首页 分享 土壤紧实胁迫下根系–土壤的相互作用

土壤紧实胁迫下根系–土壤的相互作用

来源:花匠小妙招 时间:2025-05-10 21:30

摘要:

目的

土壤紧实胁迫破坏土体理化性质,阻碍作物根系生长,降低作物产量,是限制农业生产力提高的世界性难题。根系形态结构决定了植物对土壤资源的探索能力及其对胁迫环境的适应性。讨论紧实胁迫下植物根系–土壤的相互作用,综述国内外关于根系通过形态和生理改变等根系生物学潜力的发挥提高对紧实胁迫适应性的研究进展。

主要进展

土壤紧实胁迫增加根系穿透阻力,限制根系对土壤水分和养分的获取。植物根系会从形态和解剖结构方面对土壤紧实胁迫做出一系列适应性改变,充分利用土壤中的孔隙拓展生长空间。此外,根系也会对紧实胁迫做出生理响应,通过大量释放分泌物,影响根际土壤微结构,改变根土界面微域环境,降低根系生长的机械阻力。

展望

土壤紧实胁迫作为产量限制因素被长期忽视。通过发挥根系自身的生物学潜力,提高根系在紧实土壤中的适应性,对于最大限度地保证其在紧实胁迫下的正常生长非常关键,作为应对土壤紧实胁迫的有效策略具有重要的现实意义。未来的研究方向与重点包括:揭示紧实胁迫下根系分泌物与微生物的“对话机制”,探明紧实胁迫下根系–土壤–微生物的互作关系和作用机制,为发挥根系生物学潜力,强化关键根系/根际性状,塑造健康土壤结构,提高土壤紧实胁迫下的农业生产力提供科学依据。

Abstract:

Objectives

Globally, soil compaction causes major changes in soil physical and chemical processes, restricts growth of crop roots, and reduces crop productivity. The root system determines how plants explore soil resources and adapt to stress conditions. In this review, we discuss root-soil interaction of crops under soil compaction. We specifically focus on domestic and international research progress on how to improve the adaptability of root systems to compaction stress through morphological and physiological change, and other root biological potentials.

Advances

Soil compaction inhibits root penetration and limits root access to soil moisture and nutrients. Plant roots change a series of anatomical and morphological traits to fully utilize soil pores for expanding growth space and improving adaptability to soil compaction. In addition, the roots also physiologically respond to soil compaction by releasing large amounts of exudates which in turn affect the soil microstructure, changes the micro-environment of root-soil interface, and reduce the mechanical resistance to root growth.

Prospects

Soil compaction has long been ignored as a yield-limiting factor. Improving the adaptability of plant root to compacted soil by stimulating the biological potentials of root is critical for optimal plant growth. Hence, future research should focus on revealing the mechanisms and processes underlying soil compaction and root-soil-microbe interaction. These advances will provide scientific basis for developing biological potential of roots, strengthening key root or rhizosphere traits, shaping healthy soil structure, and improving crop productivity under soil compaction stress.

[1]

FAO and ITPS. Status of the world’s soil resources (SWSR)—Main report[M]. Rome, Italy. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. http://www.fao.org/3/a-i5199e.pdf.

[2]

Montanarella L. Agricultural policy: Govern our soils[J]. Nature, 2015, 528(7580): 32–33. DOI: 10.1038/528032a

[3] 石彦琴, 陈源泉, 隋鹏, 等. 农田土壤紧实的发生、影响及其改良[J]. 生态学杂志, 2010, 29(10): 2057–2064. Shi Y Q, Chen Y Q, Sui P, et al. Cropland and soil compaction: Its causes, influences, and improvement[J]. Chinese Journal of Ecology, 2010, 29(10): 2057–2064.

Shi Y Q, Chen Y Q, Sui P, et al. Cropland and soil compaction its causes, influences, and improvement[J]. Chinese Journal of Ecology, 2010, 29(10): 2057–2064.

[4]

Whalley W R, Clark L J, Gowing D J, et al. Does soil strength play a role in wheat yield losses caused by soil drying[J]. Plant and Soil, 2006, 280(1): 279–290.

