首页 分享 Research progress and hotspots of environmental soil science between 2016

Research progress and hotspots of environmental soil science between 2016

来源:花匠小妙招 时间:2025-05-13 23:50
[1]

陈怀满. 环境土壤学[M]. 三版. 北京: 科学出版社, 2018: 2.
CHEN Huai-man. Environmental soil science[M]. 3rd Edition. Beijing: Science Press, 2018: 2.

[2]

邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2): 143-148.
QIU Jun-ping, DUAN Yufeng, CHEN Jing-quan, et al. The retrospect and prospect on bibliometrics in China[J]. Studies in Science of Science, 2003, 21(2): 143-148. DOI:10.3969/j.issn.1003-2053.2003.02.007

[3]

Han R, Zhou B, Huang Y, et al. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018[J]. Journal of Cleaner Production, 2020, 276: 123249. DOI:10.1016/j.jclepro.2020.123249

[4]

Li D, Zhao R, Peng X, et al. Biochar-related studies from 1999 to 2018:A bibliometrics-based review[J]. Environmental Science and Pollution Research, 2020, 27(3): 2898-2908. DOI:10.1007/s11356-019-06870-9

[5]

Chen C. Searching for intellectual turning points:Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences, 2004, 101(Suppl 1): 5303-5310.

[6]

Chen C. CiteSpace Ⅱ:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI:10.1002/asi.20317

[7]

Abujabhah I S, Bound S A, Doyle R, et al. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil[J]. Applied Soil Ecology, 2016, 98: 243-253. DOI:10.1016/j.apsoil.2015.10.021

[8]

Allard S M, Walsh C S, Wallis A E, et al. Solanum lycopersicum(tomato)hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers[J]. Science of the Total Environment, 2016, 573: 555-563. DOI:10.1016/j.scitotenv.2016.08.157

[9]

Detheridge A P, Brand G, Fychan R, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation[J]. Agriculture, Ecosystems & Environment, 2016, 228: 49-61.

[10]

Huang L, Bai J, Wen X, et al. Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level[J]. Global Change Biology, 2020, 26(4): 2377-2389. DOI:10.1111/gcb.14995

[11] [12]

Chen Q-L, Ding J, Zhu Y-G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140: 105766. DOI:10.1016/j.envint.2020.105766

[13]

Banerjee S, Kirkby C A, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97: 188-198. DOI:10.1016/j.soilbio.2016.03.017

[14]

Schuur E A, Mcguire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179. DOI:10.1038/nature14338

[15]

Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007-1017. DOI:10.1038/ismej.2011.159

[16]

Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998. DOI:10.1038/nmeth.2604

[17]

Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. DOI:10.1093/bioinformatics/btr381

[18] [19]

Luo Z, Luo Y, Wang G, et al. Warming-induced global soil carbon loss attenuated by downward carbon movement[J]. Global Change Biology, 2020, 26(12): 7242-7254. DOI:10.1111/gcb.15370

[20]

Jiao C, Zheng G, Xie X, et al. Rate of soil organic carbon sequestration in a millennium coastal soil chronosequence in northern Jiangsu, China[J]. CATENA, 2020, 193: 104627. DOI:10.1016/j.catena.2020.104627

[21]

Luo Z, Viscarra Rossel R A, Shi Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change[J]. Global Change Biology, 2020, 26(8).

[22]

Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 1-6.

[23]

Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization:Do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995. DOI:10.1111/gcb.12113

[24]

Chen J, Elsgaard L, Van Groenigen K J, et al. Soil carbon loss with warming:New evidence from carbon-degrading enzymes[J]. Global Change Biology, 2020, 26(4): 1944-1952. DOI:10.1111/gcb.14986

[25]

Hu Y, Zheng Q, Noll L, et al. Direct measurement of the in situ decomposition of microbial-derived soil organic matter[J]. Soil Biology and Biochemistry, 2020, 141: 107660. DOI:10.1016/j.soilbio.2019.107660

[26]

Keskin H, Grunwald S, Harris W G. Digital mapping of soil carbon fractions with machine learning[J]. Geoderma, 2019, 339: 40-58. DOI:10.1016/j.geoderma.2018.12.037

[27]

Silatsa F B, Yemefack M, Tabi F O, et al. Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon[J]. Geoderma, 2020, 367: 114260. DOI:10.1016/j.geoderma.2020.114260

[28]

Schmidt M W, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. DOI:10.1038/nature10386

[29]

Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68. DOI:10.1038/nature16069

[30]

Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. DOI:10.1016/j.soilbio.2010.04.003

[31]

Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336-340. DOI:10.1038/ngeo846

[32]

Conant R T, Ryan M G, Ågren G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11): 3392-3404. DOI:10.1111/j.1365-2486.2011.02496.x

[33]

Hansen V, Müller-Stöver D, Munkholm L J, et al. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil:an incubation study[J]. Geoderma, 2016, 269: 99-107. DOI:10.1016/j.geoderma.2016.01.033

[34]

Zhao J, Ren T, Zhang Q, et al. Effects of biochar amendment on soil thermal properties in the North China Plain[J]. Soil Science Society of America Journal, 2016, 80(5): 1157-1166. DOI:10.2136/sssaj2016.01.0020

[35]

Lim T, Spokas K, Feyereisen G, et al. Predicting the impact of biochar additions on soil hydraulic properties[J]. Chemosphere, 2016, 142: 136-144. DOI:10.1016/j.chemosphere.2015.06.069

[36]

Molnár M, Vaszita E, Farkas É, et al. Acidic sandy soil improvement with biochar:A microcosm study[J]. Science of the Total Environment, 2016, 563: 855-865.

