nutrition, 2009, 15(4): 440-451. DOI:10.1111/j.1365-2095.2008.00609.x
[56]DAS U N.Long-chain polyunsaturated fatty acids[M]//UNDURTI N D.A Perinatal strategy for preventing adult disease: the role of long-chain polyunsaturated fatty acids.New York: Springer, 2002: 136-174.
[57]PIRINI M, TESTI S, VENTRELLA V, et al. Blue-back fish:fatty acid profile in selected seasons and retention upon baking[J]. Food Chemistry, 2010, 123(2): 306-314. DOI:10.1016/j.foodchem.2010.04.036
[58]FARABEGOLI F, NESCI S, VENTRELLA V, et al. Season and cooking may alter fatty acids profile of polar lipids from blue-back fish[J]. Lipids, 2019, 54(11/12): 741-753.
[59]ARMSTRONG S G, WYLLIE S G, LEACH D N. Effects of season and location of catch on the fatty acid compositions of some Australian fish species[J]. Food Chemistry, 1994, 51(3): 295-305. DOI:10.1016/0308-8146(94)90030-2
[60]LUZIA L A, SAMPAIO G R, CASTELLUCCI C M N, et al. The influence of season on the lipid profiles of five commercially important species of Brazilian fish[J]. Food Chemistry, 2003, 83(1): 93-97. DOI:10.1016/S0308-8146(03)00054-2
[61]SUSHCHIK N N, RUDCHENKO A E, GLADYSHEV M I. Effect of season and trophic level on fatty acid composition and content of four commercial fish species from Krasnoyarsk Reservoir (Siberia, Russia)[J]. Fisheries Research, 2017, 187: 178-187. DOI:10.1016/j.fishres.2016.11.016
[62]HONEYFIELD D C, MALONEY K O. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high-quality headwater streams[J]. Hydrobiologia, 2015, 744(1): 35-47. DOI:10.1007/s10750-014-2054-7
[63]SCHMID M, GUIHÉNEUF F, STENGEL D B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish coast at two seasons[J]. Journal of Applied Phycology, 2014, 26(1): 451-463. DOI:10.1007/s10811-013-0132-2
[64]LEE R F. Lipid composition of the copepod Calanus hyperboreas from the Arctic ocean.Changes with depth and season[J]. Marine Biology, 1974, 26(4): 313-318. DOI:10.1007/BF00391515
[65]MAYZAUD P, BOUTOUTE M, GASPARINI S, et al. Lipids and fatty acid composition of particulate matter in the North Atlantic:importance of spatial heterogeneity, season and community structure[J]. Marine Biology, 2014, 161(9): 1951-1971. DOI:10.1007/s00227-014-2476-9
[66]VAGNER M, ROBIN J H, INFANTE J L Z, et al. Combined effects of dietary HUFA level and temperature on sea bass (Dicentrarchus labrax) larvae development[J]. Aquaculture, 2007, 266(1/2/3/4): 179-190.
[67]SOMERVILLE C. Direct tests of the role of membrane lipid composition in low-temperature induced photoinhibition and chilling sensitivity in plants and cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6215-6218. DOI:10.1073/pnas.92.14.6215
[68] [69]CORDIER M, BRICHON G, WEBER J M, et al. Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during an annual cycle.Roles of environmental temperature and salinity[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2002, 133(3): 281-288. DOI:10.1016/S1096-4959(02)00149-5
[70]SARKER M A A, YAMAMOTO Y, HAGA Y, et al. Influences of low salinity and dietary fatty acids on fatty acid composition and fatty acid desaturase and elongase expression in red sea bream Pagrus major[J]. Fisheries Science, 2011, 77(3): 385-396. DOI:10.1007/s12562-011-0342-y
[71] [72]甘雷.不同盐度下尼罗罗非鱼幼鱼的脂肪营养生理研究[D].硕士学位论文.上海: 华东师范大学, 2016.
[73] [74] [75]WOITEL F R, TRUSHENSKI J T, SCHWARZ M H, et al. More judicious use of fish oil in cobia feeds:Ⅱ.Effects of graded fish oil sparing and finishing[J]. North American Journal of Aquaculture, 2014, 76(3): 232-241. DOI:10.1080/15222055.2014.893470
[76]REIS B, CABRAL E M, FERNANDES T J R, et al. Long-term feeding of vegetable oils to senegalese sole until market size:effects on growth and flesh quality.Recovery of fatty acid profiles by a fish oil finishing diet[J]. Aquaculture, 2014, 434: 425-433. DOI:10.1016/j.aquaculture.2014.09.002
[77]IZQUIERDO M S, MONTERO D, ROBAINA L, et al. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period.Recovery of fatty acid profiles by fish oil feeding[J]. Aquaculture, 2005, 250(1/2): 431-444.
