植物氮信号感知与根系发育
摘要:
氮素是构成生物体的主要成分,也是植物体所需的重要营养元素。为应对土壤中氮素含量的变化,植物体需要通过一系列复杂的通路来精密调控根部构型,以达到最优的氮吸收效率。本文综述了植物根部接收氮素信号的感受器及其调控根系发育的具体途径,详细阐述了氮信号通路、植物激素以及其他分子间的交互对植物根系发育的协同调控,并展望了该领域研究的应用方向,以期为今后植物根系与氮素信号互作机制的探索提供新的研究思路。
关键词: 氮信号 / 根系发育 / 植物激素Abstract:
Nitrogen is a major component of living organisms and an essential nutrient for plant growth. To adapt to changes in nitrogen availability in the soil, plants employ complex signaling pathways to finely regulate root system architecture to optimize nitrogen uptake efficiency. This review focuses on the receptors involved in perceiving nitrogen signals in plant roots and the specific mechanisms governing root development. It also elaborates on the interplay between nitrogen signaling pathways, plant hormones, and other molecules that coordinately regulate root growth and development. This review aims to provide valuable insight into how plant roots perceive and respond to nitrogen signals.
图 1 不同土壤环境下氮信号通过生长素途径调控拟南芥根系发育
氮信号调控生长素生物合成基因(TAA1、TARs)和转运基因(AUXs、AXRs和PINs)调控根系生长素水平,进而调控不同土壤环境(轻度缺氮、重度缺氮和局部氮供给)下拟南芥根系发育。不同颜色代表土壤氮浓度,颜色越深,土壤氮素浓度越高。
Figure 1. Nitrogen signaling regulates Arabidopsis thaliana root development through the auxin pathway under different soil environments
Nitrogen signaling regulates expression of auxin biosynthesis genes (TAA1 and TARs) and transport genes (AUXs, AXRs, and PINs) to control auxin levels in roots. This regulation impacts Arabidopsis thaliana root growth and development under various soil conditions (mild N deficiency, severe N deficiency, and local N supply). Colors represent different soil nitrogen concentrations, with darker colors indicating higher levels.
表 1 拟南芥和水稻根中表达的氮转运蛋白
Table 1 N transport proteins expressed in Arabidopsis thaliana and Oryza sativa roots
转运蛋白Transport protein 表达区域
Expression pattern 主要功能
Description 参考文献
References AtNRT1.1 根、保卫细胞 硝酸根吸收,生长素累积 [16] AtNRT1.2 根 根部硝酸盐吸收 [17] AtNRT1.5 根 硝酸根地下到地上部的转运 [18] AtNRT1.8 根、地上部 木质部硝酸盐转运 [18] AtNRT1.9 根部伴胞 硝酸根木质部到韧皮部的转运 [19] AtNRT1.11 根茎韧皮部 木质部硝酸盐转运 [19] AtNRT1.12 根茎韧皮部 木质部硝酸盐转运 [19] AtNRT2.1 根表皮及皮层细胞 硝酸盐吸收 [20] AtNRT2.2 根 硝酸盐的吸收和转运 [21] AtNRT2.3 根、茎 硝酸盐转运 [21] AtNRT2.4 根部表皮质膜 硝酸盐转运 [23] AtNRT2.5 根表皮及皮层细胞、根毛 表达受硝酸盐抑制 [22] AtNRT2.6 根、茎 硝酸盐转运 [21] AtAMT1;1 根表皮及皮层细胞 铵根离子吸收 [23] AtAMT1;2 根皮层根茎内皮层细胞 铵根离子从质外体向维管束转运 [23] AtAMT1;3 根表皮及皮层细胞 铵根离子吸收 [23] AtAMT2;1 根茎木质部 铵根离子地下到地上部的转运 [23] OsNRT1.1b 根表皮、根毛、微管组织、叶鞘、叶片和茎 双亲和力硝酸根转运蛋白 [12] OsNPF2.4 根表皮、木质部薄壁组织、