[37]

Dari B, Nair V D, Harris W G, et al. Relative influence of soil-vs. biochar properties on soil phosphorus retention[J]. Geoderma, 2016, 280: 82-87. DOI:10.1016/j.geoderma.2016.06.018

[38]

Paneque M, José M, Franco-Navarro J D, et al. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions[J]. CATENA, 2016, 147: 280-287. DOI:10.1016/j.catena.2016.07.037

[39]

Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.

[40]

Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota:A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. DOI:10.1016/j.soilbio.2011.04.022

[41]

Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1295-1301.

[42]

Luo Y, Durenkamp M, De Nobili M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11): 2304-2314. DOI:10.1016/j.soilbio.2011.07.020

[43] [44]

Gerber J S, Carlson K M, Makowski D, et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management[J]. Global Change Biology, 2016, 22(10): 3383-3394. DOI:10.1111/gcb.13341

[45]

Shang Z, Abdalla M, Kuhnert M, et al. Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors[J]. Environmental Pollution, 2020, 259: 113864. DOI:10.1016/j.envpol.2019.113864

[46]

Carey C J, Dove N C, Beman J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158-166. DOI:10.1016/j.soilbio.2016.05.014

[47]

Mehnaz K R, Dijkstra F A. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil[J]. Geoderma, 2016, 284: 34-41. DOI:10.1016/j.geoderma.2016.08.011

[48]

Dong W, Walkiewicz A, Bieganowski A, et al. Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil[J]. Geoderma, 2020, 362: 114091. DOI:10.1016/j.geoderma.2019.114091

[49]

Friedl J, Scheer C, Rowlings D W, et al. Denitrification losses from an intensively managed sub-tropical pasture:Impact of soil moisture on the partitioning of N2 and N2O emissions[J]. Soil Biology and Biochemistry, 2016, 92: 58-66. DOI:10.1016/j.soilbio.2015.09.016

[50]

Gao D, Hou L, Liu M, et al. Mechanisms responsible for N2O emissions from intertidal soils of the Yangtze Estuary[J]. Science of the Total Environment, 2020, 716: 137073. DOI:10.1016/j.scitotenv.2020.137073

[51]

Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. DOI:10.1126/science.1136674

[52]

Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 2014, 111(25): 9199-9204. DOI:10.1073/pnas.1322434111

[53]

Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. DOI:10.1126/science.1182570

[54]

Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3041-3046. DOI:10.1073/pnas.0813417106

[55]

Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621): 20130122. DOI:10.1098/rstb.2013.0122

[56]

Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:Implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66(12): 5368-5382. DOI:10.1128/AEM.66.12.5368-5382.2000

[57]

Hu B, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. DOI:10.1016/j.envpol.2020.114961

[58]

Wang Z, Xiao J, Wang L, et al. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map[J]. Environmental Pollution, 2020, 260: 114065. DOI:10.1016/j.envpol.2020.114065

[59]

Liu P, Hu W, Tian K, et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea:A comparative study of China and South Korea[J]. Environment International, 2020, 137: 105519. DOI:10.1016/j.envint.2020.105519

[60]

Huang Y-N, Dang F, Li M, et al. Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China[J]. Science of the Total Environment, 2020, 698: 134326. DOI:10.1016/j.scitotenv.2019.134326

[61]

Gustave W, Yuan Z-F, Li X, et al. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice(Oryza sativa L.)[J]. Environmental Pollution, 2020, 260: 113989. DOI:10.1016/j.envpol.2020.113989

[62]

Gu T, Yu H, Li F, et al. Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake[J]. Plant and Soil, 2020, 452: 397-412. DOI:10.1007/s11104-020-04569-2

[63]

Hu B, Xue J, Zhou Y, et al. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning[J]. Environmental Pollution, 2020, 262: 114308. DOI:10.1016/j.envpol.2020.114308

[64]

Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512: 143-153.

[65]

Zhao F-J, Ma Y, Zhu Y-G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.

[66]

Li Z, Ma Z, Van Der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853.

[67]

Tóth G, Hermann T, Da Silva M, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016, 88: 299-309. DOI:10.1016/j.envint.2015.12.017

[68]

Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid) s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. DOI:10.1016/j.jhazmat.2013.12.018

[69]

Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals:Concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075

[70] [71]

Prosdocimi M, Burguet M, Di Prima S, et al. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards[J]. Science of the Total Environment, 2017, 574: 204-215. DOI:10.1016/j.scitotenv.2016.09.036

[72]

Comino J R, Senciales J, Ramos M A, et al. Understanding soil erosion processes in Mediterranean sloping vineyards(Montes de Málaga, Spain)[J]. Geoderma, 2017, 296: 47-59. DOI:10.1016/j.geoderma.2017.02.021

[73]

Djuma H, Bruggeman A, Camera C, et al. Combining qualitative and quantitative methods for soil erosion assessments:An application in a sloping Mediterranean watershed, Cyprus[J]. Land Degradation & Development, 2017, 28(1): 243-254.

