首页 分享 TANK VOLUME CALCULATOR

TANK VOLUME CALCULATOR

来源:花匠小妙招 时间:2025-07-22 04:18

We understand that it isn’t very easy to estimate how many gallons or litres your container can hold.

That’s why we built our online tank volume calculator.

Keep reading to see how using our capacity calculator makes calculating the volume of your tank easy.

But first…

Contents:

Tank volume calculator formulaHorizontal Cylindrical TankVertical Cylindrical TankRectangular TankHorizontal Capsule TankVertical Capsule TankHorizontal Oval TankVertical Oval TankCone Bottom TankHow to find the volume of liquid in partially filled tankPartially Filled Horizontal Circular TankPartially Filled Vertical Circular TankPartially Filled Rectangular TankPartially Filled Horizontal Oval TankPartially Filled Vertical Oval TankPartially Filled Horizontal CapsulePartially Filled Vertical CapsulePartially Filled Cone BottomExample calculationsWhat if my dimensions are in different units?

Tank volume calculator formula

Calculate the volume of liquid your container can hold by entering your dimensions in metric units (centimeters or meters) or imperial units (yards, feet or inches).

Our tool estimates the total tank volume and liquid capacity using the below formulas:

Horizontal Cylindrical Tank

HORIZONTAL CYLINDER TANK

The total volume of a horizontal cylindrical tank is calculated by using the formula:

Volume=π×Radius2×Length" role="presentation">Volume=π×Radius2×Length

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Vertical Cylindrical Tank

Vertical Cylindrical Tank

The total volume of a vertical cylindrical tank is calculated by using the formula:

Volume=π×Radius2×Height" role="presentation">Volume=π×Radius2×Height

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Rectangular Tank

Rectangular Tank

The total volume of a rectangular tank is calculated by using the formula:

Volume=Length×Width×Height" role="presentation">Volume=Length×Width×Height

Horizontal Capsule Tank

Horizontal Capsule Tank

The total volume of a capsule tank is calculated by using the formula:

Volume=π×Radius2×(SideLength+4×Radius3)" role="presentation">Volume=π×Radius2×(SideLength+4×Radius3)

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Vertical Capsule Tank

Vertical Capsule Tank

The total volume of a capsule tank is calculated by using the formula:

Volume=π×Radius2×(SideHeight+4×Radius3)" role="presentation">Volume=π×Radius2×(SideHeight+4×Radius3)

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Horizontal Oval Tank

Horizontal Oval Tank

The total volume of an oval tank is calculated by using the formula:

Volume=Length×(π×Radius2+Width×Y)" role="presentation">Volume=Length×(π×Radius2+Width×Y)

Where

Radius=Width2" role="presentation">Radius=Width2

and

Y=Height–WidthifHeight>Width" role="presentation">Y=Height–WidthifHeight>Width

Y=Width–HeightifWidth>Height" role="presentation">Y=Width–HeightifWidth>Height

Vertical Oval Tank

Vertical Oval Tank

The total volume of an oval tank is calculated by using the formula:

Volume=Height×(π×Radius2+Width×Y)" role="presentation">Volume=Height×(π×Radius2+Width×Y)

Where

Radius=Width2" role="presentation">Radius=Width2

and

Y=Length–WidthifLength>Width" role="presentation">Y=Length–WidthifLength>Width

Y=Width–LengthifWidth>Length" role="presentation">Y=Width–LengthifWidth>Length

Cone Bottom Tank

Cone Bottom Tank

The total volume of a cone bottom tank is calculated by using the formula:

Volume=VolumeCylinder+VolumeFrustrum" role="presentation">Volume=VolumeCylinder+VolumeFrustrum

Where

VolumeCylinder=π×TopRadius2×CylinderHeight" role="presentation">VolumeCylinder=π×TopRadius2×CylinderHeight

And

VolumeFrustrum=13×π×FrustrumHeight×(TopRadius2+BottomRadius2+TopRadius×BottomRadius)" role="presentation">VolumeFrustrum=13×π×FrustrumHeight×(TopRadius2+BottomRadius2+TopRadius×BottomRadius)

With

TopRadius=TopDiameter2" role="presentation">TopRadius=TopDiameter2

and

BottomRadius=BottomDiameter2" role="presentation">BottomRadius=BottomDiameter2

How to find the volume of liquid in partially filled tank

Our tank volume calculator also has an option for a tank that is only partially filled.