韧皮部伴细胞、 叶片韧皮部 低亲和力硝酸根转运蛋白,
硝酸根地下到地上部的转运 [11] OsNPF7.2 根系的厚壁组织、皮层和中柱 低亲和力硝酸根转运蛋白 [24] OsNPF7.9 根系、叶片和根茎结合处 硝酸根地下到地上部的转运 [25] OsNPF8.9 根系的外层、根表皮和根毛 低亲和力硝酸根转运蛋白 [26] OsNRT2.1 根、地上部 高亲和力硝酸根转运蛋白 [13] OsNRT2.2 根 高亲和力转运蛋白 [13] OsNRT2.3a 根部的微管组织和根颈 低亲和力硝酸根转运蛋白,硝酸根地下到地上部的转运 [13] OsNRT2.3b 微管组织、根系和地上部韧皮部 高亲和硝酸根转运蛋白,能够感知细胞溶质内pH的变化 [13] OsNRT2.4 侧根原基和地上部微管组织 假定的高亲和硝酸根转运蛋白 [13] OsAMT1.1 根表皮、微管组织、根颈、维管束、叶肉细胞 铵根离子地下到地上部的转运 [27] OsAMT1.2 微管组织、初生根根尖的内皮层和中柱鞘 铵根离子转运蛋白 [15] OsAMT1.3 根系维管束组织和侧根原基 铵根离子转运蛋白 [15] OsAMT2.1 根系、地上部、叶片、叶鞘 低亲和铵根离子转运蛋白 [28] [1]
Xuan W,Beeckman T,Xu GH. Plant nitrogen nutrition:sensing and signaling[J]. Curr Opin Plant Biol,2017,39:57−65. doi: 10.1016/j.pbi.2017.05.010
[2]Gruber BD,Giehl RFH,Friedel S,von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiol,2013,163(1):161−179. doi: 10.1104/pp.113.218453
[3]Zhang HM,Jennings A,Barlow PW,Forde BG. Dual pathways for regulation of root branching by nitrate[J]. Proc Natl Acad Sci USA,1999,96(11):6529−6534. doi: 10.1073/pnas.96.11.6529
[4]Shen TC. The induction of nitrate reductase and the preferential assimilation of ammonium in germinating rice seedlings[J]. Plant Physiol,1969,44(11):1650−1655. doi: 10.1104/pp.44.11.1650
[5]Crawford NM,Glass ADM. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends Plant Sci,1998,3(10):389−395. doi: 10.1016/S1360-1385(98)01311-9
[6]Forde BG. Nitrate transporters in plants:structure,function and regulation[J]. Biochim Biophys Acta,2000,1465(1-2):219−235. doi: 10.1016/S0005-2736(00)00140-1
[7]Miller AJ,Fan X,Orsel M,Smith SJ,Wells DM. Nitrate transport and signalling[J]. J Exp Bot,2007,58(9):2297−2306. doi: 10.1093/jxb/erm066
[8]Krapp A,David LC,Chardin C,Girin T,Marmagne A,et al. Nitrate transport and signalling in Arabidopsis[J]. J Exp Bot,2014,65(3):789−798. doi: 10.1093/jxb/eru001
[9]Ho CH,Lin SH,Hu HC,Tsay YF. CHL1 functions as a nitrate sensor in plants[J]. Cell,2009,138(6):1184−1194. doi: 10.1016/j.cell.2009.07.004
[10]Li YG,Ouyang J,Wang YY,Hu R,Xia KF,et al. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development[J]. Sci Rep,2015,5:9635. doi: 10.1038/srep09635
[11]Xia XD,Fan XR,Wei J,Feng HM,Qu HY,et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. J Exp Bot,2015,66(1):317−331. doi: 10.1093/jxb/eru425
[12]Hu B,Wang W,Ou SJ,Tang JY,Li H, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nat Genet,2015,47(7):834−838.