[74]

García-Díaz A, Bienes R, Sastre B, et al. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain[J]. Agriculture, Ecosystems & Environment, 2017, 236: 256-267.

[75]

Cerdà A, Rodrigo-Comino J, Giménez-Morera A, et al. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land[J]. Ecological Engineering, 2017, 108: 162-171. DOI:10.1016/j.ecoleng.2017.08.028

[76]

Prosdocimi M, Jordán A, Tarolli P, et al. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards[J]. Science of the Total Environment, 2016, 547: 323-330. DOI:10.1016/j.scitotenv.2015.12.076

[77]

Service N R C, Department A. Keys to soil taxonomy[M]. Government Printing Office, 2010.

[78]

Brevik E, Cerdà A, Mataix-Solera J, et al. The interdisciplinary nature of soil[J]. Soil, 2015, 1(1): 117-129. DOI:10.5194/soil-1-117-2015

[79]

Keesstra S D, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals[J]. Soil, 2016, 2: 111-128. DOI:10.5194/soil-2-111-2016

[80]

Prosdocimi M, Cerdà A, Tarolli P. Soil water erosion on Mediterranean vineyards:A review[J]. CATENA, 2016, 141: 1-21. DOI:10.1016/j.catena.2016.02.010

[81] [82]

Taghizadeh-Mehrjardi R, Mahdianpari M, Mohammadimanesh F, et al. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran[J]. Geoderma, 2020, 376: 114552. DOI:10.1016/j.geoderma.2020.114552

[83]

Mahmoudzadeh H, Matinfar H R, Taghizadeh-Mehrjardi R, et al. Spatial prediction of soil organic carbon using machine learning techniques in western Iran[J]. Geoderma Regional, 2020, 21: e00260. DOI:10.1016/j.geodrs.2020.e00260

[84]

Taghizadeh-Mehrjardi R, Schmidt K, Eftekhari K, et al. Synthetic resampling strategies and machine learning for digital soil mapping in Iran[J]. European Journal of Soil Science, 2020, 71(3): 352-368. DOI:10.1111/ejss.12893

[85]

Padarian J, Mcbratney A B, Minasny B. Game theory interpretation of digital soil mapping convolutional neural networks[J]. Soil, 2020, 6(2): 389-397. DOI:10.5194/soil-6-389-2020

[86]

Hengl T, Mendes De Jesus J, Heuvelink G B, et al. SoilGrids250m:Global gridded soil information based on machine learning[J]. PLoS One, 2017, 12(2): e0169748. DOI:10.1371/journal.pone.0169748

[87]

Conrad O, Bechtel B, Bock M, et al. System for automated geoscientific analyses(SAGA)v. 2.1.4[J]. Geoscientific Model Development Discussions, 2015, 8: 2271-2312.

[88]

Fick S E, Hijmans R J. WorldClim 2:New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. DOI:10.1002/joc.5086

[89]

Dee D P, Uppala S M, Simmons A, et al. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. DOI:10.1002/qj.828

[90]

Tarolli P, Cavalli M, Masin R. High-resolution morphologic characterization of conservation agriculture[J]. CATENA, 2019, 172: 846-856. DOI:10.1016/j.catena.2018.08.026

[91]

Prestele R, Hirsch A L, Davin E L, et al. A spatially explicit representation of conservation agriculture for application in global change studies[J]. Global Change Biology, 2018, 24(9): 4038-4053. DOI:10.1111/gcb.14307

[92]

Godfray H C J, Beddington J R, Crute I R, et al. Food security:The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818. DOI:10.1126/science.1185383

[93]

Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478(7369): 337-342. DOI:10.1038/nature10452

[94]

Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences, 2011, 108(50): 20260-20264. DOI:10.1073/pnas.1116437108

[95]

付鑫, 王俊, 刘全全, 等. 秸秆和地膜覆盖对旱作玉米田土壤团聚体及有机碳的影响[J]. 土壤通报, 2016, 47(2): 405-413.
FU Xin, WANG Jun, LIU Quan-quan, et al. Effect of straw and plastic film mulching on aggregate size distribution and organic carbon contents in a rainfed corn field[J]. Chinese Journal of Soil Science, 2016, 47(2): 405-413.

[96]

向元彬, 周世兴, 肖永翔, 等. 模拟氮沉降和降雨量改变对华西雨屏区常绿阔叶林土壤有机碳的影响[J]. 生态学报, 2017, 37(14): 4686-4695.
XIANG Yuan-bin, ZHOU Shi-xing, XIAO Yongxiang, et al. Effects of simulated nitrogen deposition and precipitation changes on soil organic carbon in an evergreen broad-leaved forest that is part of the rainy area of western China[J]. Acta Ecologica Sinica, 2017, 37(14): 4686-4695.