[5]

Bengough A G, Mackenzie C J. Simultaneous measurement of root force and elongation for seedling pea roots[J]. Journal of Experimental Botany, 1994, 45(1): 95–102. DOI: 10.1093/jxb/45.1.95

[6]

Lipiec J, Horn R, Pietrusiewicz J, et al. Effects of soil compaction on root elongation and anatomy of different cereal plant species[J]. Soil and Tillage Research, 2012, 121: 74–81. DOI: 10.1016/j.still.2012.01.013

[7]

Nyeki A, Milics G, Kovacs A J, et al. Effects of soil compaction on cereal yield[J]. Cereal Research Communications, 2017, 45(1): 1–22. DOI: 10.1556/0806.44.2016.056

[8] 张俊伶, 张江周, 申建波, 等. 土壤健康与农业绿色发展: 机遇与对策[J]. 土壤学报, 2020, 57(4): 783–796. Zhang J L, Zhang J Z, Shen J B, et al. Soil health and agriculture green development: Opportunities and challenges[J]. Acta Pedologica Sinica, 2020, 57(4): 783–796.

Zhang J L, Zhou J Z, Shen J B, et al. Soil health and agriculture green development: opportunities and challenges[J]. Acta Pedologica Sinica, 2020, (4): 783–796.

[9]

Bronick C J, Lal R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA[J]. Soil and Tillage Research, 2005, 81(2): 239–252. DOI: 10.1016/j.still.2004.09.011

[10]

Chimungu J G, Loades K W, Lynch J P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)[J]. Journal of Experimental Botany, 2015, 66(11): 3151–3162. DOI: 10.1093/jxb/erv121

[11]

Jin K, White P J, Whalley W R, et al. Shaping an optimal soil by root–soil interaction[J]. Trends in Plant Science, 2017, 22(10): 823–829. DOI: 10.1016/j.tplants.2017.07.008

[12]

Lynch J P, Brown K M. New roots for agriculture: Exploiting the root phenome[J]. Philosophical Transactions of the Royal Society B, Biological Sciences, 2012, 367(1595): 1598–1604. DOI: 10.1098/rstb.2011.0243

[13]

Jin K, Shen J, Ashton R W, et al. Wheat root growth responses to horizontal stratification of fertilizer in a water-limited environment[J]. Plant and Soil, 2015, 386(1–2): 77–88.

[14]

Pierret A, Maeght J, Clement C, et al. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research[J]. Annals of Botany, 2016, 118(4): 621–635. DOI: 10.1093/aob/mcw130

[15]

Bodner G, Leitner D, Kaul H P. Coarse and fine root plants affect pore size distributions differently[J]. Plant and Soil, 2014, 380(1–2): 133–151.

[16]

Mimmo T, Buono D D, Terzano R, et al. Rhizospheric organic compounds in the soil–microorganism–plant system: Their role in iron availability[J]. European Journal of Soil Science, 2014, 65(5): 629–642. DOI: 10.1111/ejss.12158

[17]

Huang X F, Chaparro J M, Reardon K F, et al. Rhizosphere interactions: Root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4): 267–275. DOI: 10.1139/cjb-2013-0225

[18]

Jin K, Shen J, Ashton R W, et al. The effect of impedance to root growth on plant architecture in wheat[J]. Plant and Soil, 2015, 392(1–2): 323–332.

[19]

Jin K M, Shen J B, Ashton R W, et al. How do roots elongate in a structured soil?[J]. Journal of Experimental Botany, 2013, 64(15): 4761–4777. DOI: 10.1093/jxb/ert286

[20]

Ledermuller S, Lorenz M, Brunotte J, et al. A multi-data approach for spatial risk assessment of topsoil compaction on arable sites[J]. Sustainability, 2018, 10(8): 2915.

[21]

Chapman N, Miller A J, Lindsey K, et al. Roots, water, and nutrient acquisition: Let's get physical[J]. Trends in Plant Science, 2012, 17(12): 701–710. DOI: 10.1016/j.tplants.2012.08.001

[22] 王宪良, 王庆杰, 张祥彩, 等. 田间土壤压实研究现状[J]. 农机化研究, 2016, 38(9): 264–268. Wang X L, Wang Q J, Zhang X C, et al. The soil compaction forms and research status[J]. Journal of Agricultural Mechanization Research, 2016, 38(9): 264–268. DOI: 10.3969/j.issn.1003-188X.2016.09.053

Wang X L, Wang Q J, Zhang X C, et al. The Soil compaction forms and research status[J]. Journal of Agricultural Mechanization Research, 2016, 38(9): 264–268. DOI: 10.3969/j.issn.1003-188X.2016.09.053

[23]

Batey T. Soil compaction and soil management-a review[J]. Soil Use and Management, 2009, 25(4): 335–345. DOI: 10.1111/j.1475-2743.2009.00236.x

[24]

Hamza M A, Anderson W. Soil compaction in cropping systems: A review of the nature, causes and possible solutions[J]. Soil and Tillage Research, 2005, 82(2): 121–145. DOI: 10.1016/j.still.2004.08.009

[25]

Shah A N, Tanveer M, Shahzad B, et al. Soil compaction effects on soil health and crop productivity: An overview[J]. Environment Science and Pollution Research, 2017, 24(11): 10056–10067.