[13]Feng HM,Yan M,Fan XR,Li BZ,Shen QR,et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. J Exp Bot,2011,62(7):2319−2332. doi: 10.1093/jxb/erq403
[14]Liu Y,von Wirén N. Ammonium as a signal for physiological and morphological responses in plants[J]. J Exp Bot,2017,68(10):2581−2592. doi: 10.1093/jxb/erx086
[15]Sonoda Y,Ikeda A,Saiki S,Yamaya T,Yamaguchi J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice[J]. Plant Cell Physiol,2003,44(12):1396−1402. doi: 10.1093/pcp/pcg169
[16]Fan XR,Naz M,Fan XR,Xuan W,Miller AJ,Xu GH. Plant nitrate transporters:from gene function to application[J]. J Exp Bot,2017,68(10):2463−2475. doi: 10.1093/jxb/erx011
[17]Li GW,Tillard P,Gojon A,Christophe M. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1[J]. Plant Cell Physiol,2016,57(4):733−742. doi: 10.1093/pcp/pcw022
[18]Han YL,Song HX,Liao Q,Yu Y,Jian SF,et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus[J]. Plant Physiol,2016,170(3):1684−1698. doi: 10.1104/pp.15.01377
[19]Von Wittgenstein NJ,Le CH,Hawkins BJ,Ehlting J. Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants[J]. BMC Evol Biol,2014,14:11. doi: 10.1186/1471-2148-14-11
[20]Ohkubo Y,Tanaka M,Tabata R,Ogawa-Ohnishi M,Matsubayashi Y. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nat Plants,2017,3:17029. doi: 10.1038/nplants.2017.29
[21]Kotur Z,Mackenzie N,Ramesh S,Tyerman SD,Kaiser BN,Glass ADM. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytol,2012,194(3):724−731. doi: 10.1111/j.1469-8137.2012.04094.x
[22]Lezhneva L,Kiba T,Feria-Bourrellier AB,Lafouge F,Boutet-Mercey S,et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. Plant J,2014,80(2):230−241. doi: 10.1111/tpj.12626
[23]Yuan LX,Loqué D,Kojima S,Rauch S,Ishiyama K,et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell,2007,19(8):2636−2652. doi: 10.1105/tpc.107.052134
[24]Hu R,Qiu DY,Chen Y,Miller AJ,Fan XR, et al. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7. 2 affects rice growth under high nitrate supply[J]. Front Plant Sci,2016,7:1529.
[25] 冯慧敏,陆宏,王汉卿,李昕玥. 水稻硝酸盐转运蛋白基因OsNPF7. 9在氮素积累和转运中的功能研究[J]. 中国水稻科学,2017,31(5):457−464.Feng HM,Lu H,Wang HQ,Li XY. Function analyses of rice nitrate transporter gene OsNPF7.9 in nitrogen accumulation and transport[J]. Chinese Journal of Rice Science,2017,31(5):457−464.
[26]Léran S,Varala K,Boyer JC,Chiurazzi M,Crawford N,et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends Plant Sci,2014,19:5−9. doi: 10.1016/j.tplants.2013.08.008
[27]Li C,Tang Z,Wei J,Qu HY,Xie YJ,Xu GH. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges[J]. J Genet Genomics,2016,43(11):639−649.
[28]Suenaga A,Moriya K,Sonoda Y,Ikeda A,von Wirén N,et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants[J]. Plant Cell Physiol,2003,44(2):206−211. doi: 10.1093/pcp/pcg017
[29]Xing JP,Cao XC,Zhang MC,Wei X,Zhang J,Wan XY. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops[J]. Plant Biotechnol J,2023,21(7):1320−1342. doi: 10.1111/pbi.13971
[30]Avery GS,Burkholder PR,Creighton HB. Nutrient deficiencies and growth hormone concentration in helianthus and nicotiana[J]. Am J Bot,1937,24(8):553−557. doi: 10.1002/j.1537-2197.1937.tb09146.x
[31]Ma WY,Li JJ,Qu BY,He X,Zhao XQ,et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant J,2014,78(1):70−79. doi: 10.1111/tpj.12448
[32]Jia ZT,Giehl RFH,von Wirén N. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen[J]. Nat Commun,2021,12(1):5437. doi: 10.1038/s41467-021-25250-x
[33]Shao A,Ma WY,Zhao XQ,Hu MY,He X, et al. The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat[J]. Plant Physiol,2017,174(4):2274−2288.