[97]

陈美淇, 马垒, 赵炳梓, 等. 木本泥炭对红黄壤性水田土壤有机质提升和细菌群落组成的影响[J]. 土壤, 2020, 52(2): 279-286.
CHEN Mei-qi, MA Lei, ZHAO Bing-zi, et al. Effects of woody peat on quick improvement of soil organic matter and bacterial community composition in newly reclaimed red-yellow paddy soils[J]. Soils, 2020, 52(2): 279-286.

[98]

苏培玺, 王秀君, 解婷婷, 等. 干旱区荒漠无机固碳能力及土壤碳同化途径[J]. 科学通报, 2018, 63(8): 755-765.
SU Pei-xi, WANG Xiu-jun, XIE Ting-ting, et al. Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region[J]. Chinese Science Bulletin, 2018, 63(8): 755-765.

[99]

赵俊峰, 肖礼, 黄懿梅, 等. 黄土丘陵区不同种植类型梯田2 m土层有机碳的分布特征[J]. 水土保持学报, 2017, 31(5): 253-259.
ZHAO Jun-feng, XIAO Li, HUANG Yi-mei, et al. Distribution characteristics of organic carbon in 2 m soil layers under difference planting types in terraced fields on loess hilly region[J]. Journal of Soil and Water Conservation, 2017, 31(5): 253-259.

[100]

王富华, 吕盛, 黄容, 等. 缙云山4种森林植被土壤团聚体有机碳分布特征[J]. 环境科学, 2019, 40(3): 1504-1511.
WANG Fuhua, LÜ Sheng, HUANG Rong, et al. Distribution of organic carbon in soil aggregates from four kinds of forest vegetation on Jinyun Mountain[J]. Environmental Science, 2019, 40(3): 1504-1511.

[101]

刘刚, 闫静雯, 谢云, 等. 黑土坡耕地土壤有机质空间变异及其与土壤侵蚀的关系——以黑龙江省鹤山农场为例[J]. 地理科学, 2016, 36(11): 1751-1758.
LIU Gang, YAN Jing-wen, XIE Yun, et al. Spatial variation of soil organic matter on black soil sloping cropland and its relationship with soil erosion:A case study of Heshan farm in Heilongjiang Province[J]. Scientia Geographica Sinica, 2016, 36(11): 1751-1758.

[102]

李杨梅, 贡璐, 安申群, 等. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 2018, 39(8): 3867-3875.
LI Yang-mei, GONG Lu, AN Shen-qun, et al. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 2018, 39(8): 3867-3875.

[103]

郝翔翔, 韩晓增, 邹文秀. 示差红外光谱在土壤有机质组成研究中的应用[J]. 分析化学, 2018, 46(4): 616-622.
HAO Xiangxiang, HAN Xiao-zeng, ZOU Wen-xiu. Studies on composition of soil organic matter by fourier transform infrared spectroscopy differential analysis[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 616-622.

[104]

李丹丹, 周忠发, 但雨生, 等. 基于组合赋权TOPSIS模型的土壤养分空间分析及综合评价——以瓮安县为例[J]. 环境工程, 2018, 36(8): 183-188.
LI Dan-dan, ZHOU Zhong-fa, DAN Yu-sheng, et al. Soil nutrients spatial analysis and comprehensive evaluation based on combination determining weights topsis model:A case of Weng'an County[J]. Environment Engineering, 2018, 36(8): 183-188.

[105]

赵明松, 李德成, 张甘霖, 等. 江淮丘陵地区土壤养分空间变异特征——以安徽省定远县为例[J]. 土壤, 2016, 48(4): 762-768.
ZHAO Ming-song, LI De-cheng, ZHANG Gan-lin, et al. Spatial variability characteristics of soil nutrients in Jianghuai Hilly region:A case study of Dingyuan County, Anhui Province[J]. Soils, 2016, 48(4): 762-768.

[106]

陈泽涛, 沙占江, 王求贵, 等. 高寒草原草甸区土壤侵蚀及植被覆盖对养分空间分布的影响——以兴海盆地子科滩为例[J]. 水土保持研究, 2019, 26(6): 226-234.
CHEN Ze-tao, SHA Zhan-jiang, WANG Qiu-gui, et al. Effects of soil erosion and vegetation cover on spatial distribution of nutrients in alpine grassland meadow area a case study of Ziketan in Xinghai basin[J]. Research of Soil and Water Conservation, 2019, 26(6): 226-234.

[107]

郭汉清, 谢英荷, 洪坚平, 等. 煤基复混肥对复垦土壤养分、玉米产量及水肥利用的影响[J]. 水土保持学报, 2016, 30(2): 213-218.
GUO Han-qing, XIE Ying-he, HONG Jian-ping, et al. Effects of coal-derived compound fertilizer on soil nutrient, corn yield and water and fertilizer use efficiency in reclaimed area[J]. Journal of Soil and Water Conservation, 2016, 30(2): 213-218.