[26]

Radford B J, Yule D F, Mcgarry D, et al. Amelioration of soil compaction can take 5 years on a vertisol under no till in the semi-arid subtropics[J]. Soil and Tillage Research, 2007, 97(2): 249–255. DOI: 10.1016/j.still.2006.01.005

[27]

Zhang Q, Shao M, Jia X, et al. Changes in soil physical and chemical properties after short drought stress in semi-humid forests[J]. Geoderma, 2019, 338: 170–177. DOI: 10.1016/j.geoderma.2018.11.051

[28]

Wang M, Wu W, Liu W, et al. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain[J]. International Journal of Sustainable Development and World Ecology, 2007, 14(4): 400–407. DOI: 10.1080/13504500709469740

[29]

Zhang X, Chen S, Sun H, et al. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain[J]. Agricultural Water Management, 2010, 97(8): 1117–1125. DOI: 10.1016/j.agwat.2009.06.003

[30] 王万宁. 深松对土壤物理特性影响及畦灌灌水技术参数研究[D]. 北京: 中国农业科学院硕士学位论文, 2018.

Wang W N. Effects of subsoiling on soil physical properties and research of border irrigation technical parameters[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2018.

[31] 蔡键, 刘文勇. 农业机械化发展及其服务外包的原因分析——源自冀豫鲁3省问卷调查数据的证明[J]. 中国农业资源与区划, 2018, 39(2): 230–236. Cai J, Liu W Y. A study on agricultural mechanization development and the causes of its services outsourcing—a proof of survey data from Hebei, Henan and Shandong provinces[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(2): 230–236. DOI: 10.7621/cjarrp.1005-9121.20180234

Cai J, Liu W Y. A study on agricultural mechanization development and the causes of its services outsourcing outsourcing——a proof of survey date from Hebei, Henan and Shandong provinces[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(2): 230–236. DOI: 10.7621/cjarrp.1005-9121.20180234

[32] 岳龙凯. 作物类型和品种对黑土压实响应差异的研究[D]. 北京: 中国农业科学院博士学位论文, 2019.

Yue L K. Study on the response of crop species and varieties to mollisol compaction[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2019.

[33]

Seehusen T, Riggert R, Fleige H, et al. Soil compaction and stress propagation after different wheeling intensities on a silt soil in South-East Norway[J]. Acta Agriculturae Scandinavica Section B—Soil and Plant Science, 2019, 69(4): 343–355.

[34]

Gląb T, Szewczyk W. The effect of traffic on turfgrass root morphological features[J]. Scientia Horticulturae, 2015, 197: 542–554. DOI: 10.1016/j.scienta.2015.10.014

[35]

Dexter A R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth[J]. Geoderma, 2004, 120(3): 201–214.

[36]

Haunz F X, Maidl F X, Fischbeck G. Effect of soil compaction on the dynamics of soil and fertilizer nitrogen under winter wheat[J]. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1992, 155(2): 129–134. DOI: 10.1002/jpln.19921550210

[37]

Bhandral R, Saggar S, Bolan N S, et al. Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction[J]. Soil and Tillage Research, 2007, 94(2): 482–492. DOI: 10.1016/j.still.2006.10.006

[38]

Li C H, Ma B L, Zhang T Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure[J]. Canadian Journal of Soil Science, 2002, 82(2): 147–154. DOI: 10.4141/S01-026

[39]

Jordan D, Ponder F, Hubbard V C, et al. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity[J]. Applied Soil Ecology, 2003, 23(1): 33–41. DOI: 10.1016/S0929-1393(03)00003-9

[40]

Pupin B, Freddi O D, Nahas E, et al. Microbial alterations of the soil influenced by induced compaction[J]. Revista Brasileira de Ciencia Do Solo, 2009, 33(5): 1207–1213. DOI: 10.1590/S0100-06832009000500014

[41]

Beylich A, Oberholzer H, Schrader S, et al. Evaluation of soil compaction effects on soil biota and soil biological processes in soils[J]. Soil and Tillage Research, 2010, 109(2): 133–143. DOI: 10.1016/j.still.2010.05.010

[42]

Rebetzke G J, Kirkegaard J A, Watt M S, et al. Genetically vigorous wheat genotypes maintain superior early growth in no-till soils[J]. Plant and Soil, 2014, 377(1): 127–144.

