首页 分享 硝态氮抑制水稻铁向上运输加剧低镉胁迫的机理

硝态氮抑制水稻铁向上运输加剧低镉胁迫的机理

来源:花匠小妙招 时间:2025-05-22 20:44

摘要:

目的

铵态氮减少作物对镉(Cd)的吸收,而硝态氮则增加对Cd的吸收。通过研究供应两种形态氮对水稻镉吸收的影响及其作用机理,为水稻氮肥管理降镉策略提供理论依据。

方法

以粳稻品种‘中花11号’(Oryza sativa L.,ZH11) 为材料进行了水培试验。在Hoagland营养液基础上,分别设置硝态氮、铵态氮浓度为1.25 mol/L的营养液,每个营养液中设置添加和不添加Cd 0.5 μmol/L,共4个处理。水稻幼苗在处理液中生长21天后,取样调查水稻生长指标,地上部和根部铁(Fe)、锌(Zn)、Cd含量, 根部亚细胞组分Fe、Cd含量和金属离子转运相关基因表达量,结合结构方程模型分析各生理指标间的相互作用关系。

结果

铵态氮条件下低Cd胁迫对水稻生长无显著影响,而硝态氮条件下低Cd胁迫显著降低了水稻叶片SPAD、株高、地上部及根部干物质量,降幅分别为46%、27%、36%、25%,且叶片出现缺绿症状。叶片SPAD值与地上部Fe含量正相关 (R2=0.79),与Cd含量负相关,与Zn含量无关,说明硝态氮下叶片SPAD值下降是由Fe含量降低、Cd含量升高所致。低Cd胁迫下,硝态氮处理水稻根表、根内Fe含量分别高于、低于铵态氮处理,因而根表Fe向根内的转移系数低于铵态氮;亚细胞Fe含量分析结果表明,硝态氮处理根系细胞壁、细胞器Fe含量高于铵态氮处理,而可溶性部分Fe含量低于铵态氮处理,因而Fe的移动性较差,Fe从根部向地上部的转移系数低。同时,硝态氮处理提高了根部Fe吸收运转基因OsIRT1、OsIRT2的表达。

结论

低Cd胁迫下,供应硝态氮显著降低水稻叶片SPAD值,抑制根及地上部生长,并因缺Fe导致叶片失绿,而供应铵态氮不会产生缺Fe现象。硝态氮促进了水稻根表Fe膜的形成及Fe在细胞壁的富集,降低了Fe的运转系数,致使地上部Fe供应不足,植物体内缺Fe信号反馈通过上调Fe吸收转运调控相关基因的表达,相关转运蛋白的非特异性吸收导致Cd累积量显著增加,抑制了水稻的生长发育。

关键词: 水稻  /  硝态氮  /  镉  /  铁吸收转运  

Abstract:

Objectives

Ammonium nitrogen (NH4+-N) reduces the uptake of cadmium (Cd) by crops, whereas nitrate nitrogen (NO3−-N) increases Cd uptake. Research on the effects of supplying these two nitrogen forms on cadmium absorption in rice and the underlying mechanisms provides a theoretical basis for developing cadmium-reducing strategies in nitrogen fertilizer management for rice cultivation.

Methods

A hydroponic experiment was conducted using the japonica rice variety ‘Zhonghua 11’ (Oryza sativa L., ZH11). Based on Hoagland nutrient solution, we set up nutrient solutions with nitrate nitrogen and ammonium nitrogen at a concentration of 1.25 mol/L, including treatments with and without 0.5 μmol/L Cd, resulting in four treatments overall. After 21 days of growth in the treatment solution, we sampled to investigate rice growth indicators, the contents of iron (Fe), zinc (Zn), and Cd in the above-ground and root parts, subcellular Fe and Cd contents in roots, and the expression of genes related to metal ion transport. We analyzed the interactions among various physiological indicators using structural equation modeling.