[34]Sun HW,Bi Y,Tao JY,Huang SJ,Hou MM,et al. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice[J]. Plant Cell Environ,2016,39(7):1473−1484. doi: 10.1111/pce.12709
[35]Caba JM,Centeno ML,Fernández B,Gresshoff PM,Ligero F. Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type[J]. Planta,2000,211(1):98−104. doi: 10.1007/s004250000265
[36]Krouk G,Lacombe B,Bielach A,Perrine-Walker F,Malinska K,et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Dev Cell,2010,18(6):927−937. doi: 10.1016/j.devcel.2010.05.008
[37]Yu P,Eggert K,von Wirén N,Li CJ,Hochholdinger F. Cell type-specific gene expression analyses by RNA sequencing reveal local high nitrate-triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle regulation[J]. Plant Physiol,2015,169(1):690−704. doi: 10.1104/pp.15.00888
[38]Sun HW,Tao JY,Bi Y,Hou MM,Lou JJ, et al. OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate[J]. Sci Rep,2018,8(1):13014.
[39]Wang Q,Zhu YC,Zou X,Li FF,Zhang JL,et al. Nitrogen deficiency-induced decrease in cytokinins content promotes rice seminal root growth by promoting root meristem cell proliferation and cell elongation[J]. Cells,2020,9(4):916. doi: 10.3390/cells9040916
[40]Ko D,Kang J,Kiba T,Park J,Kojima M, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin[J]. Proc Natl Acad Sci USA,2014,111(19):7150−7155.
[41]Poitout A,Crabos A,Petřík I,Novák O,Krouk G,et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. Plant Cell,2018,30(6):1243−1257. doi: 10.1105/tpc.18.00011
[42]Zhang KW,Novak O,Wei ZY,Gou MY,Zhang XB, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nat Commun,2014,5:3274.
[43]Signora L,de Smet I,Foyer CH,Zhang HM. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. Plant J,2001,28(6):655−662. doi: 10.1046/j.1365-313x.2001.01185.x
[44]Ondzighi-Assoume CA,Chakraborty S,Harris JM. Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores[J]. Plant Cell,2016,28(3):729−745. doi: 10.1105/tpc.15.00946
[45]Wang M,Zhang PL,Liu Q,Li GJ,Di DW,et al. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots[J]. Plant Physiol,2020,182(3):1440−1453. doi: 10.1104/pp.19.01482
[46]Wang YB,Yao QQ,Zhang YS,Zhang YX,Xing JP,et al. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability[J]. Int J Mol Sci,2020,21(5):1824. doi: 10.3390/ijms21051824
[47]Zheng DC,Han X,An Y,Guo HW,Xia XL,Yin WL. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell Environ,2013,36(7):1328−1337. doi: 10.1111/pce.12062
[48]Lokdarshi A,Conner WC,McClintock C,Li T,Roberts DM. Arabidopsis CML38,a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress[J]. Plant Physiol,2016,170(2):1046−1059. doi: 10.1104/pp.15.01407
[49]Song XY,Li JF,Lyu M,Kong XZ,Hu S,et al. CALMODULIN-LIKE-38 and PEP1 RECEPTOR 2 integrate nitrate and brassinosteroid signals to regulate root growth[J]. Plant Physiol,2021,187(3):1779−1794. doi: 10.1093/plphys/kiab323
