A review of research advances on carbon sinks in farmland ecosystems
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R B, Piao S L, Thornton P. Carbon and other biogeochemical cycles//Intergovernmental Panel on Climate Change. Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 465-570.
[2] [3]Wang J, Feng L, Palmer P I, Liu Y, Fang S X, Bösch H, O'dell C W, Tang X P, Yang D X, Liu L X, Xia C Z. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586(7831): 720-723. DOI:10.1038/s41586-020-2849-9
[4] [5]Wang K, Bastos A, Ciais P, Wang X H, Rödenbeck C, Gentine P, Chevallier F, Humphrey V W, Huntingford C, O'Sullivan M, Seneviratne S I, Sitch S, Piao S L. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nature Communications, 2022, 13(1): 3469. DOI:10.1038/s41467-022-31175-w
[6]Zhang Y C, Piao S, Sun Y, Rogers B M, Li X Y, Lian X, Liu Z H, Chen A P, Peñuelas J. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12(6): 581-586. DOI:10.1038/s41558-022-01374-w
[7]Zhu Z C, Piao S L, Myneni R B, Huang M T, Zeng Z Z, Canadell J G, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C X, Cheng L, Kato E, Koven C, Li Y, lian X, Liu Y W, Liu R G, Mao J F, Pan Y Z, Peng S S, Peñuelas J, Poulter B, Pugh T A M, Stocker B D, Viovy N, Wang X H, Wang Y P, Xiao Z Q, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795. DOI:10.1038/nclimate3004
[8] [9] [10] [11]Piao S L, He Y, Wang X H, Chen F H. Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 2022, 65(4): 641-651. DOI:10.1007/s11430-021-9892-6
[12]Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458(7241): 1009-1013. DOI:10.1038/nature07944
[13]Friedlingstein P, O'Sullivan M, Jones M W, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O'brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H Q, Tilbrook B, Van Der werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W P, Yue X, Zaehle S. Global Carbon Budget 2020. Earth System Science Data, 2020, 12(4): 3269-3340. DOI:10.5194/essd-12-3269-2020
[14] [15] [16] [17] [18] [19] [20] [21]Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, Lützow M, Kögel-Knabner I. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 2012, 18(7): 2233-2245. DOI:10.1111/j.1365-2486.2012.02699.x
[22]Chen W Z, Zhu D, Huang C J, Ciais P, Yao Y T, Friedlingstein P, Sitch S, Haverd V, Jain A K, Kato E, Kautz M, Lienert S, Lombardozzi D, Poulter B, Tian H Q, Vuichard N, Walker A P, Zeng N. Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275: 47-58. DOI:10.1016/j.agrformet.2019.05.002
[23] [24]Erb K H, Fetzel T, Plutzar C, Kastner T, Lauk C, Mayer A, Niedertscheider M, Körner C, Haberl H. Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9(9): 674-678. DOI:10.1038/ngeo2782
[25] [26]West T O, Marland G, King A W, Post W M, Jain A K, Andrasko K. Carbon management response curves: Estimates of temporal soil carbon dynamics. Environmental Management, 2003, 33(4): 507-518.
[27] [28]梁二. 近40年中国农业土壤碳汇源时空格局变化初探[D]. 北京: 中国农业科学院, 2007.
[29]Grant R F, Black T A, Gaumont-Guay D, Klujn N, Barr A G, Morgenstern K, Nesic Z. Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys. Agricultural and Forest Meteorology, 2006, 140(1/4): 152-170.
[30]Mandal U K, Bhardwaj A K, Lama T D, Nayak D B, Samui A, Burman D, Mahanta K K, Sarangi S K, Mandal S, Raut S. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil and Tillage Research, 2021, 212: 105076. DOI:10.1016/j.still.2021.105076
[31] [32] [33] [34] [35]Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdsey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B. Consistent land-and atmosphere-based U.S. carbon sink estimates. Science, 2001, 292(5525): 2316-2320. DOI:10.1126/science.1057320
[36]Jiang F, Chen J M, Zhou L X, Ju W M, Zhang H F, Machida T, Ciais P, Peters W, Wang H M, Chen B Z, Liu L X, Zhang C H, Matsueda H, Sawa Y. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Scientific Reports, 2016, 6: 22130. DOI:10.1038/srep22130
[37] [38]Abedinpour M, Sarangi A, Rajput T B S, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 2012, 110: 55-66. DOI:10.1016/j.agwat.2012.04.001
[39]Yan X Y, Cai Z C, Wang S W, Smith P. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17(3): 1487-1496. DOI:10.1111/j.1365-2486.2010.02286.x
[40]Jia H X, Wang X, Xiao J J, Jang S L, Li J, Zhao Y F, Ye W L. Simulated soil organic carbon stocks in northern China's cropland under different climate change scenarios. Soil and Tillage Research, 2021, 213: 105088. DOI:10.1016/j.still.2021.105088
[41] [42] [43]Chen B Z, Zhang H F, Wang T, Zhang X Y. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China: progress and challenges. Science Bulletin, 2021, 66(17): 1713-1718. DOI:10.1016/j.scib.2021.05.017
[44] [45]赵宁, 周蕾, 庄杰, 王永琳, 周稳, 陈集景, 宋珺, 丁键浠, 迟永刚. 中国陆地生态系统碳源/汇整合分析. 生态学报, 2021, 41(19): 7648-7658.