[43]

Whitmore A P, Whalley W R. Physical effects of soil drying on roots and crop growth[J]. Journal of Experimental Botany, 2009, 60(10): 2845–2857. DOI: 10.1093/jxb/erp200

[44]

Montagu K D, Conroy J P, Atwell B J. The position of localized soil compaction determines root and subsequent shoot growth responses[J]. Journal of Experimental Botany, 2011, 52(364): 2127–2133.

[45]

Gao W D, Hodgkinson L, Jin K M, et al. Deep roots and soil structure[J]. Plant, Cell and Environment, 2016, 39(8): 1662–1668. DOI: 10.1111/pce.12684

[46]

Nosalewicz A, Lipiec J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat[J]. Plant and Soil, 2014, 375(1): 229–240.

[47]

Moreira W H, Tormena C A, Karlen D L, et al. Seasonal changes in soil physical properties under long-term no-tillage[J]. Soil and Tillage Research, 2016, 160: 53–64. DOI: 10.1016/j.still.2016.02.007

[48]

Braim M A, Chaney K, Hodgson D R. Effects of simplified cultivation on the growth and yield of spring barley on a sandy loam soil. 2. Soil physical properties and root growth; root: shoot relationships, inflow rates of nitrogen; water use[J]. Soil and Tillage Research, 1992, 22(1–2): 173–187.

[49]

Bengough A G, Croser C, Pritchard J. A biophysical analysis of root growth under mechanical stress[J]. Plant and Soil, 1997, 189(1): 155–164. DOI: 10.1023/A:1004240706284

[50]

Bengough A G, Mckenzie B M, Hallett P D, et al. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany, 2011, 62(1): 59–68. DOI: 10.1093/jxb/erq350

[51]

Abuhamdeh N. Compaction and subsoiling effects on corn growth and soil bulk density[J]. Soil Science Society of America Journal, 2003, 67(4): 1213–1219. DOI: 10.2136/sssaj2003.1213

[52]

Zhang X, Cruse R M, Sui Y Y, et al. Soil compaction induced by small tractor traffic in northeast China[J]. Soil Science Society of America Journal, 2006, 70(2): 613–619. DOI: 10.2136/sssaj2005.0121

[53]

Lipiec J, Medvedev V V, Birkas M, et al. Effect of soil compaction on root growth and crop yield in Central and Eastern Europe[J]. International Agrophysics, 2003, 17(2): 61–69.

[54]

Chen G, Weil R R. Penetration of cover crop roots through compacted soils[J]. Plant and Soil, 2010, 331(1): 31–43.

[55]

Jourgholami M, Deljouei A, Ala E S H. Impact of soil compaction on root system of Caucasian aldar (Alnus subcordata C. A. Mey.) seedlings[J]. Iranian Journal of Forest and Poplar Research, 2017, 25(3): 376–384.

[56]

Ressia J M, Balbuena R H, Mendivil G O, et al. Soil physical properties and corn yield related to different tillage systems[J]. Agro-Ciencia, 1999, 15(1): 39–45.

[57]

Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and Soil, 1999, 208(1): 9–19. DOI: 10.1023/A:1004484518652

[58]

Ishaq M, Hassan A, Saeed M, et al. Subsoil compaction effects on crops in Punjab, Pakistan I. Soil physical properties and crop yield[J]. Soil and Tillage Research, 2001, 59(1–2): 57–65.

[59]

Hoque M M, Kobata T. Effect of soil compaction on the grain yield of rice (Oryza sativa L.) under water-deficit stress during the reproductive stage[J]. Plant Production Science, 2000, 3(3): 316–322. DOI: 10.1626/pps.3.316

[60]

Hargreaves P R, Baker K L, Graceson A, et al. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years[J]. European Journal of Agronomy, 2019, 109: 125916. DOI: 10.1016/j.eja.2019.125916

[61]

Place G T, Bowman D C, Burton M G, et al. Root penetration through a high bulk density soil layer: Differential response of a crop and weed species[J]. Plant and Soil, 2008, 307(1): 179–190.

[62]

Grzesiak M T. Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings[J]. Plant Root, 2009, 3: 10–16. DOI: 10.3117/plantroot.3.10

[63]

Lipiec J, Simota C. Role of soil and climate factors influencing crop responses to compaction in Central and Eastern Europe[J]. Developments in Agricultural Engineering, 1994, 11(6): 365–390.