[108]

盖霞普, 刘宏斌, 翟丽梅, 等. 生物炭对中性水稻土养分和微生物群落结构影响的时间尺度变化研究[J]. 农业环境科学学报, 2016, 35(4): 719-728.
GAI Xia-pu, LIU Hong-bin, ZHAI Li-mei, et al. Temporal fluctuations of impacts of corn-stover biochar on nutrients and microbial community structure in a neutral paddy soil[J]. Journal of Agro-Environment Science, 2016, 35(4): 719-728.

[109]

张彦军, 郭胜利. 环境因子对土壤微生物呼吸及其温度敏感性变化特征的影响[J]. 环境科学, 2019, 40(3): 1446-1456.
ZHANG Yan-jun, GUO Sheng-li. Effect of environmental factors on variation characteristics of soil microbial respiration and its temperature sensitivity[J]. Environmental Science, 2019, 40(3): 1446-1456.

[110]

刘远, 张辉, 熊明华, 等. 气候变化对土壤微生物多样性及其功能的影响[J]. 中国环境科学, 2016, 36(12): 3793-3799.
LIU Yuan, ZHANG Hui, XIONG Ming-hua, et al. Effect of climate change on soil microbial diversity and function[J]. China Environmental Science, 2016, 36(12): 3793-3799. DOI:10.3969/j.issn.1000-6923.2016.12.034

[111]

韩文辉, 党晋华, 赵颖. 污灌区重金属和多环芳烃复合污染及其对农田土壤微生物数量的影响[J]. 生态环境学报, 2016, 25(9): 1562-1568.
HAN Wen-hui, DANG Jin-hua, ZHAO Ying. Compound pollution of heavy metals and polycyclic aromatic hydrocarbons in sewage irrigation area and its effect on soil microbial quantity[J]. Ecology and Environmental Sciences, 2016, 25(9): 1562-1568.

[112]

张芳, 郜红建, 葛高飞. 苯并[J]. 环境化学, 2017, 36(8): 1849-1857.
ZHANG Fang, GAO Hong-jian, GE Gao-fei. Effects of cumulative benzo(a)pyrene pollution on functional diversity of microbial community in soil[J]. Environmental Chemistry, 2017, 36(8): 1849-1857.

[113]

刘畅, 黄雅丹, 张莹, 等. 培养条件下双酚A对稻田土壤微生物群落特征的影响[J]. 环境科学, 2016, 37(11): 4380-4388.
LIU Chang, HUANG Ya-dan, ZHANG Ying, et al. Effects of bisphenol a on characteristics of paddy soil microbial community under different cultural conditions[J]. Environmental Science, 2016, 37(11): 4380-4388.

[114]

喻素芳, 佘光辉, 李远发, 等. 马尾松林经不同强度采伐后与肉桂混交对土壤微生物功能多样性的影响[J]. 生态学杂志, 2017, 36(9): 2438-2446.
YU Su-fang, SHE Guang-hui, LI Yuan-fa, et al. The influences of mixing with Cinnamomum cassia after different cutting intensities in a masson pine forest on soil microbial functional diversity[J]. Chinese Journal of Ecology, 2017, 36(9): 2438-2446.

[115]

赵凤艳, 张勇勇, 张玥琦, 等. 有机物料对设施番茄长期连作土壤细菌群落结构的影响[J]. 生态学杂志, 2019, 38(6): 1732-1740.
ZHAO Feng-yan, ZHANG Yong-yong, ZHANG Yue-qi, et al. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse[J]. Chinese Journal of Ecology, 2019, 38(6): 1732-1740.

[116]

戴军杰, 章新平, 吕殿青, 等. 南方红壤丘陵区樟树林土壤水分动态变化[J]. 水土保持研究, 2019, 26(4): 123-131.
DAI Jun-jie, ZHANG Xin-ping, LÜ Dian-qing, et al. Dynamics of soil water in Cinnamomum camphora forest in the red soil hilly region of south China[J]. Research of Soil and Water Conservation, 2019, 26(4): 123-131.

[117]

刘娜娜, 陈惠娟, 孔德杰. 宁夏盐池不同草地类型的土壤水分平衡研究[J]. 水土保持研究, 2016, 23(1): 23-28.
LIU Na-na, CHEN Hui-juan, KONG De-jie. Soil moisture budget in different types of grasslands in Yanchi County of Ningxia arid zone[J]. Research of Soil and Water Conservation, 2016, 23(1): 23-28.

[118]

梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系[J]. 生态环境学报, 2019, 28(9): 1748-1756.
LIANG Xiang-han, ZHANG Ke-bin, QIAO Xia. Relationship between soil moisture and nutrients and plant diversity of caragana microphylla community in semi-arid loess region[J]. Ecology and Environmental Sciences, 2019, 28(9): 1748-1756.

[119]

马涛, 贾志清, 周波, 等. 黄土丘陵区不同土地利用类型土壤呼吸及其与温度和水分的关系[J]. 水土保持通报, 2018, 38(1): 82-88, 95.
MA Tao, JIA Zhi-qing, ZHOU Bo, et al. Soil respiration of different land uses and its relation to water and temperature in hilly area of loess plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 82-88, 95.