The formulae start to become more complicated when we look at tanks that are only partially filled, so make sure you check the values carefully – using our calculator can help you simplify the process!

Below are the formulae the calculator uses to work out the volume of water or fuel in a partially filled tank:

Partially Filled Horizontal Circular Tank

The volume of water, filled to a certain depth, is given by:

FilledVolume=12×Radius2×(x–sin⁡x)×Length" role="presentation">FilledVolume=12×Radius2×(x–sin⁡x)×Length

Where

x=2×cos−1(Radius–FilledDepthRadius)" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)

and

Radius=Diameter2" role="presentation">Radius=Diameter2

Partially Filled Vertical Circular Tank

FilledVolume=π×Radius2×FilledDepth" role="presentation">FilledVolume=π×Radius2×FilledDepth

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Partially Filled Rectangular Tank

FilledVolume=Length×Width×FilledDepth" role="presentation">FilledVolume=Length×Width×FilledDepth

Partially Filled Horizontal Oval Tank

FilledVolume=12×Radius2×(x–sin⁡x)×Length+(Length×FilledDepth×(Width–Height))" role="presentation">FilledVolume=12×Radius2×(x–sin⁡x)×Length+(Length×FilledDepth×(Width–Height))

x=2×cos−1(Radius–FilledDepthRadius)" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)

and

Radius=Width2" role="presentation">Radius=Width2

Partially Filled Vertical Oval Tank

If Filled Depth < Radius then:

FilledVolume=12&#xD7;Radius2&#xD7;(x&#x2013;sin&#x2061;x)&#xD7;Length" role="presentation">FilledVolume=12×Radius2×(x–sin⁡x)×Length

Where

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)

and

Radius=Width2" role="presentation">Radius=Width2

If Radius < Filled Depth < (Height – Width) then:

FilledVolume=12&#xD7;&#x03C0;&#xD7;Radius2&#xD7;Length+(FilledDepth&#x2013;Radius)&#xD7;Length&#xD7;Width" role="presentation">FilledVolume=12×π×Radius2×Length+(FilledDepth–Radius)×Length×Width

Where

Radius=Width2" role="presentation">Radius=Width2

If (Height – Radius) < Filled Depth < Height then:

FilledVolume=TotalLiquidCapacity&#x2013;EmptyPortion" role="presentation">FilledVolume=TotalLiquidCapacity–EmptyPortion

Where

EmptyPortion=&#x03C0;&#xD7;Radius2&#xD7;Length&#x2013;12&#xD7;Radius2&#xD7;(x&#x2013;sinx)&#xD7;Length" role="presentation">EmptyPortion=π×Radius2×Length–12×Radius2×(x–sinx)×Length

and

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)

and

Radius=Width2" role="presentation">Radius=Width2

Partially Filled Horizontal Capsule

FilledVolume=FilledCylinder+FilledSphericalEnds" role="presentation">FilledVolume=FilledCylinder+FilledSphericalEnds

Therefore

FilledVolume=12&#xD7;Radius2&#xD7;(x&#x2013;sinx)&#xD7;Length+&#x03C0;&#xD7;FilledDepth23&#xD7;(1.5&#xD7;Diameter&#x2013;FilledDepth)" role="presentation">FilledVolume=12×Radius2×(x–sinx)×Length+π×FilledDepth23×(1.5×Diameter–FilledDepth)

Where

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)

and

Radius=Diameter2" role="presentation">Radius=Diameter2

Partially Filled Vertical Capsule

If the tank is filled to below the start of the cylindrical part of the tank i.e.

FilledDepth&lt;Diameter2" role="presentation">FilledDepth<Diameter2

then:

FilledVolume=&#x03C0;&#xD7;FilledDepth23&#xD7;(1.5&#xD7;Diameter&#x2013;FilledDepth)" role="presentation">FilledVolume=π×FilledDepth23×(1.5×Diameter–FilledDepth)

If the tank is filled to under the end of the cylindrical part of the tank, i.e.