[78]BELL J G, TOCHER D R, HENDERSON R J, et al. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet[J]. The Journal of Nutrition, 2003, 133(9): 2793-2801. DOI:10.1093/jn/133.9.2793
[79]BELL J G, MCGHEE F, CAMPBELL P J, et al. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar):changes in flesh fatty acid composition and effectiveness of subsequent fish oil "wash out"[J]. Aquaculture, 2003, 218(1/2/3/4): 515-528.
[80]STONE D A J, OLIVEIRA A C M, ROSS C F, et al. The effects of phase-feeding rainbow trout (Oncorhynchus mykiss) with canola oil and Alaskan pollock fish oil on fillet fatty acid composition and sensory attributes[J]. Aquaculture Nutrition, 2011, 17(2): E521-E529. DOI:10.1111/j.1365-2095.2010.00792.x
[81]YILDIZ M, EROLDOĞAN T O, OFORI-MENSAH S, et al. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout:re-feeding with fish oil finishing diet improved the fatty acid composition[J]. Aquaculture, 2018, 488: 123-133. DOI:10.1016/j.aquaculture.2017.12.030
[82]于若梦.饲料DHA水平对鲤肌肉脂质代谢及其品质的影响[D].硕士学位论文.新乡: 河南师范大学, 2019.
[83]HORWITT M K. The promotion of vitamin E[J]. The Journal of Nutrition, 1986, 116(7): 1371-1377. DOI:10.1093/jn/116.7.1371
[84] [85]KENARI A A, NADERI M. Effects of enriched Artemia by fish and soybean oils supplemented with vitamin E on growth performance, lipid peroxidation, lipase activity and fatty acid composition of Persian sturgeon (Acipenser persicus) larvae[J]. Aquaculture Nutrition, 2016, 22(2): 382-391. DOI:10.1111/anu.12260
[86]MONIRUZZAMAN M, LEE J H, LEE J H, et al. Interactive effect of dietary vitamin E and inorganic mercury on growth performance and bioaccumulation of mercury in juvenile olive flounder, Paralichthys olivaceus treated with mercuric chloride[J]. Animal Nutrition, 2017, 3(3): 276-283. DOI:10.1016/j.aninu.2017.07.001
[87]GAO J, KOSHIO S, ISHIKAWA M, et al. Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major[J]. Aquaculture, 2012, 356/357: 73-79. DOI:10.1016/j.aquaculture.2012.05.034
[88]丁兆坤, 黄金华, 李伟峰, 等. 维生素E和/或柠檬酸添加剂对军曹鱼稚幼鱼ACO和PPARα基因、抗氧化酶活力和多不饱和脂肪酸代谢的影响[J]. 饲料工业, 2018, 39(8): 1-12.
[89]WANG X Y, QUINN P J. The location and function of vitamin E in membranes (review)[J]. Molecular Membrane Biology, 2000, 17(3): 143-156. DOI:10.1080/09687680010000311
[90]LEBOLD K M, JUMP D B, MILLER G W, et al. Vitamin E deficiency decreases long-chain PUFA in zebrafish (Danio rerio)[J]. The Journal of Nutrition, 2011, 141(12): 2113-2118. DOI:10.3945/jn.111.144279
[91]DING Z K, LI W F, HUANG J H, et al. Dietary alanyl-glutamine and vitamin E supplements could considerably promote the expression of GPx and PPARα genes, antioxidation, feed utilization, growth, and improve composition of juvenile cobia[J]. Aquaculture, 2017, 470: 95-102. DOI:10.1016/j.aquaculture.2016.12.015
[92]SHERIDAN M A. Lipid dynamics in fish:aspects of absorption, transportation, deposition and mobilization[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1988, 90(4): 679-690. DOI:10.1016/0305-0491(88)90322-7
[93] [94]卢素芳.磷脂在黄颡鱼仔稚鱼人工微粒饲料中应用及其作用机理的研究[D].博士学位论文.武汉: 华中农业大学, 2008.
[95]COUTTEAU P, GEURDEN I, CAMARA M R, et al. Review on the dietary effects of phospholipids in fish and crustacean larviculture[J]. Aquaculture, 1997, 155(1/2/3/4): 149-164.
[96]SALHI M, HERNÁNDEZ-CRUZ C, BESSONART M, et al. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae[J]. Aquaculture, 1999, 179(1/2/3/4): 253-263.
[97]LIU J L, CABALLERO M J, IZQUIERDO M S, et al. Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead sea bream Sparus aurata[J]. Fisheries Science, 2002, 68(6): 1165-1172. DOI:10.1046/j.1444-2906.2002.00551.x
[98]HUNG S S O, BERGE G M, STOREBAKKEN T. Growth and digestibility effects of soya lecithin and choline chloride on juvenile Atlantic salmon[J]. Aquaculture Nutrition, 1997, 3(2): 141-144. DOI:10.1046/j.1365-2095.1997.00080.x
[99]CRAIG S R, GATLIN Ⅲ D M. Growth and body composition of juvenile red drum (Sciaenops ocellatus) fed diets containing lecithin and supplemental choline[J]. Aquaculture, 1997, 151(1/2/3/4): 259-267.