[120]

张延, 梁爱珍, 张晓平, 等. 不同耕作方式下土壤水分状况对土壤呼吸的初期影响[J]. 环境科学, 2016, 37(3): 1106-1113.
ZHANG Yan, LIANG Ai-zhen, ZHANG Xiao-ping, et al. Priming effects of soil moisture on soil respiration under different tillage practices[J]. Environmental Science, 2016, 37(3): 1106-1113.

[121]

徐学池, 黄媛, 何寻阳, 等. 土壤水分和温度对西南喀斯特棕色石灰土无机碳释放的影响[J]. 环境科学, 2019, 40(4): 1965-1972.
XU Xue-chi, HUANG Yuan, HE Xun-yang, et al. Effect of soil moisture and temperature on the soil inorganic carbon release of brown limestone soil in the karst region of southwestern China[J]. Environmental Science, 2019, 40(4): 1965-1972.

[122]

严正升, 郭忠升, 宁婷, 等. 枝条覆盖对半干旱黄土丘陵区平茬柠条林地土壤水分的影响[J]. 生态学报, 2016, 36(21): 6872-6878.
YAN Zheng-sheng, GUO Zhong-sheng, NING Ting, et al. Effects of branch mulch on soil water of pruned Caragana korshinskii forestland in the semi-arid Loess Hilly region[J]. Acta Ecologica Sinica, 2016, 36(21): 6872-6878.

[123]

张秀玲, 孙贇, 张水清, 等. 生物质炭对华北平原4种典型土壤N2O排放的影响[J]. 环境科学, 2019, 40(11): 5173-5181.
ZHANG Xiu-ling, SUN Yun, ZHANG Shui-qing, et al. Effects of biochar on N2O emission from four typical soils in the North China Plain[J]. Environmental Science, 2019, 40(11): 5173-5181.

[124]

杨雨浛, 易建婷, 张成, 等. 施用不同污泥堆肥品对土壤温室气体排放的影响[J]. 环境科学, 2017, 38(4): 1647-1653.
YANG Yuhan, YI Jian-ting, ZHANG Cheng, et al. Effect of application of sewage sludge composts on greenhouse gas emissions in soil[J]. Environmental Science, 2017, 38(4): 1647-1653.

[125]

程效义, 刘晓琳, 孟军, 等. 生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响[J]. 农业环境科学学报, 2016, 35(4): 801-807.
CHENG Xiao-yi, LIU Xiao-lin, MENG Jun, et al. Effects of biochar on NH3 volatilization, N2O emission and nitrogen fertilizer use efficiency in brown soil[J]. Journal of Agro-Environment Science, 2016, 35(4): 801-807.

[126]

李仁英, 吴洪生, 黄利东, 等. 不同来源生物炭对土壤磷吸附解吸的影响[J]. 土壤通报, 2017, 48(6): 1398-1403.
LI Ren-ying, WU Hong-sheng, HUANG Li-dong, et al. Effect of biochar of different sources on adsorption and desorption of phosphorus in soil[J]. Chinese Journal of Soil Science, 2017, 48(6): 1398-1403.

[127]

段春燕, 沈育伊, 徐广平, 等. 桉树枝条生物炭输入对桂北桉树人工林酸化土壤的作用效果[J]. 环境科学, 2020, 41(9): 4234-4245.
DUAN Chun-yan, SHEN Yu-yi, XU Guang-ping, et al. Effects of Eucalyptus branches biochar application on soil physicochemical properties of acidified soil in a Eucalyptus plantation in northern Guangxi[J]. Environmental Science, 2020, 41(9): 4234-4245.

[128]

何玉亭, 王昌全, 沈杰, 等. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333-2342.
HE Yu-ting, WANG Chang-quan, SHEN Jie, et al. Effects of two biochars on red soil aggregate stability and microbial community[J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342. DOI:10.3864/j.issn.0578-1752.2016.12.009

[129]

吴媛媛, 杨明义, 张风宝, 等. 添加生物炭对黄绵土耕层土壤可蚀性的影响[J]. 土壤学报, 2016, 53(1): 81-92.
WU Yuan-yuan, YANG Ming-yi, ZHANG Feng-bao, et al. Effect of biochar application on erodibility of plow layer soil on loess slopes[J]. Acta Pedologica Sinica, 2016, 53(1): 81-92.

[130]

任静, 沈佳敏, 张磊, 等. 生物炭固定化多环芳烃高效降解菌剂的制备及稳定性[J]. 环境科学学报, 2020, 40(12): 4517-4523.
REN Jing, SHEN Jia-min, ZHANG Lei, et al. Preparation and stability of biochar for the immobilization ofpolycyclic aromatic hydrocarbons degradating-bacteria[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4517-4523.

[131]

刘晓华, 刘潘伟, 胡续礼, 等. 江淮丘陵区土壤侵蚀分布与环境因子的关系[J]. 水土保持通报, 2018, 38(1): 281-286.
LIU Xiaohua, LIU Pan-wei, HU Xu-li, et al. Relationships between soil erosion distribution and environmental factors in Jianghuai Hilly region[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 281-286.