Results

Under ammonium nitrogen conditions, low cadmium stress had no significant effect on rice growth. However, under nitrate nitrogen conditions, low cadmium stress significantly reduced leaf SPAD values, plant height, and dry biomass of both the above-ground and root parts by 46%, 27%, 36%, and 25%, respectively, and the leaves showed symptoms of chlorosis. The SPAD value of the leaves was positively correlated with the Fe content in the above-ground part (R2=0.79), negatively correlated with Cd content, and had no relation to Zn, indicating that the decrease in SPAD values under nitrate nitrogen was due to reduced Fe content and increased Cd content. Under low Cd stress, the Fe content in root surface and internal roots of rice treated with nitrate nitrogen was higher and lower than that treated with ammonium nitrogen, respectively, resulting in a lower transfer coefficient of Fe from the root surface to the inner root compared to ammonium nitrogen. Subcellular Fe content analysis showed that the Fe content in the root cell walls and organelles of nitrate nitrogen treatment was higher than that of ammonium nitrogen treatment, while the Fe content in soluble parts was lower than that of ammonium nitrogen, leading to poorer mobility of Fe and a lower transfer coefficient of Fe from roots to above-ground parts. Simultaneously, nitrate nitrogen treatment enhanced the expression of root Fe uptake transport genes OsIRT1 and OsIRT2.

Conclusions

Under low Cd stress, supplying nitrate nitrogen significantly decreased rice leaf SPAD values, inhibited growth of the roots and above-ground parts, and caused leaf chlorosis due to Fe deficiency. In contrast, supplying ammonium nitrogen did not result in Fe deficiency. Nitrate nitrogen promoted the formation of Fe membranes at the root surface and the accumulation of Fe in the cell walls, reducing the transfer coefficient of Fe and resulting in insufficient Fe supply in the above-ground parts. The feedback of Fe deficiency signals within the plant upregulated the expression of genes regulating Fe absorption and transport, and the nonspecific absorption of related transport proteins led to a significant increase in Cd accumulation, inhibiting rice growth and development.

图  1   低镉胁迫下不同氮供应形态对水稻生长的影响

注:CK和Cd分别表示营养液中不添加和添加0.5 μmol/L CdCl2。柱上不同小写字母表示处理间差异显著 (P<0.05)。

Figure  1.   Effects of different nitrogen supply forms on rice growth under low cadmium stress

Note: CK, and Cd represent treatments without, and with addition of 0.5 μmol/L CdCl2. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

图  2   氮形态与低镉胁迫处理对水稻地上部和根部金属离子含量的影响

注:CK、Cd分别表示营养液中不添加、添加0.5 μmol/L CdCl2,NH4+、NO3−代表营养液中氮供应分别为1.25 mol/L (NH4)2SO4、Ca(NO3)2。柱上不同小写字母表示处理间差异显著 (P<0.05)。

Figure  2.   Effects of nitrogen forms and low Cd stress on element content in aboveground and root of rice

Note: CK, and Cd represents treatments without, and with addition of 0.5 μmol/L CdCl2. NH4+, and NO3− indicate treatments of supplying 1.25 mol/L (NH4)2SO4, and Ca(NO3)2, respectively. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

图  3   水稻金属含量与SPAD水平相关性分析

注:Cd表示添加0.5 μmol/L CdCl2的低镉处理,NH4+、NO3−代表营养液中氮供应分别为1.25 mol/L (NH4)2SO4、Ca(NO3)2。

Figure  3.   Analysis of the correlation between metal content and SPAD levels

Note: Cd indicates a low cadmium treatment with the addition of 0.5 μmol/L CdCl2; NH4+, and NO3− indicate treatments of supplying 1.25 mol/L (NH4)2SO4, and Ca(NO3)2, respectively.