[64]

Arvidsson J, Kansson I H. Response of different crops to soil compaction—Short-term effects in Swedish field experiments[J]. Soil and Tillage Research, 2014, 138: 56–63. DOI: 10.1016/j.still.2013.12.006

[65]

Ahmad N, Hassan F U, Belford R K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum). I. Compaction[J]. Field and Crops Research, 2009, 110(1): 54–60. DOI: 10.1016/j.fcr.2008.07.001

[66] Nawaz M M. 机械耕作引起土壤紧实对土壤特性与玉米生长发育的影响[D]. 北京: 中国农业科学院硕士学位论文, 2018.

Nawaz M M. Response of soil characteristics and summer maize growth to traffic-induced compaction on sandy loam soil in Huang-Huai-Hai region[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2018.

[67]

Canarache A, Colibas I, Colibas M, et al. Effect of induced compaction by wheel traffic on soil physical properties and yield of maize in Romania[J]. Soil and Tillage Research, 1984, 4(2): 199–213. DOI: 10.1016/0167-1987(84)90048-5

[68]

Gaultney L, Krutz G W, Steinhardt G C, et al. Effects of subsoil compaction on corn yields[J]. Transactions of the ASABE, 1982, 25(3): 563–569. DOI: 10.13031/2013.33573

[69]

Bengough A G, Young I M. Root elongation of seedling peas through layered soil of different penetration resistances[J]. Plant and Soil, 1993, 149(1): 129–139. DOI: 10.1007/BF00010770

[70]

Rosolem C A, Schiochet M A, Souza L S, et al. Root growth and cotton nutrition as affected by liming and soil compaction[J]. Communications in Soil Science and Plant Analysis, 1998, 29(1–2): 169–177. DOI: 10.1080/00103629809369936

[71]

Tracy S R, Black C R, Roberts J A, et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography[J]. Annals of Botany, 2012, 110(2): 511–519. DOI: 10.1093/aob/mcs031

[72]

Wang M, He D, Shen F, et al. Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings[J]. Environmental Science and Pollution Research, 2019, 26(22): 22835–22845. DOI: 10.1007/s11356-019-05606-z

[73]

De Freitas P L, Zobel R W, Synder V A, et al. Corn root growth in soil columns with artificially constructed aggregates[J]. Crop Science, 1999, 39(3): 725–730. DOI: 10.2135/cropsci1999.0011183X003900030020x

[74]

Grzesiak S, Grzesiak M T, Filek W, et al. The impact of different soil moisture and soil compaction on the growth of triticale root system[J]. Acta Physiologiae Plantarum, 2002, 24(3): 331–342. DOI: 10.1007/s11738-002-0059-8

[75]

Colombi T, Walter A. Genetic diversity under soil compaction in wheat: Root number as a promising trait for early plant vigor[J]. Frontiers in Plant Science, 2017, 8: 420.

[76]

Downie H, Holden N, Otten W, et al. Transparent soil for imaging the rhizosphere[J]. PLoS ONE, 2012, 7(9): e44276. DOI: 10.1371/journal.pone.0044276

[77]

Correa J, Postma J A, Watt M, et al. Soil compaction and the architectural plasticity of root systems[J]. Journal of Experimental Botany, 2019, 70(21): 6019–6034. DOI: 10.1093/jxb/erz383

[78]

Kranner I, Roach T, Beckett R P, et al. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum[J]. Journal of Plant Physiology, 2010, 167(10): 805–811. DOI: 10.1016/j.jplph.2010.01.019

[79]

Blum A. Stress, strain, signaling, and adaptation–not just a matter of definition[J]. Journal of Experimental Botany, 2016, 67(3): 562–565. DOI: 10.1093/jxb/erv497

[80]

Ubedatomas S, Beemster G T, Bennett M J, et al. Hormonal regulation of root growth: Integrating local activities into global behavior[J]. Trends in Plant Science, 2012, 17(6): 326–331. DOI: 10.1016/j.tplants.2012.02.002

[81]

Croser C, Bengough A G, Pritchard J, et al. The effect of mechanical impedance on root growth in pea (Pisum sativum). II. Cell expansion and wall rheology during recovery[J]. Physiologia Plantarum, 2000, 109(2): 150–159. DOI: 10.1034/j.1399-3054.2000.100207.x

[82]

Bengough A G, Loades K W, Mckenzie B M, et al. Root hairs aid soil penetration by anchoring the root surface to pore walls[J]. Journal of Experimental Botany, 2016, 67(4): 1071–1078. DOI: 10.1093/jxb/erv560

[83]

Muller M, Schmidt W. Environmentally induced plasticity of root hair development in Arabidopsis[J]. Plant Physiology, 2004, 134(1): 409–419. DOI: 10.1104/pp.103.029066

[84]

Haling R E, Brown L K, Bengough A G, et al. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength[J]. Journal of Experimental Botany, 2013, 64(12): 3711–3721. DOI: 10.1093/jxb/ert200

[85]

Federico V M, Mauro M, Giorgio M, et al. Root biomechanical traits in a montane mediterranean forest watershed: Variations with species diversity and soil depth[J]. Forests, 2019, 10(4): 1–17.