[132]

王涛, 徐澜, 胡阳, 等. 陕北无定河流域土壤侵蚀时空演变[J]. 环境科学研究, 2017, 30(9): 1355-1364.
WANG Tao, XU Lan, HU Yang, et al. Spatial and temporal changes of soil erosion in Wuding River basin, Shaanxi Province, China[J]. Research of Environmental Sciences, 2017, 30(9): 1355-1364.

[133]

吕刚, 贾晏泽, 刘雅卓, 等. 褐土与棕壤坡耕地细沟侵蚀发生的阶段性水沙变化[J]. 水土保持学报, 2020, 34(5): 42-48.
LÜ Gang, JIA Yan-ze, LIU Ya-zhuo, et al. Periodic variation of water and sedi? ment in rill erosion of cinnamon soil and brown soil sloping farmland[J]. Journal of Soil and Water Conservation, 2020, 34(5): 42-48.

[134]

肖海兵, 李忠武, 聂小东, 等. 南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响[J]. 土壤学报, 2016, 53(4): 881-890.
XIAO Hai-bing, LI Zhong-wu, NIE Xiao-dong, et al. Effects of soil erosion and deposition on soil enzyme activity in hilly red soil re? gions of south China[J]. Acta Pedologica Sinica, 2016, 53(4): 881-890.

[135]

史志华, 王玲, 刘前进, 等. 土壤侵蚀:从综合治理到生态调控[J]. 中国科学院院刊, 2018, 33(2): 198-205.
SHI Zhi-hua, WANG Ling, LIU Qian-jin, et al. Soil erosion: From comprehensive control to ecological regulation[J]. Bulletin of the Chinese Academy of Scienc? es, 2018, 33(2): 198-205.

[136]

陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展[J]. 土14 2021年1月吴同亮, 等: 2016—2020年环境土壤学研究进展与热点分析壤学报, 2020, 57(3): 547-564.
CHEN Tong-de, JIAO Ju-ying, WANG Hao-lin, et al. Progress in research on soil erosion in Qing? hai-Tibet Plateau[J]. Acta Pedologica Sinica, 2020, 57(3): 547-564.

[137]

张超, 周旭, 张海, 等. 苹果专用肥对旱地果园土壤酶活性以及微生物多样性的影响[J]. 生态学杂志, 2017, 36(12): 3485-3492.
ZHANG Chao, ZHOU Xu, ZHANG Hai, et al. Effect of apple special fertilizer on soil enzyme activities and functional diversity of microbi? al community in a non-irrigated apple orchard[J]. Chinese Journal of Ecology, 2017, 36(12): 3485-3492.

[138]

李丽, 韩周, 张昀, 等. 减氮配施微生物菌剂对水稻根系发育及土壤酶活性的影响[J]. 土壤通报, 2019, 50(4): 932-939.
LI Li, HAN Zhou, ZHANG Yun, et al. Effects of reducing nitrogen fertilizer combined with microbial agents on rice root growth and soil enzyme activities[J]. Chinese Journal of Soil Science, 2019, 50(4): 932-939.

[139]

何朋俊, 李星月, 王谢, 等. 川中丘陵柏木低效林开窗补阔初期土壤养分和酶活性变化[J]. 应用与环境生物学报, 2017, 23(4): 693-700.
HE Peng-jun, LI Xing-yue, WANG Xie, et al. Soil nutri? ent and enzymatic activity changes amidst the early stage of gap and mixed transformation of low - efficiency cupressus funebris in the hilly area of the central Sichuan basin[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 693-700.

[140] [141]

胡尧, 李懿, 侯雨乐. 岷江流域不同土地利用方式对土壤有机碳组分及酶活性的影响[J]. 生态环境学报, 2018, 27(9): 1617-1624.
HU Yao, LI Yi, HOU Yu - le. The variation of soil organic carbon fractions and soil enzyme activity of different land use types in Minjiang River valley[J]. Ecology and Environmental Sciences, 2018, 27(9): 1617-1624.

[142]

陈士更, 张民, 丁方军, 等. 腐植酸土壤调理剂对酸化果园土壤理化性状及苹果产量和品质的影响[J]. 土壤, 2019, 51(1): 83-89.
CHEN Shi-geng, ZHANG Min, DING Fang-jun, et al. Humic acid soil conditioner improved soil physicochemical properties, apple yield and quality in acidified orchard soil[J]. Soils, 2019, 51(1): 83-89.

[143]

周媛媛, 张苗, 佟丙辛, 等. 冀中地区桃树养分投入、土壤养分状况及其与产量的关系[J]. 土壤通报, 2019, 50(3): 683-690.
ZHOU Yuan-yuan, ZHANG Miao, TONG Bing-xin, et al. Soil nutri? ent status and input and its relationship with yield of peach trees in central Hebei[J]. Chinese Journal of Soil Science, 2019, 50(3): 683-690.

[144]

殷文, 柴强, 胡发龙, 等. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征[J]. 中国农业科学, 2019, 52(7): 1247-1259.
YIN Wen, CHAI Qiang, HU Fa-long, et al. Characteristics of soil water utilization in spring wheat field with different straw re? tention approaches in dry inland irrigation areas[J]. Scientia Agricul? tura Sinica, 2019, 52(7): 1247-1259.