图  4   不同氮形态对低镉处理水稻根部铁、镉吸收的影响

注:NH4+、NO3−代表营养液中氮供应分别为1.25 mol/L (NH4)2SO4、Ca(NO3)2。柱上*表示处理间差异达到0.05显著水平。

Figure  4.   Effects of different nitrogen forms on iron and cadmium uptake in rice roots under low cadmium treatment

Note: NH4+, and NO3− indicate treatment of supplying 1.25 mol/L (NH4)2SO4, and Ca(NO3)2, respectively. The * above the bar indicate significant difference between treatments at 0.05 significant level.

图  5   氮形态对水稻根部亚细胞各组分铁镉累积量的影响

注:NH4+、NO3−代表营养液中氮供应分别为1.25 mol/L (NH4)2SO4、Ca(NO3)2。柱上*、**分别表示NH4+与NO3−处理间差异达到0.05、0.01显著水平。

Figure  5.   Effects of nitrogen forms on iron and cadmium accumulation in subcellular fractions of rice roots

Note: NH4+, and NO3− indicate treatment of supplying 1.25 mol/L (NH4)2SO4, and Ca(NO3)2, respectively. The *, and ** above the bars indicate significant difference between NH4+、NO3− treatments at 0.05, and 0.01 significant levels, respectively.

图  6   不同氮形态对水稻根部铁转运调控基因表达量的影响

注:NH4+、NO3−代表营养液中氮供应分别为1.25 mol/L (NH4)2SO4、Ca(NO3)2。柱上*表示NH4+与NO3−处理间差异达到0.05显著水平。

Figure  6.   Effects of different nitrogen forms on genes expression level in low cadmium treated rice roots

Note: NH4+, and NO3− indicate treatment of supplying 1.25 mol/L (NH4)2SO4, and Ca(NO3)2, respectively. The * above the bars indicate significant difference between NH4+ and NO3− treatments at 0.05 significant level.

图  7   结构方程模型

Figure  7.   Structural equation modeling

[1]

Shimpei U, Shinsuke M, Masato K, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677−2688. DOI: 10.1093/jxb/erp119

[2] 张星雨, 叶志彪, 张余洋, 等. 植物响应镉胁迫的生理与分子机制研究进展[J]. 植物生理学报, 2021, 57(7): 1437−1450.

Zhang X Y, Ye Z B, Zhang Y Y, et al. Advances in physiological and molecular mechanism of plant response to cadmium stress[J]. Journal of Plant Physiology, 2021, 57(7): 1437−1450.

[3] 颜昌宙, 郭建华. 氮肥管理对植物镉吸收的影响[J]. 生态环境学报, 2020, 29(7): 1466−1474.

Yan C Z, Guo J H. Effects of nitrogen fertilizer management on cadmium uptake in plants[J]. Ecology and Environmental Sciences, 2020, 29(7): 1466−1474.

[4] 史作然, 单广波, 杨丽, 等. 土壤重金属污染修复技术综述[J]. 当代化工, 2020, 49(8): 1812−1815. DOI: 10.3969/j.issn.1671-0460.2020.08.057

Shi Z R, Shan G B, Yang L, et al. Remediation technology of heavy metal contaminated soil[J]. Contemporary Chemical Industry, 2020, 49(8): 1812−1815. DOI: 10.3969/j.issn.1671-0460.2020.08.057

[5] 曹晨昊. 重金属镉污染土壤修复技术综述与展望[J]. 节能与环保, 2019, 10: 56−57. DOI: 10.3969/j.issn.1009-539X.2019.01.021

Cao C H. Review and prospect of remediation technology for heavy metal cadmium contaminated soil[J]. Energy Conservation and Environmental, 2019, 10: 56−57. DOI: 10.3969/j.issn.1009-539X.2019.01.021

[6]

Sarwar N, Saifullah, Malhi S S, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. Journal of the Science of Food and Agriculture, 2010, 90: 925−937. DOI: 10.1002/jsfa.3916

[7]

Yang Y, Xiong J, Tao L, et al. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: A review[J]. Science of the Total Environment, 2020, 708: 135186. DOI: 10.1016/j.scitotenv.2019.135186

[8] 张秦泽, 郝广, 李洪远. 外源输入氮的有效性及形态对植物生长与生理影响的研究进展[J]. 生态学杂志, 2024, 43(3): 878−887.