Diameter2&lt;FilledDepth&lt;Diameter2+Length" role="presentation">Diameter2<FilledDepth<Diameter2+Length

then:

FilledVolume=23&#xD7;&#x03C0;&#xD7;Radius3+&#x03C0;&#xD7;Radius2&#xD7;FilledDepth&#x2013;Diameter2" role="presentation">FilledVolume=23×π×Radius3+π×Radius2×FilledDepth–Diameter2

If the tank is filled to above the end of the cylindrical part of the tank, i.e.

Diameter2+Length&lt;FilledDepth" role="presentation">Diameter2+Length<FilledDepth

then:

FilledVolume=TotalCapsuleVolume&#x2013;SphericalCap" role="presentation">FilledVolume=TotalCapsuleVolume–SphericalCap

So

FilledVolume=CapsuleVolume&#x2013;13&#xD7;&#x03C0;&#xD7;FilledDepth2&#xD7;(1.5&#xD7;Diameter&#x2013;(Length+Diameter&#x2013;FilledDepth))" role="presentation">FilledVolume=CapsuleVolume–13×π×FilledDepth2×(1.5×Diameter–(Length+Diameter–FilledDepth))

Partially Filled Cone Bottom

If the tank is filled to below the start of the cylinder, i.e.

FilledDepth&lt;FrustumHeight" role="presentation">FilledDepth<FrustumHeight

Then, the total volume of the water contained in the tank is given by calculating the volume of the frustum filled:

FilledVolume=13&#xD7;&#x03C0;&#xD7;FrustumHeight&#xD7;(R2+R&#xD7;BottomRadius+BottomRadius2)" role="presentation">FilledVolume=13×π×FrustumHeight×(R2+R×BottomRadius+BottomRadius2)

Where

BottomRadius=BottomDiameter2" role="presentation">BottomRadius=BottomDiameter2

and

R=12&#xD7;TopDiameter&#xD7;FilledDepth+ZFrustumHeight+Z" role="presentation">R=12×TopDiameter×FilledDepth+ZFrustumHeight+Z

Where

Z=MissingConeHeight" role="presentation">Z=MissingConeHeight

If the tank is filled to above the start of the cylinder, i.e.

FrustumHeight&lt;FilledDepth" role="presentation">FrustumHeight<FilledDepth

Then

FilledVolume=CylindricalFilledVolume+FrustrumVolum" role="presentation">FilledVolume=CylindricalFilledVolume+FrustrumVolum

Where

CylindricalFilledVolume=&#x03C0;&#xD7;Radius2&#xD7;(FilledDepth&#x2013;FrustumHeight)" role="presentation">CylindricalFilledVolume=π×Radius2×(FilledDepth–FrustumHeight)

Confused?

See below for four full examples showing in detail how our calculator works.

Otherwise, simply enter your measurements for your container in our tank size calculator!

Example calculations

✅ Cylindrical Oil Tank

Let’s say that I have a cylindrical oil tank which measures 7 yards in length and has a round face 5 feet in diameter (the distance across the circular end passing through the central point).I want to calculate the tank volume in cubic feet and work out how much oil will fit in the cylinder in US gallons.I would enter the values as shown in the calculator and select the correct units in the drop down options for measurements.The cylindrical tank calculator would then perform the following operations to calculate the size of the cylindrical oil tank:

Volume=&#x03C0;&#xD7;Radius2&#xD7;Length" role="presentation">Volume=π×Radius2×Length

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Therefore

Volume=&#x03C0;&#xD7;5ft22&#xD7;7yd=412.3ft3=3084USGal" role="presentation">Volume=π×5ft22×7yd=412.3ft3=3084USGal

Now, let’s say we filled the cylindrical tank to a height of 2 feet. The total water in the tank is calculated by:

FilledVolume=12&#xD7;Radius2&#xD7;(x&#x2013;sin&#x2061;x)&#xD7;Length" role="presentation">FilledVolume=12×Radius2×(x–sin⁡x)×Length

Where

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)=2&#xD7;cos&#x2212;1(2.5ft&#x2013;2ft2.5ft)=156.9" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)=2×cos−1(2.5ft–2ft2.5ft)=156.9

and

Radius=Diameter2=5ft2=2.5ft" role="presentation">Radius=Diameter2=5ft2=2.5ft

Therefore

FilledVolume=12&#xD7;2.5ft2&#xD7;(156.9&#x2013;sin&#x2061;156.9)&#xD7;7yd=154ft3=1152.1USGal" role="presentation">FilledVolume=12×2.5ft2×(156.9–sin⁡156.9)×7yd=154ft3=1152.1USGal