[145]

董云云, 王飞, 韩剑桥, 等. 地膜和秸秆覆盖对旱地农田土壤水分和大豆产量的影响[J]. 水土保持研究, 2020, 27(3): 364-371.
DONG Yun-yun, WANG Fei, HAN Jian-qiao, et al. Effects of plas? tic film and straw mulching on soil moisture and soybean yield in dry? land farmland[J]. Research of Soil and Water Conservation, 2020, 27(3): 364-371.

[146]

高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响[J]. 土壤通报, 2019, 50(6): 1370-1377.
GAO Ri-ping, ZHAO Si-hua, DIAO Sheng-peng, et al. Ef? fects of straw mulching on soil microorganism, enzyme activity and crop yield in loess desert[J]. Chinese Journal of Soil Science, 2019, 50(6): 1370-1377.

[147]

郑春莲, 冯棣, 李科江, 等. 咸水沟灌对土壤水盐变化与棉花生长及产量的影响[J]. 农业工程学报, 2020, 36(13): 92-101.
ZHENG Chun-lian, FENG Di, LI Ke-jiang, et al. Effects of furrow ir? rigation with saline water on variation of soil water - salt, cotton growth and yield[J]. Transactions of the Chinese Society of Agricultur? al Engineering, 2020, 36(13): 92-101.

[148]

董同喜, 张涛, 李洋, 等. 畜禽粪便有机肥中重金属在水稻土中生物有效性动态变化[J]. 环境科学学报, 2016, 36(2): 621-629.
DONG Tong-xi, ZHANG Tao, LI Yang, et al. Bioavailability dynam? ics of heavy metals in manure and their effect on uptake of rice[J]. Ac? ta Scientiae Circumstantiae, 2016, 36(2): 621-629.

[149]

李俊凯, 张丹, 周培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征[J]. 环境科学, 2018, 39(8): 3845-3853.
LI Jun-kai, ZHANG Dan, ZHOU Pei, et al. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing[J]. Environmental Science, 2018, 39(8): 3845-3853.

[150]

刘佩琪, 陈奇伯, 邓志华, 等. 城市森林对大气中重金属的富集特征[J]. 环境化学, 2017, 36(2): 265-273.
LIU Pei-qi, CHEN Qibo, DENG Zhi-hua, et al. Enrichment of atmospheric heavy metals by urban forest[J]. Environmental Chemistry, 2017, 36(2): 265-273.

[151]

徐笠, 陆安祥, 田晓琴, 等. 典型设施蔬菜基地重金属的累积特征及风险评估[J]. 中国农业科学, 2017, 50(21): 4149-4158.
XU Li, LU An-xiang, TIAN Xiao-qin, et al. Accumulation characteris? tics and risk assessment of heavy metals in typical greenhouse vege? table bases[J]. Scientia Agricultura Sinica, 2017, 50(21): 4149-4158. DOI:10.3864/j.issn.0578-1752.2017.21.009

[152]

高静湉, 杜方圆, 李卫平, 等. 黄河湿地小白河片区优势植物重金属的富集特征[J]. 农业环境科学学报, 2016, 35(11): 2180-2186.
GAO Jing-tian, DU Fang-yuan, LI Wei-ping, et al. Content and ac? cumulation characteristics of heavy metals in dominant plants in Xiao Bai He area of the Yellow River wetland[J]. Journal of Agro-En? vironment Science, 2016, 35(11): 2180-2186. DOI:10.11654/jaes.2016-0335

[153]

黄健, 朱旭炎, 陆金, 等. 狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响[J]. 环境科学, 2019, 40(12): 5550-5560.
HUANG Jian, ZHU Xu-yan, LU Jin, et al. Effects of different land use types on microbial community diversity in the Shizishan mining area[J]. Environmental Science, 2019, 40(12): 5550-5560.

[154]

蔡红, 王晓宇, 韩辉. 产脲酶细菌矿化修复Cd和Pb污染土壤效应和机制[J]. 中国环境科学, 2020, 40(11): 4883-4892.
CAI Hong, WANG Xiao-yu, HAN Hui. Effects and mechanisms of urease-pro? ducing bacteria mineralization on remediation of Cd - and Pb-con? taminated soil[J]. China Environmental Science, 2020, 40(11): 4883-4892.

相关知识

Research progress and hotspots of environmental soil science between 2016
Research progress of intercropping, interplanting, and crop rotation models on remediation of cadmium contaminated soil by hyperaccumulators
Research progress in the mechanism of rhizosphere micro
Research progress on remediation of pollutants in soil using plant
Research progress on effects of straw incorporation on soil micro
Research trends of plant responses to metal nanomaterials and multi
Impacts of (micro) plastics on soil ecosystem: Progress and perspective
Relationship between soil fungal community and soil environmental factors in degraded alpine grassland
Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem
Enlightenment from microbiome research towards biocontrol of plant disease

网址: Research progress and hotspots of environmental soil science between 2016 https://www.huajiangbk.com/newsview1948848.html

所属分类:花卉
上一篇: 高中生科研:不同土壤类型对植物根
下一篇: 探究桅子花不开花的原因(从土壤、

推荐分享