[50]Conesa CM,Saez A,Navarro-Neila S,de Lorenzo L,Hunt AG,et al. Alternative polyadenylation and salicylic acid modulate root responses to low nitrogen availability[J]. Plants,2020,9(2):251. doi: 10.3390/plants9020251
[51]Tegeder M,Rentsch D. Uptake and partitioning of amino acids and peptides[J]. Mol Plant,2010,3(6):997−1011. doi: 10.1093/mp/ssq047
[52]Forde BG. Glutamate signalling in roots[J]. J Exp Bot,2014,65(3):779−787. doi: 10.1093/jxb/ert335
[53]Walch-Liu P,Liu LH,Remans T,Tester M,Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana[J]. Plant Cell Physiol,2006,47(8):1045−1057. doi: 10.1093/pcp/pcj075
[54]Taleski M,Chapman K,Novák O,Schmülling T,Frank M,Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth[J]. Nat Commun,2023,14(1):1683. doi: 10.1038/s41467-023-37282-6
[55]Taleski M,Imin N,Djordjevic MA. CEP peptide hormones:key players in orchestrating nitrogen-demand signalling,root nodulation,and lateral root development[J]. J Exp Bot,2018,69(8):1829−1836. doi: 10.1093/jxb/ery037
[56]Araya T,Miyamoto M,Wibowo J,Suzuki A,Kojima S,et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proc Natl Acad Sci USA,2014,111(5):2029−2034. doi: 10.1073/pnas.1319953111
[57]Vidal EA,Araus V,Lu C,Parry G,Green PJ,et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2010,107(9):4477−4482. doi: 10.1073/pnas.0909571107
[58]Puig J,Meynard D,Khong GN,Pauluzzi G,Guiderdoni E,Gantet P. Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice[J]. Gene Expr Patterns,2013,13(5-6):160−170. doi: 10.1016/j.gep.2013.02.004
[59]Yan YS,Wang HC,Hamera S,Chen XY,Fang RX. miR444a has multiple functions in the rice nitrate-signaling pathway[J]. Plant J,2014,78(1):44−55. doi: 10.1111/tpj.12446
[60]Ma Q,Tang RJ,Zheng XJ,Wang SM,Luan S. The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis[J]. Biochem Biophys Res Commun,2015,468(1-2):59−65. doi: 10.1016/j.bbrc.2015.10.164
[61]Han X,Wu K,Fu XD,Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture[J]. aBIOTECH,2020,1(4):255−275. doi: 10.1007/s42994-020-00027-w
[62]Fan XR,Tang Z,Tan YW,Zhang Y,Luo BB,et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proc Natl Acad Sci USA,2016,113(26):7118−7123. doi: 10.1073/pnas.1525184113
[63]Rennenberg H,Wildhagen H,Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biol,2010,12(2):275−291. doi: 10.1111/j.1438-8677.2009.00309.x
相关知识
植物的环境信号感知和适应机制.pptx
中科院遗传发育所团队揭示植物激素独脚金内酯信号感知机制及其在氮素响应中的关键作用
遗传发育所在独脚金内酯信号感受研究中取得重大进展中国科学院遗传与发育生物学研究所
Cell:王冰/李家洋团队揭示水稻中独脚金内酯信号感知机制
遗传发育所在独脚金内酯信号感受研究中取得重大进展
分子植物科学卓越创新中心在植物根系发育响应硝酸盐信号中取得新进展
油菜素内酯调控植物根系发育机制研究进展
糖对根系生长发育的影响与调控机制,发育生物学论文
植物体内的信号传导
中国科学家揭示植物硝酸盐信号传导通路
网址: 植物氮信号感知与根系发育 https://www.huajiangbk.com/newsview1921286.html
上一篇: 外源钙对干旱胁迫下岩溶山区白刺花 |
下一篇: 干旱下植物根系分泌物及其介导的根 |
推荐分享

- 1君子兰什么品种最名贵 十大名 4012
- 2世界上最名贵的10种兰花图片 3364
- 3花圈挽联怎么写? 3286
- 4迷信说家里不能放假花 家里摆 1878
- 5香山红叶什么时候红 1493
- 6花的意思,花的解释,花的拼音 1210
- 7教师节送什么花最合适 1167
- 8勿忘我花图片 1103
- 9橄榄枝的象征意义 1093
- 10洛阳的市花 1039