[86]

Lynch J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture[J]. New Phytologist, 2019, 223(2): 548–564. DOI: 10.1111/nph.15738

[87]

Colombi T, Walter A. Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions[J]. Functional Plant Biology, 2016, 43(2): 114–128. DOI: 10.1071/FP15194

[88]

Colombi T, Braun S, Keller T, et al. Artificial macropores attract crop roots and enhance plant productivity on compacted soils[J]. Science of the Total Environment, 2017, 574: 1283–1293. DOI: 10.1016/j.scitotenv.2016.07.194

[89]

Colombi T, Kirchgessner N, Walter A, et al. Root tip shape governs root elongation rate under increased soil strength[J]. Plant Physiology, 2017, 174(4): 2289–2301. DOI: 10.1104/pp.17.00357

[90]

Roué J, Chauvet H, Brunelmichac N, et al. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots[J]. Journal of Experimental Botany, 2019, 71(1): 126–137.

[91]

Iijima M, Higuchi T, Barlow P W, et al. Root cap removal increases root penetration resistance in maize (Zea mays L.)[J]. Journal of Experimental Botany, 2003, 54(390): 2105–2109. DOI: 10.1093/jxb/erg226

[92]

Whiteley G M, Hewitt J S, Dexter A R, et al. The buckling of plant roots[J]. Physiologia Plantarum, 1982, 54(3): 333–342. DOI: 10.1111/j.1399-3054.1982.tb00268.x

[93]

Manschadi A M, Christopher J, Devoil P, et al. The role of root architectural traits in adaptation of wheat to water-limited environments[J]. Functional Plant Biology, 2006, 33(9): 823–837. DOI: 10.1071/FP06055

[94]

Manschadi A M, Hammer G L, Christopher J, et al. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.)[J]. Plant and Soil, 2008, 303(1): 115–129.

[95]

Whalley W R, Dodd I C, Watts C W, et al. Genotypic variation in the ability of wheat roots to penetrate wax layers[J]. Plant and Soil, 2013, 364(1): 171–179.

[96]

Chapman N, Whalley W R, Lindsey K, et al. Water supply and not nitrate concentration determines primary root growth in Arabidopsis[J]. Plant, Cell and Environment, 2011, 34(10): 1630–1638. DOI: 10.1111/j.1365-3040.2011.02358.x

[97]

Chen G, Weil R R, Hill R L. Effects of compaction and cover crops on soil least limiting water range and air permeability[J]. Soil and Tillage Research, 2014, 136: 61–69. DOI: 10.1016/j.still.2013.09.004

[98]

Fischer C, Roscher C, Jensen B, et al. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?[J]. PLoS ONE, 2014, 9(2): e98987.

[99]

Tiunov A V, Scheu S. Microbial respiration, biomass, bio volume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae)[J]. Soil Biology and Biochemistry, 1999, 31(14): 2039–2048. DOI: 10.1016/S0038-0717(99)00127-3

[100]

Jégou D, Schrader S, Diestel H, et al. Morphological, physical and biochemical characteristics of burrow walls formed by earthworms[J]. Applied Soil Ecology, 2001, 17(2): 165–174. DOI: 10.1016/S0929-1393(00)00136-0

[101]

Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review[J]. Soil Biology and Biochemistry, 2015, 83: 184–199. DOI: 10.1016/j.soilbio.2015.01.025

[102]

Athmann M, Kautz T, Pude R. Root growth in biopores-evaluation with in situ endoscopy[J]. Plant and Soil, 2013, 371(1–2): 179–190. DOI: 10.1007/s11104-013-1673-5

[103]

Pfeifer J, Kirchgessner N, Walter A. Artificial pores attract barley roots and can reduce artifacts of pot experiments[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(6): 903–913. DOI: 10.1002/jpln.201400142

[104]

Athmann M, Sondermann J, Kautz T, et al. Comparing macropore exploration by faba bean, wheat, barley and oilseed rape roots using in situ endoscopy[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3): 689–700. DOI: 10.1007/s42729-019-00069-0

[105]

Atkinson J A, Hawkesford M J, Whalley W R, et al. Soil strength influences wheat root interactions with soil macropores[J]. Plant, Cell and Environment, 2020, 43(1): 235–245. DOI: 10.1111/pce.13659