[46] [47] [48] [49] [50] [51] [52]Lindert P H. The bad Earth? China's soils and agricultural development since the 1930s. Economic Development and Cultural Change, 1999, 47(4): 701-736.
[53]Song G H, Li L Q, Pan G X, Zhang Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry, 2005, 74(1): 47-62.
[54] [55] [56] [57] [58] [59] [60]Poggio L, De Sousa L M, Batjes N H, Heuvelink G B M, Kempen B, Ribeiro E, Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 2021, 7(1): 217-240.
[61]吕丽平. 海南土壤有机碳含量变化规律研究[D]. 海口: 海南大学, 2013.
[62] [63] [64] [65] [66] [67] [68]高岩红. 普定县农田土壤有机碳库演变特征及影响因素研究[D]. 重庆: 西南大学, 2014.
[69] [70]Rodrigues L, Hardy B, Huyghebeart B, Fohrafellner J, Fornara D, Barančíková G, Bárcena T G, De Boever M, Di Bene C, Feizien D, Kätterer T, Laszlo P, O'sullivan L, Seitz D, Leifeld J. Achievable agricultural soil carbon sequestration across Europe from country-specific estimates. Global Change Biology, 2021, 27(24): 6363-6380.
[71] [72]Guo Y Y, Gong P, Amundson R, Yu Q. Analysis of factors controlling soil carbon in the conterminous United States. Soil Science Society of America Journal, 2006, 70(2): 601-612.
[73]Smith P, Powlson D S, Smith J U, Falloon P, Coleman K. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 2000, 6(5): 525-539.
[74]Kan Z R, Liu W X, Liu W S, Lal R, Dang Y P, Zhao X, Zhang H L. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology, 2022, 28(3): 693-710.
[75]Dalal R C, Allen D E, Wang W J, Reeves S, Gibson I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil & Tillage Research, 2011, 112(2): 133-139.
[76] [77] [78] [79]Yan H M, Cao M K, Liu J Y, Tao B. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems & Environment, 2007, 121(4): 325-335.
[80]Guo L Y, Wu G L, Li Y, Li C H, Liu W J, Meng J, Liu H T, Yu X F, Jiang G M. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China. Soil and Tillage Research, 2016, 156: 140-147.
[81]Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change, 2001, 51(1): 35-72.
[82]Tong X G, Xu M G, Wang X J, Bhattacharyya R, Zhang W J, Cong R H. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena, 2014, 113: 251-259.
[83] [84]丁磊, 柴强, 于爱忠, 胡发龙, 殷文, 樊志龙, 范虹, 任慧, 赵财. 覆膜免耕对玉米间作豌豆农田土壤有机碳和氮的影响. 西北农业学报, 2021, 30(8): 1148-1156.
[85]张贵云, 吕贝贝, 张丽萍, 刘珍, 范巧兰, 魏明峰, 姚众, 袁嘉玮, 柴跃进. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国生态农业学报(中英文), 2019, 27(3): 358-368.
[86] [87]Zhao H X, Qin J H, Gao T P, Zhang M K, Sun H C, Zhu S W, Xu C L, Ning T Y. Immediate and long-term effects of tillage practices with crop residue on soil water and organic carbon storage changes under a wheat-maize cropping system. Soil and Tillage Research, 2022, 218: 105309.
[88] [89] [90]Dong Q G, Yang Y C, Yu K, Feng H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management, 2018, 201: 133-143.
[91] [92]Zhao H L, Cui J Y, Zhou R L, Zhang T H, Zhao X Y, Drake S. Soil properties, crop productivity and irrigation effects on five croplands of Inner Mongolia. Soil and Tillage Research, 2007, 93(2): 346-355.
相关知识
Research advances of carbon
Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China
Effects of farmland management measures on soil organic carbon turnover and microorganisms
农田土壤固碳潜力的影响因素及其调控(综述)
Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality
Advances in research on the ecological effects of microplastic pollution on soil ecosystems
中国草地碳汇功能提升的挑战和行动对策
Research on domestic agricultural carbon source/sink effect: perspectives, advances and improvements
Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: A review
森林生态系统碳汇: 概念、时间效应与提升途径
网址: A review of research advances on carbon sinks in farmland ecosystems https://www.huajiangbk.com/newsview2062824.html
上一篇: 东湖区:集中清理“加拿大一枝花” |
下一篇: 油菜无公害栽培的基础及其对农业生 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039