Rectangular Fuel Tank

Let’s say that I have a rectangular fuel tank which measures 4 feet wide, 2 feet in length and has a vertical height of 10 inches.I want to calculate the tank volume in cubic feet and work out how much fuel will fit in my tank in barrels (bbl).I would enter the values in the fields and select the correct units in the drop down options for measurement.The calculator would then perform the following calculations:

Volume=Length&#xD7;Width&#xD7;Height=2ft&#xD7;4ft&#xD7;10in=6.667ft3=1.187bbl" role="presentation">Volume=Length×Width×Height=2ft×4ft×10in=6.667ft3=1.187bbl

Now, let’s say that we filled the fuel tank to a height of 3 inches.

To calculate the total volume of the liquid the calculator would do the following operations:

FilledVolume=Length&#xD7;Width&#xD7;FilledDepth=2ft&#xD7;4ft&#xD7;3in=2ft3=14.96USGal" role="presentation">FilledVolume=Length×Width×FilledDepth=2ft×4ft×3in=2ft3=14.96USGal

✅ Horizontal Capsule Tank

Let’s now say that I have a water capsule tank (a cylindrical tank with circular ends) which measures 10 inches in diameter and 30 inches in horizontal side length.I want to know its volume in cubic inches and therefore its liquid capacity (how much water I can fit in the tank) in litres.I would enter the values in the calculator as shown in the figure above, selecting the correct units for each measurement from the drop down options.Then it would perform the following calculations to work out the volume of the tank:

Volume=&#x03C0;&#xD7;Radius2&#xD7;(Length+4&#xD7;Radius3)" role="presentation">Volume=π×Radius2×(Length+4×Radius3)

Where

Radius=Diameter2" role="presentation">Radius=Diameter2

Therefore

Volume=&#x03C0;&#xD7;(10in2)2&#xD7;(30in+43&#xD7;10in2)=&#x03C0;&#xD7;5in2&#xD7;(30in+20in3)=2879.793in3=47.2l" role="presentation">Volume=π×(10in2)2×(30in+43×10in2)=π×5in2×(30in+20in3)=2879.793in3=47.2l

Therefore, my tank measures approximately 2880 cubic inches and I can fill it with 47.2 liters of water.

Now, let’s say that I want to fill the tank to a depth of 3 inches.

To calculate the total amount of liquid in the tank, the calculator would do the following calculations:

FilledVolume=12&#xD7;Radius2&#xD7;(x&#x2013;sinx)&#xD7;Length+&#x03C0;&#xD7;FilledDepth23&#xD7;(1.5&#xD7;Diameter&#x2013;FilledDepth)" role="presentation">FilledVolume=12×Radius2×(x–sinx)×Length+π×FilledDepth23×(1.5×Diameter–FilledDepth)

Where

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)=2&#xD7;cos&#x2212;1(5in&#x2013;3in5in)=132.84" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)=2×cos−1(5in–3in5in)=132.84

and

Radius=10in2=5in" role="presentation">Radius=10in2=5in

Therefore

FilledVolume=12&#xD7;5in2&#xD7;(132.84&#x2013;sin132.84)&#xD7;30in+&#x03C0;&#xD7;3in23&#xD7;(1.5&#xD7;10in&#x2013;3in)=0.409ft3=3.06USGal" role="presentation">FilledVolume=12×5in2×(132.84–sin132.84)×30in+π×3in23×(1.5×10in–3in)=0.409ft3=3.06USGal

✅ Horizontal Oval Tank

For the final example, let’s imagine that I have an oval tank which is 7 feet long horizontally.The oval face measures 100 cm wide and has a vertical height of 4 feet.I want to know how many litres of water I can fill my tank with and what the tank volume is in cubic yards.I would enter the correct values in the calculator, selecting the appropriate units for each measurement from the drop down options.It would perform the following calculations:

Volume=Length&#xD7;(&#x3C0;&#xD7;Radius2+Width&#xD7;Y)" role="presentation">Volume=Length×(π×Radius2+Width×Y)