[106]

Cárdenas J P, Santiago A, Tarquis A M, et al. Soil porous system as heterogeneous complex network[J]. Geoderma, 2010, 160(1): 13–21. DOI: 10.1016/j.geoderma.2010.04.024

[107]

Karunakaran C, Lahlali R, Zhu N, et al. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging[J]. Scientific Reports, 2015, 5: 12119. DOI: 10.1038/srep12119

[108]

Kravchenko A N, Robertson G P. Whole-profile soil carbon stocks: The danger of assuming too much from analyses of too little[J]. Soil Science Society of America Journal, 2011, 75(1): 235–240. DOI: 10.2136/sssaj2010.0076

[109]

Bodner G, Scholl P, Loiskandl W, Kaul H P. Environmental and management influences on temporal variability of near saturated soil hydraulic properties[J]. Geoderma, 2013, 204: 120–129.

[110]

Dixon R A, Strack D. Phytochemistry meets genome analysis, and beyond[J]. Phytochemistry, 2003, 62(6): 815–816. DOI: 10.1016/S0031-9422(02)00712-4

[111]

Orgiazzi A, Bardgett R D, Barrios E. Global soil biodiversity atlas[M]. Luxembourg: European Union, 2016.

[112]

Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321(1–2): 117–152.

[113]

Naveed M, Brown L K, Raffan A C, et al. Plant exudates may stabilize or weaken soil depending on species, origin and time[J]. European Journal of Soil Science, 2017, 68(6): 806–816. DOI: 10.1111/ejss.12487

[114]

Materechera S A, Alston A M, Kirby J M, et al. Influence of root diameter on the penetration of seminal roots into a compacted subsoil[J]. Plant and Soil, 1992, 144(2): 297–303. DOI: 10.1007/BF00012888

[115]

Traoré O, Groleau-Renaud V, Plantureux S, et al. Effect of root mucilage and modelled root exudates on soil structure[J]. European Journal of Soil Science, 2000, 51(4): 575–581.

[116]

Akhtar J, Galloway A F, Nikolopoulos G, et al. A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates[J]. Plant and Soil, 2018, 428(1–2): 57–65.

[117]

Galloway A F, Akhtar J, Marcus S E, et al. Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties[J]. The Plant Journal, 2020, 103(5): 1666–1678. DOI: 10.1111/tpj.14852

[118]

Shanmuganathan R, Oades J. Modification of soil physical properties by addition of calcium compounds[J]. Australian Journal of Soil Research, 1983, 21(3): 285–300. DOI: 10.1071/SR9830285

[119]

Szatanik-Kloc A, Horn R, Lipiec J, et al. Soil compaction-induced changes of physicochemical properties of cereal roots[J]. Soil and Tillage Research, 2018, 175: 226–233. DOI: 10.1016/j.still.2017.08.016

[120]

Iijima M, Griffith B, Bengough A G. Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand[J]. New Phytologist, 2000, 145(3): 477–482. DOI: 10.1046/j.1469-8137.2000.00595.x

[121]

Iijima M, Higuchi T, Barlow P W. Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays L.) to the reduction of the soil mechanical impedance[J]. Annals of Botany, 2004, 94(3): 473–477. DOI: 10.1093/aob/mch166

[122]

Somasundaram S, Rao T P, Tatsumi J, et al. Rhizodeposition of mucilage, root border cells, carbon and water under combined soil physical stresses in Zea mays L.[J]. Plant Production Science, 2009, 12(4): 443–448. DOI: 10.1626/pps.12.443

[123]

Oleghe E, Naveed M, Baggs E M, et al. Plant exudates improve the mechanical conditions for root penetration through compacted soils[J]. Plant and Soil, 2017, 421(1): 19–30.

[124]

Grayling K M, Young S D, Roberts C J, et al. The application of X-ray micro computed tomography imaging for tracing particle movement in soil[J]. Geoderma, 2018, 321: 8–14. DOI: 10.1016/j.geoderma.2018.01.038

[125]

Helliwell J R, Sturrock C J, Miller A J, et al. The role of plant species and soil condition in the structural development of the rhizosphere[J]. Plant, Cell and Environment, 2019, 42(6): 1974–1986. DOI: 10.1111/pce.13529

[126]

George T S, Brown L K, Ramsay L, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare)[J]. New Phytologist, 2014, 203(1): 195–205.

[127]

Brown L K, George T S, Neugebauer K, et al. The rhizosheath-a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms[J]. Plant and Soil, 2017, 418(1–2): 115–128.