Zhang Q Z, Hao G, Li H Y. Effects of availability and form of exogenous nitrogen on plant growth and physiology: Progress and prospects[J]. Chinese Journal of Ecology, 2024, 43(3): 878−887.

[9]

Haynes R J. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH[J]. Plant and Soil, 1990, 126(2): 247−264. DOI: 10.1007/BF00012828

[10] 李小雪, 汪毅, 许超, 等. 氮素抑制剂对水稻吸收转运镉的影响[J]. 中国环境科学, 2023, 43(6): 3034−3041. DOI: 10.3969/j.issn.1000-6923.2023.06.037

Li X X, Wang Y, Xu C, et al. Effects of nitrogen inhibitors on cadmium uptake and transport in rice[J]. China Environment Science, 2023, 43(6): 3034−3041. DOI: 10.3969/j.issn.1000-6923.2023.06.037

[11] 杨锚, 王火焰, 周健民, 等. 不同水分条件下几种氮肥对水稻土中外源镉转化的动态影响[J]. 农业环境科学学报, 2006, 25(5): 1202−1207. DOI: 10.3321/j.issn:1672-2043.2006.05.022

Yang M, Wang H Y, Zhou J M, et al. Effects of applying nitrogen fertilizers on transformation of external cadmium in the paddy soil with different soil moisture[J]. Journal of Agro-Environment Science, 2006, 25(5): 1202−1207. DOI: 10.3321/j.issn:1672-2043.2006.05.022

[12]

Wu Z C, Zhang W J, Xu S J, et al. Increasing ammonium nutrition as a strategy for inhibition of cadmium uptake and xylem transport in rice (Oryza sativa L.) exposed to cadmium stress[J]. Environmental and Experimental Botany, 2018, 155: 734−741. DOI: 10.1016/j.envexpbot.2018.08.024

[13]

Hao A, Wu D X, Li C L, et al. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice[J]. Frontiers in Plant Science, 2022, 13: 1003953. DOI: 10.3389/fpls.2022.1003953

[14]

Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2155−2167.

[15]

Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant Cell & Environment, 2012, 35(11): 1948−1957. DOI: 10.1111/j.1365-3040.2012.02527.x

[16] 刘元峰, 李素贞, 郭晋杰, 等. 植物YSL家族基因研究进展[J]. 生物技术通报, 2017, 33(9): 1−9.

Liu Y F, Li S Z, Guo J J, et al. Research progress on YSL transporters gene family[J]. Biotechnology Bulletin, 2017, 33(9): 1−9.

[17]

Yamaji N, Xia J X, Mitani-Ueno N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927−939. DOI: 10.1104/pp.113.216564

[18]

Sasaki A, Yamaji N, Mitani-Ueno N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374−384. DOI: 10.1111/tpj.13005

[19]

Luo L, Zhu M, Jia L T, et al. Ammonium transporters cooperatively regulate rice crown root formation responding to ammonium nitrogen[J]. Journal of Experimental Botany, 2022, 73(11): 3671−3685. DOI: 10.1093/jxb/erac059

[20]

Tang L, Dong J Y, Qu M M, et al. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms[J]. Science of the Total Environment, 2022, 832: 155006. DOI: 10.1016/j.scitotenv.2022.155006

[21] 余晓燚, 苗渝青, 吕魏, 等. 过氧化氢在水稻镉耐受及吸收分配中的作用机理[J]. 植物营养与肥料学报, 2024, 30(4): 677−688. DOI: 10.11674/zwyf.2023458

Yu X Y, Miao Y Q, Lü W, et al. Mechanism of hydrogen peroxide regulating cadmium tolerance and distribution in rice[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(4): 677−688. DOI: 10.11674/zwyf.2023458

[22]

Weigel H J, Jäger H J. Different effects of cadmium in vitro and in vivo on enzyme activities in bean plants (Phaseolus vulgaris L. c. v. Sankt Andreas)[J]. Zeitschrift Für Pflanzenphysiologie, 1980, 97(2): 103−113.

