首页 分享 中间锦鸡儿 CiUPF0114 克隆与表达及豆科 UPF0114 基因家族成员分析

中间锦鸡儿 CiUPF0114 克隆与表达及豆科 UPF0114 基因家族成员分析

来源:花匠小妙招 时间:2025-07-19 09:18

参考文献

[1]黎春花, 刘国道. 豆科植物应用价值综述. 热带农业科学, 2008, 28(4):75-80Li C H, Liu G D. Multipurpose us of Legumes. Chinese Journal of Tropical Agriculture, 2008, 28(4):75-80
[2]Zhu J F, Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. Plos One, 2013, 8(1):e53196
[3]安超平, 王兴, 宋乃平, 周娟, 随金明. 荒漠草原中间锦鸡儿林土壤养分效应对群落组分和多样性的影响. 西北植物学报, 2016, 36(9):1872-1881An C P, Wang X, Song N P, Zhou J, Sui J M. Effect of soil nutrient on community composition and diversity of Caragana intermedia in desert steppe. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(9):1872-1881
[4]Schlueter J. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278):178-183
[5]Young N D, Debellé F, Oldroyd G E, Geurts R, Cannon S B, Udvardi M K, Benedito V A, Mayer K F, Gouzy J, Schoof H. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480(7378):520-524
[6]Vega J J D, Ayling S, Hegarty M, Kudrna D, Goicoechea J L, Ergon ?, Rognli O A, Jones C, Swain M, Geurts R. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Scientific Reports, 2015, 5, 17394
[7]Varshney R K, Song C, Saxena R K, Azam S, Yu S, Sharpe A G, Cannon S, Baek J, Rosen B D, Tar''An B. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31(3):240-246
[8]Varshney R K, Chen W, Li Y, Bharti A K, Saxena R K, Schlueter J A, Donoghue M T A, Azam S, Fan G, Whaley A M. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30(1):83
[9]Pang T, Ye C Y, Xia X, Yin W. De novosequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. Bmc Genomics, 2013, 14(1):488
[10]Zhu J F, Li W F, Yang W H, Qi L W, Han S M. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress. Plant Cell Reports, 2013, 32(9):1339-1349
[11]Wan Y Q, Mao M Z, Wan D L, Yang Q, Yang F Y, Mandlaa, Li G J, Wang R G. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. Bmc Plant Biology, 2018, 18(1):31
[12]Hiremath P J, Andrew F, Cannon S B, Jimmy W, Himabindu K, Reetu T, Ashish K, Amindala B P, Benjamin M, Neha G. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal, 2011, 9(8):922-931
[13]陈红霖, 胡亮亮, 王丽侠, 王素华, 程须珍. 绿豆bHLH转录因子家族的鉴定与生物信息学分析. 植物遗传资源学报, 20171, 18(6):1159-1167Chen H L, Hu L L, Wang L X, Wang S H, Cheng X Z. Genome-wide identification and bioinformatics analysis of bHLH transcription factor family in Mung Bean (Vigna radiata L.). Journal of Plant Genetic Resources, 2017, 18(6):1159-1167
[14]Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Qureshi M, Sangrador-Vegas A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016, 44(D1):D279-D285
[15]Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy Server. Humana Press, 2005:571-607
[16]Goodstein D M, Shu S, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 2012, 40(D1):D1178-D1186
[17]Proost S, Bel M V, Sterck L, Billiau K, Parys T V, Peer Y V D, Vandepoele K. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. The Plant Cell, 2009, 21(12):3718-3731
[18]Marchlerbauer A, Bo Y, Han L, He J, Lanczycki C J, Lu S, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017, 45(Database issue):D200-D203
[19]Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution, 2016, 33(7):1870-1874
[20]Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31(8):1296-1297
[21]Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(suppl_2):W202-W208
[22]Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324
[23]Wei Q, Guo Y J, Cao H M, Kuai B K. Cloning and characterization of an /H antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Culture, 2011, 105(3):309-316
[24]Zeng F J, Song C, Guo H F, Liu B, Luo W C, Gui D W, Arndt S, Guo D L. Responses of root growth of Alhagi sparsifolia Shap. (Fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China. Journal of Arid Land, 2013, 5(2): 220-232
[25]Peng L, Lang S, Wang Y, Pritchard H W, Wang X. Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. Journal of Experimental Botany, 2017, 68(13):3585-3601
[26]Ganie S A, Pani D R, Mondal T K. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. Plos One, 2017, 12(8):e0182469
[27]Li M, Guo L, Guo L J, Wang L J, Chen L. Over-expression of a DUF1644 protein gene, SIDP361 , enhances tolerance to salt stress in transgenic rice. Journal of Plant Biology, 2016, 59(1):62-73
[28]Wang Y F, Zhang Z Q, Liu H M, An Y R, Han B, Wu Y J, Chang L Q, Hu T M, Yang P Z. Overexpression of an alfalfa ( Medicago sativa ) gene, MsDUF , negatively impacted seed germination and response to osmotic stress in transgenic tobacco. Plant Cell Tissue Organ Culture, 2018, 132(3):525-534

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

相关知识

中间锦鸡儿CiUPF0114克隆与表达及.PDF 文档全文预览
中间锦鸡儿 CiUPF0114 克隆与表达及豆科 UPF0114 基因家族成员分析
旱寒胁迫下锦鸡儿基因SSH文库构建及抗逆侯选功能基因资源挖掘
灰毡毛忍冬MADS-box家族基因SVP克隆及表达分析
月季CBF转录因子基因的克隆及表达分析
茉莉花 j sggp ps 基因的克隆及生物信息学与表达分析
茉莉花PAL基因家族的多基因组鉴定与表达分析
内蒙古高原小叶锦鸡儿与中间锦鸡儿遗传多样性的研究
桂花OfABFs基因克隆和表达分析
毛白杨L微管蛋白基因家族的克隆与序列分析

网址: 中间锦鸡儿 CiUPF0114 克隆与表达及豆科 UPF0114 基因家族成员分析 https://www.huajiangbk.com/newsview2175909.html

所属分类:花卉
上一篇: 浙江全面完成畜禽遗传资源面上普查
下一篇: 三种锦鸡儿遗传多样性ISSR分析

推荐分享