[128]

Benard P, Zarebanadkouki M, Brax M, et al. Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots[J]. Vadose Zone Journal, 2019, 18(1): 180211.

[129]

Kolb E, Legué V, Bogeat-Triboulot M. Physical root–soil interactions[J]. Physical Biology, 2017, 14(6): 065004. DOI: 10.1088/1478-3975/aa90dd

[130]

Lynch J P. Roots of the second green revolution[J]. Australian Journal of Botany, 2007, 55(5): 493–512. DOI: 10.1071/BT06118

[131]

Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant, Cell and Environment, 2009, 32(6): 666–681. DOI: 10.1111/j.1365-3040.2009.01926.x

[132]

Badri D V, Zolla G, Bakker M G, et al. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior[J]. New Phytologist, 2013, 198(1): 264–273. DOI: 10.1111/nph.12124

[133]

Chaparro J M, Badri D V, Bakker M G, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. PLoS One, 2013, 8(2): e55731. DOI: 10.1371/journal.pone.0055731

[134]

Walker T S. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44–51. DOI: 10.1104/pp.102.019661

[135]

Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1): 155–194. DOI: 10.1128/MMBR.69.1.155-194.2005

[136]

Jin Y, Zhu H, Luo S, et al. Role of maize root exudates in promotion of colonization of bacillus velezensis strain S3-1 in rhizosphere soil and root tissue[J]. Current Microbiology, 2019, 76(7): 855–862. DOI: 10.1007/s00284-019-01699-4

[137]

Oku S, Komatsu A, Tajima T, et al. Identification of chemotaxis sensory proteins for amino acids in pseudomonas fluorescens pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization[J]. Microboes and Environments, 2012, 27(4): 462–469. DOI: 10.1264/jsme2.ME12005

[138]

Singh V S, Tripathi P, Pandey P, et al. Dicarboxylate transporters of Azospirillum brasilense Sp7 play an important role in the colonization of finger millet (Eleusine coracana) roots[J]. Molecular Plant-Microbe Interactions, 2019, 32(7): 828–840. DOI: 10.1094/MPMI-12-18-0344-R

[139]

Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364: eaau6389.

[140]

McCully M E. Roots in soil: Unearthing the complexities of roots and their rhizospheres[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 695–718. DOI: 10.1146/annurev.arplant.50.1.695

[141]

Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321(1): 117–152.

[142]

Young I M, Crawford J, Nunan N, et al. Microbial distribution in soils: Physics and scaling[J]. Advances in Agronomy, 2008, 100: 81–121.

[143]

Tiemann L K, Grandy A S, Atkinson E E, et al. Crop rotational diversity enhances belowground communities and functions in an agroecosystem[J]. Ecology Letters, 2015, 18(8): 761–771. DOI: 10.1111/ele.12453

[144]

Juyal A, Otten W, Falconer R, et al. Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales[J]. Geoderma, 2019, 334: 165–174. DOI: 10.1016/j.geoderma.2018.07.031

[145]

Seaton F M, George P B L, Lebron I, et al. Soil textural heterogeneity impacts bacterial but not fungal diversity[J]. Soil Biology and Biochemistry, 2020, 144: 107766.

[146]

Juyal A, Eickhorst T, Falconer R, et al. Control of pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas and Bacillus sp.[J]. Frontiers in Environmental Science, 2018, 6: 73. DOI: 10.3389/fenvs.2018.00073

[147]

Kravchenko A N, Guber A K, Razavi B S, et al. Microbial spatial footprint as a driver of soil carbon stabilization[J]. Nature Communications, 2019, 10(1): 3121. DOI: 10.1038/s41467-019-11057-4

相关知识

丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应
土壤退化严重耕层浅、土壤板结、紧实度高,什么解决措施比较好?
植物的根系拓扑结构与生态适应.pptx
土壤干旱胁迫对八仙花生理生化特性的影响
根系分泌物:植物–微生物–土壤的调节媒介
龙胆花植物与环境相互作用研究
版纳植物园在逆境胁迫下的植物
盐胁迫下AM菌侵染的棉花幼苗根系蛋白质组分析
土壤微生物组:气候变化下保护土壤健康的关键因素,Biodiversity and Conservation
根系生物学研究中心揭示大豆根系“顾此失彼”应对酸性土壤低磷、铝、锰胁迫的分子机制

网址: 土壤紧实胁迫下根系–土壤的相互作用 https://www.huajiangbk.com/newsview1921283.html

所属分类:花卉
上一篇: 湿地植物根系泌氧及其在自然基质中
下一篇: 分子植物卓越中心阐明干旱信号调控

推荐分享