[23]

Balk J, Schaedler T A. Iron cofactor assembly in plants[J]. Annual Review of Plant Biology, 2014, 65(1): 125−153. DOI: 10.1146/annurev-arplant-050213-035759

[24] 李素梅, 施卫明. 不同氮形态对两种基因型水稻根系形态及氮吸收效率的影响[J]. 土壤, 2007, 39(4): 589−593. DOI: 10.3321/j.issn:0253-9829.2007.04.017

Li S M, Shi W M. Effect of nitrogen form on root morphology and nitrogen absorption efficiency of two cultivars of rice[J]. Soils, 2007, 39(4): 589−593. DOI: 10.3321/j.issn:0253-9829.2007.04.017

[25] 宋娜, 郭世伟, 沈其荣. 不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J]. 植物学通报, 2007, 24(4): 477−483.

Song N, Guo S W, Shen Q R. Effects of different nitrogen forms and water stress on water absorption, photosynthesis and growth of Oryza sativa seedlings[J]. Chinese Bulletin of Botany, 2007, 24(4): 477−483.

[26]

Larsson Jönsson E H, Asp H. Effects of pH and nitrogen on cadmium uptake in potato[J]. Biologia Plantarum, 2013, 57(4): 788−792. DOI: 10.1007/s10535-013-0354-9

[27]

Li L, Jia L T, Duan X L, et al. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice[J]. New Phytologist, 2024, 244(4): 1391−1407. DOI: 10.1111/nph.20128

[28]

Meier M, Liu Y, Lay-Pruitt K S, et al. Auxin-mediated root branching is determined by the form of available nitrogen[J]. Nature Plants, 2020, 6(9): 1136−1145. DOI: 10.1038/s41477-020-00756-2

[29]

Liu X X, Zhang H H, Zhu Q Y, et al. Phloem iron remodels root development in response to ammonium as the major nitrogen source[J]. Nature Communications, 2022, 13(1): 561. DOI: 10.1038/s41467-022-28261-4

[30]

Liu Y, Maniero R A, Giehl R F H, et al. PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress[J]. Molecular Plant, 2022, 15(5): 820−839. DOI: 10.1016/j.molp.2022.01.012

[31]

Li Q, Chen L, Yang A. The molecular mechanisms underlying iron deficiency responses in rice[J]. International Journal of Molecular Sciences, 2019, 21(1): 43. DOI: 10.3390/ijms21010043

[32]

Hänsch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl)[J]. Current Opinion in Plant Biology, 2009, 12(3): 259−266. DOI: 10.1016/j.pbi.2009.05.006

[33]

Zhang L D, Song L Y, Dai M J, et al. Cadmium promotes the absorption of ammonium in hyperaccumulator Solanum nigrum L. mediated by ammonium transporters and aquaporins[J]. Chemosphere, 2022, 307: 136031.

[34]

Zhang Q, Chen H F, Xu C, et al. Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes[J]. Environmental and Experimental Botany, 2019, 162: 392−398. DOI: 10.1016/j.envexpbot.2019.03.004

[35]

Chen H F, Zhang Q, Cai H M, et al. H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice[J]. Plant, Cell & Environment, 2018, 41(4): 767-781.

[36] 刘侯俊, 李雪平, 韩晓日, 等. 镉处理根表铁膜对水稻吸收镉、锰、铜、锌的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1356−1365. DOI: 10.11674/zwyf.2013.0609

Liu H J, Li X P, Han X R, et al. Influence of iron plaque on Cd, Mn, Cu and Zn uptakes of rice seedlings under different Cd treatments[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(6): 1356−1365. DOI: 10.11674/zwyf.2013.0609

[37]

Huang G X, Ding C F, Li Y S, et al. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L. )[J]. Journal of Hazardous Materials, 2020, 398: 122860. DOI: 10.1016/j.jhazmat.2020.122860