[100] [101]TOCHER D R, BENDIKSEN E A, CAMPBELL P J, et al. The role of phospholipids in nutrition and metabolism of teleost fish[J]. Aquaculture, 2008, 280(1/2/3/4): 21-34.
[102] [103]CHAPMAN M J. Animal lipoproteins:chemistry, structure, and comparative aspects[J]. Journal of Lipid Research, 1980, 21(7): 789-853.
[104] [105] [106]ATALAH E, CRUZ C M H, IZQUIERDO M, et al. Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata)[J]. Aquaculture, 2007, 270(1/2/3/4): 178-185.
[107]PEREZ-VELAZQUEZ M, GATLIN Ⅲ D M, GONZÁLEZ-FÉLIX M L, et al. Effect of fishmeal and fish oil replacement by algal meals on biological performance and fatty acid profile of hybrid striped bass (Morone crhysops♀×M.saxatilis)[J]. Aquaculture, 2019, 507: 83-90. DOI:10.1016/j.aquaculture.2019.04.011
[108] [109]STONEHAM T R, KUHN D D, TAYLOR D P, et al. Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil:improved nutrient value of fillet and offal[J]. PLoS One, 2018, 13(4): e0194241. DOI:10.1371/journal.pone.0194241
[110]BETIKU O C, BARROWS F T, ROSS C, et al. The effect of total replacement of fish oil with DHA-Gold and plant oils on growth and fillet quality of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet[J]. Aquaculture Nutrition, 2016, 22(1): 158-169. DOI:10.1111/anu.12234
[111]MATSUNARI H, HASHIMOTO H, ODA K, et al. Effect of different algae used for enrichment of rotifers on growth, survival, and swim bladder inflation of larval amberjack Seriola dumerili[J]. Aquaculture International, 2012, 20(5): 981-992. DOI:10.1007/s10499-012-9522-8
[112]VESTERGREN A S, TRATTNER S, PAN J F, et al. The effect of combining linseed oil and sesamin on the fatty acid composition in white muscle and on expression of lipid-related genes in white muscle and liver of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture International, 2013, 21(4): 843-859. DOI:10.1007/s10499-012-9511-y
[113]TRATTNER S, KAMAL-ELDIN A, BRÄNNAS E, et al. Sesamin supplementation increases white muscle docosahexaenoic acid (DHA) levels in rainbow trout (Oncorhynchus mykiss) fed high alpha-linolenic acid (ALA) containing vegetable oil:metabolic actions[J]. Lipids, 2008, 43(11): 989-997. DOI:10.1007/s11745-008-3228-8
[114]TRATTNER S, RUYTER B, ØSTBYE T, et al. Sesamin increases alpha-linolenic acid conversion to docosahexaenoic acid in Atlantic salmon (Salmo salar L.) hepatocytes:role of altered gene expression[J]. Lipids, 2008, 43(11): 999-1008. DOI:10.1007/s11745-008-3229-7
[115] [116]MAKOL A, TORRECILLAS S, FERNÁNDEZ-VAQUERO A, et al. Effect of conjugated linoleic acid on dietary lipids utilization, liver morphology and selected immune parameters in sea bass juveniles (Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2009, 154(2): 179-187. DOI:10.1016/j.cbpb.2009.06.001
[117]ZHAO Z Y, WU T X, TANG H G, et al. Influence of dietary conjugated linoleic acid on growth, fatty acid composition and hepatic lipogenesis in large yellow croaker (Pseudosciaena crocea R.)[J]. Journal of Zhejiang University:Science B, 2008, 9(9): 691-700. DOI:10.1631/jzus.B0820181
[118]KENNEDY S R, BICKERDIKE R, BERGE R K, et al. Influence of dietary conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on growth, lipid composition and key enzymes of fatty acid oxidation in liver and muscle of Atlantic cod (Gadus morhua L.)[J]. Aquaculture, 2007, 264(1/2/3/4): 372-382.
[119]BANDARRA N M, NUNES M L, ANDRADE A M, et al. Effect of dietary conjugated linoleic acid on muscle, liver and visceral lipid deposition in rainbow trout juveniles (Oncorhynchus mykiss)[J]. Aquaculture, 2005, 25(1/2/3/4): 496-505.