Where

Radius=Width2" role="presentation">Radius=Width2

and

Y=Height&#x2013;WidthifHeight&gt;Width" role="presentation">Y=Height–WidthifHeight>Width

Y=Width&#x2013;HeightifWidth&gt;Height" role="presentation">Y=Width–HeightifWidth>Height

Therefore

Volume=7ft&#xD7;(&#x3C0;&#xD7;50cm2+100cm&#xD7;(4ft&#x2013;100cm))=2.803yd3=2143.411litres" role="presentation">Volume=7ft×(π×50cm2+100cm×(4ft–100cm))=2.803yd3=2143.411litres

Note that we use Y = Height – Width because height (4 ft = 121cm) is larger than 100 cm.

Now, let’s say I have filled the tank with water to a depth of 1.5 ft.

The calculator works out the total volume of water by doing  the following calculations:

FilledVolume=12&#xD7;Radius2&#xD7;(x&#x2013;sin&#x2061;x)&#xD7;Length+(Length&#xD7;FilledDepth&#xD7;(Width&#x2013;Height))" role="presentation">FilledVolume=12×Radius2×(x–sin⁡x)×Length+(Length×FilledDepth×(Width–Height))

Where

x=2&#xD7;cos&#x2212;1(Radius&#x2013;FilledDepthRadius)=2&#xD7;cos&#x2212;1(50cm&#x2013;1.5ft50cm)=170.2" role="presentation">x=2×cos−1(Radius–FilledDepthRadius)=2×cos−1(50cm–1.5ft50cm)=170.2

and

Radius=Width2=100cm2=50cm" role="presentation">Radius=Width2=100cm2=50cm

Therefore

FilledVolume=12&#xD7;50cm2&#xD7;(170.2&#x2013;sin&#x2061;170.2)&#xD7;7ft+(7ft&#xD7;1.5ft&#xD7;(100cm&#x2013;4ft))=26.37ft3=197.25USGallons" role="presentation">FilledVolume=12×50cm2×(170.2–sin⁡170.2)×7ft+(7ft×1.5ft×(100cm–4ft))=26.37ft3=197.25USGallons

At this point, it’s likely that you are asking the following question:

What if my dimensions are in different units?

The best part of our online calculator is that it takes care of this for you!

Looking through our examples, perhaps you noticed that we changed units between feet, centimeters, inches and so on, e.g. in example 2:

Volume=Length&#xD7;Width&#xD7;Height=2ft&#xD7;4ft&#xD7;10in=6.667ft3=1.187bbl" role="presentation">Volume=Length×Width×Height=2ft×4ft×10in=6.667ft3=1.187bbl

We can do this because our calculator is able to do the conversions for you, making it far easier for you!

For each measurement there are multiple options that are available to use. For example, length can be calculated in terms of feet (ft), inches (in), yards (yd), meters (m) or centimeters (cm).

The calculator takes care of this by using the following conversions:

1foot=12inches=0.33yards=30.48centimeters=0.3048meters" role="presentation">1foot=12inches=0.33yards=30.48centimeters=0.3048meters

1ft3=1728in3=0.037yd3=28316.8cm3=0.0283168m3" role="presentation">1ft3=1728in3=0.037yd3=28316.8cm3=0.0283168m3

Note that the default value for all lengths is inches, tank volume is cubic inches and liquid capacity is US gallons.

Each of these can be changed by pressing the arrows next to the unit measurements and selecting the correct unit from the drop down options.

We think that our tank volume calculator is an effective and powerful online tool. It makes calculating the volume of your tank very easy!

相关知识

TANK VOLUME CALCULATOR
Soil Calculator For Pots
Vegetable Container Size Chart & Pot Size Calculator
Gardenolic acid B (栀子花乙酸)
《Flora of China Illustrations Volume 20
IBC Tote Capacities & Gallon Sizes
薰衣草精油提取设备,植物精油加工设备
Immune initiator
栀子提取物生产设备,栀子精油提取设备
化肥计算工具 & 在线公式 Calculator Ultra

网址: TANK VOLUME CALCULATOR https://www.huajiangbk.com/newsview2188589.html

所属分类:花卉
上一篇: A Guide to Conta
下一篇: Plant Container

推荐分享