[38]

Li T, Tao Q, Shohag M J I, et al. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J]. Plant and Soil, 2015, 389(1−2): 387−399. DOI: 10.1007/s11104-014-2367-3

[39]

Zhu C Q, Cao X C, Zhu L F, et al. Ammonium mitigates Cd toxicity in rice (Oryza sativa) via putrescine-dependent alterations of cell wall com-position[J]. Plant Physiology Biochemistry, 2018, 132: 189−201. DOI: 10.1016/j.plaphy.2018.09.005

[40]

Yang Z, Yang F, Liu J, et al. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation[J]. Science of the Total Environment, 2022, 809: 151099. DOI: 10.1016/j.scitotenv.2021.151099

[41] 职帅, 李畅, 陈景光, 等. 锌铁转运蛋白基因OsZIP5和OsZIP9参与Zn2+和Cd2+的吸收和转运[J]. 分子植物育种, 2021, 19(1): 137−148.

Zhi S, Li C, Chen J G, et al. Zinc-iron transporter genes OsZIP5 and OsZIP9 are involved in the uptake and transport of Zn2+ and Cd2+ in rice[J]. Molecular Plant Breeding, 2021, 19(1): 137−148.

[42]

Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464−469. DOI: 10.1111/j.1747-0765.2006.00055.x

[43]

Wei T, Lv X, Jia H L, et al. Effects of salicylic acid, Fe(Ⅱ) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes[J]. Journal of Environmental Management, 2014, 214: 164−171.

[44]

Shao G, Chen M, Wang W, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33−42. DOI: 10.1007/s10725-007-9201-3

[45]

Hu Y C, Yan T C, Gao Z Y, et al. Appropriate supply of ammonium nitrogen and ammonium nitrate reduces cadmium content in rice seedlings by inhibiting cadmium uptake and transport[J]. Rice Science, 2024, 31(5): 587−602. DOI: 10.1016/j.rsci.2024.02.007

[46]

Chen H F, Zhang Q, Zhang Z H. Comparative transcriptome combined with metabolomic and physiological analyses revealed ROS-mediated redox signaling affecting rice growth and cellular iron homeostasis under varying pH conditions[J]. Plant and Soil, 2019, 434(1-2): 343−361. DOI: 10.1007/s11104-018-3859-3

[47]

Xu Z M, Wang J F, Li W L, et al. Nitrogen fertilizer affects rhizosphere Cd re-mobilization by mediating gene AmALM2 and AmALMT7 expression in edible amaranth roots[J]. Journal of Hazardous Materials, 2021, 418: 126310. DOI: 10.1016/j.jhazmat.2021.126310

[48]

Zhang L D, Liu X, Wei M Y, et al. Ammonium has stronger Cd detoxification ability than nitrate by reducing Cd influx and increasing Cd fixation in Solanum nigrum L.[J]. Journal of Hazardous Materials, 2022, 425: 127947. DOI: 10.1016/j.jhazmat.2021.127947

相关知识

硝态氮抑制水稻铁向上运输加剧低镉胁迫的机理
关于硝态氮的测定原理和方法介绍
硝态氮对缓解长春花海水胁迫效应的研究
硝态氮对缓解长春花海水胁迫效应的研究的综述报告
硝态氮对海水胁迫下长春花幼苗光合特性及离子含量的影响
植物对铵态氮和硝态氮的吸收同化机理简介
铵、硝态氮的植物营养生理性质
肥料氮素全解:什么是硝态氮,铵态氮,酰胺态氮?
土壤硝态氮检测方法
植物硝态氮检测|茁彩生物

网址: 硝态氮抑制水稻铁向上运输加剧低镉胁迫的机理 https://www.huajiangbk.com/newsview2011315.html

所属分类:花卉
上一篇: 铵态氮肥的特性如何?施用铵态氮肥
下一篇: 靛酚蓝比色法测定植物铵态氮

推荐分享