[120] [121] [122] [123] [124]LE BOUCHER R, DUPONT-NIVET M, VANDEPUTTE M, et al. Selection for adaptation to dietary shifts:towards sustainable breeding of carnivorous fish[J]. PLoS One, 2012, 7(9): e44898. DOI:10.1371/journal.pone.0044898
[125]BETANCOR M B, SPRAGUE M, SAYANOVA O, et al. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.):effects on tissue fatty acid composition, histology and gene expression[J]. Aquaculture, 2015, 444: 1-12. DOI:10.1016/j.aquaculture.2015.03.020
[126]BETANCOR M B, SPRAGUE M, USHER S, et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish[J]. Scientific Reports, 2015, 5: 8104. DOI:10.1038/srep08104
[127]BETANCOR M B, SPRAGUE M, SAYANOVA O, et al. Nutritional evaluation of an EPA-DHA oil from transgenic Camelina sativa in feeds for post-smolt Atlantic salmon (Salmo salar L.)[J]. PLoS One, 2016, 11(7): e0159934. DOI:10.1371/journal.pone.0159934
[128]BETANCOR M B, LI K H, BUCERZAN V S, et al. Oil from transgenic Camelina sativa containing over 25% n-3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (Salmo salar)[J]. British Journal of Nutrition, 2018, 119(12): 1378-1392. DOI:10.1017/S0007114518001125
[129]BETANCOR M B, LI K H, SPRAGUE M, et al. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.):effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry[J]. PLoS One, 2017, 12(4): e0175415. DOI:10.1371/journal.pone.0175415
[130]BETANCOR M B, SPRAGUE M, MONTERO D, et al. Replacement of marine fish oil with de novo omega-3 oils from transgenic Camelina sativa in feeds for gilthead sea bream (Sparus aurata L.)[J]. Lipids, 2016, 51(10): 1171-1191. DOI:10.1007/s11745-016-4191-4
[131]ALIMUDDIN, YOSHIZAKI G, KIRON V, et al. Expression of masu salmon Δ5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish[J]. Marine Biotechnology, 2007, 9(1): 92-100.
[132]ALIMUDDIN, YOSHIZAKI G, KIRON V, et al. Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon Δ6-desaturase-like gene in zebrafish[J]. Transgenic Research, 2005, 14(2): 159-165. DOI:10.1007/s11248-004-7435-7
[133]ALIMUDDIN, KIRON V, SATOH S, et al. Cloning and over-expression of a masu salmon (Oncorhynchus masou) fatty acid elongase-like gene in zebrafish[J]. Aquaculture, 2008, 282(1/2/3/4): 13-18.
[134]PANG S C, WANG H P, LI K Y, et al. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model[J]. Marine Biotechnology, 2014, 16(5): 580-593. DOI:10.1007/s10126-014-9577-9
[135]KABEYA N, TAKEUCHI Y, YAMAMOTO Y, et al. Modification of the n-3 HUFA biosynthetic pathway by transgenesis in a marine teleost, nibe croaker[J]. Journal of Biotechnology, 2014, 172: 46-54. DOI:10.1016/j.jbiotec.2013.12.004
[136]王毅.芝麻素防治非酒精性脂肪肝的作用及机理研究[D].硕士学位论文.合肥: 合肥工业大学, 2012.
[137]NAPIER J A, OLSEN R E, TOCHER D R. Update on GM canola crops as novel sources of omega-3 fish oils[J]. Plant Biotechnology Journal, 2019, 17(4): 703-705. DOI:10.1111/pbi.13045
[138]KRÖNCKE N, GREBENTEUCH S, KEIL C, et al. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.)[J]. Insects, 2019, 10(4): 84. DOI:10.3390/insects10040084
[139]PICCOLO G, IACONISI V, MARONO S, et al. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata)[J]. Animal Feed Science and Technology, 2017, 226: 12-20. DOI:10.1016/j.anifeedsci.2017.02.007
[140]XU X X, JI H, YU H B, et al. Influence of replacing fish meal with enzymatic hydrolysates of defatted silkworm pupa (Bombyx mori L.) on growth performance, body composition and non-specific immunity of juvenile mirror carp (Cyprinus carpio var. Specularis)[J]. Aquaculture Research, 2018, 49(4): 1480-1490. DOI:10.1111/are.13603
[141] [142]相关知识
Understanding SEM: An Introduction to Search Engine Marketing
繁殖策略,reproductive strategies英语短句,例句大全
荧光分子C=N键断裂与重组的空间限制—小柯机器人—科学网
Vineyard Management Software Market Share
Growth Characteristics of Rice,Water
What is SEM: Search Engine Marketing
“以竹代塑”背景下湖南绥宁竹资源供应链发展建议
内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化
A comprehensive evaluation of soil nutrients in main typical forests in central
人造花市场:依材料类型、应用分类
网址: Comprehensive Strategies for Increasing n https://www.huajiangbk.com/newsview2201419.html
上一篇: 鱼类混养的合理搭配:综合利用水体 |
下一篇: 花鲢鱼养殖攻略 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039